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Fourier multipliers and estimates of the Fourier transform
of meagures carried by smooth curves in R?

by
PER SJOLIN (Uppsala)

Abstract. Assume o > 0 and let m (z) be defined for ze R? by m () = (1 — [x[2)%,
|z] < 1, and m (2) = 0, |z| > 1. It is then known for what values of prm is a Fourier
multiplier for L? (R?). In this article this result is extended to more general functions m.

It is also given an L? estimate of the Fourier transform of measures carried by
smooth curves in R? which extends a result of C. Fefferman and E. M, Stein [4].

Introduction. Let m be a bounded measurable complex-valued function

on R2. Define an operator T by setting (If)" = mf, fe OP(R?), where f

is the Tourier transform of f, given by f(») = [ e~™'f(?)dt, x< R?, and
R

CF denotes the class of infinitely differentiable complex-valued functions
with compact support. We say that m is a multiplier for L? (R?) if | Tf || zocrs
< Cullflzomy), fe OF (R?), for some constant €, depending only on m
and p.

The following theorems are the main results of this paper.

THEOREM 1. Let I' be a C% curve in R* which is simple and closed and
has a tangent at each point. Denote the region inside I' by Q. For xe R? let
S(x) denote the distance from x to I" and let o be o positive number. A ssume
that m is a function on R* with the following properties:

(i) The restriction of m to Q belongs to O*(R).

(i) There exists a meighbourhood L' of I' such that m(w) = §(@)* if
we RN,

(iil) m vanishes outside L.

Then, if 0<< a<<1/2, m s a multiplier for LP(R*) if and only if
4/342a) < p< 4[(1—2a). If a>1/2 m is a mulliplier for I*(R*) for
1<p < oo '

TurzorEM 2. (i) Let I, = [0, 1], assume that v, and vy, are real and
belong 1o 0°(Iy) (i.e. they are infinitely differentiable in the interior of I,
and have one-sided derivatives of all orders ai the endpoints), and that
710 + 3 (1) 5 0 for te I,. Let I' denote the curve {[yy(t), yo(t))e R*; te Lo},
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let d8 denote the arc length measure on I' and set
o) = [e™f()as(), weR, feI}(I';ds).
I

Then

I8f HI‘Z(R2)
zf4< g< o0, g/(g-3)<p<
ture of I' at & point te I

(i) If furthermore K (8) = 0 for te I, then 4t is sufficient to assume that
yie (L), = 1, 2, and in this case the above inequality holds also for y = 1[q.

In the case when I' is the unit circle Theorem 1 is well known. (see
Bochner [1], Herz [7], Stein [9], Fefferman [4] and Carleson and Sjslin [3]).
In particular it was proved in [4] that the condition on p is sufficient for
a>1/6 and then in [3] that it is sufficient for o > 0. The author has
also proved that this result can be extended to the case when the tangent
to I" has everywhere finite order of contact. A simplification of the proof
in [3] and an easy proof of the extengion just' mentioned are contained in
Hormander [8]. An alternative proof in the case when I'is the unit circle
is given in Fefferman [6].

We also want to remark that if we set « = 0 in the definition of m
in Theorem 1, then it follows from Fefferman’s counterexample in [5]
that m is multiplier for L? (R?) if and only if p = 2.

The basic idea in the proof of Theorem 1 is the following. To treat
the case when I is eonvex we make a partition of the curve which leads
to a splitting of s with properties similar to those of the splitting carried
out by Fefferman in [6] in the case of the unit circle. The main difficulty
is to find a suitable partition of I. We then use a property of € func-
tions (gee Lemma 1) to pass to the general case.

Theorem 2 is well known in the case when the curvature of I' never
vanishes (see [4] and cf. [3], [8] and Zygmund [11]). It is also known that
already in this case the conditions ¢ > 4 and ¢/(¢—3)< p can not be
weakened.

The proof of Theorem 2 in the case K > 0 is a generalization of the
proof in the case of non-vanishing curvature and to pass to the 0 result
we use Lemma 1 once more. We shall also give examples of curves I”
for which the conditions on y in Theorem 2 can not be relaxed.

I wish to express my gratitude to Charles Fefferman for valuable
conversations.

O I LK zogiasy »
oo and y > 1/q, where K (t) denotes the curva-

1. The multiplier theorem. We shall need the following property
of % functions.

Levua 1. Let I be a compact interval on R, assume that ¢« 0 (I) and
is real-valued and let & be a positive number. Set B = {wel; g(x) = 0}

icm
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and let {I,}7 ) be the component intervals of INE. Then 3 (sup|p|)® is con-
vergent. n=1 I

Proof. Let F be set of points of accumulation of B and let {J,} 5.,
be the component mtervals of INF. To prove the lemma it is sufficient
ot prove that

(1) D (suplgl)' <

1T Tn

Coo 1l

for each m, where |J,,| denotes the length of J,,.

First let & be the smallest integer which is larger than 1/e. At least
one of the end points of each J,, is contained in F' and if follows from
Taylor's formula that

lp(@) < (3111)]?)"‘1 Wnl®y e dn.

If at most & of the intervals I, are included in J,, the above estimate
yields (1) with O, = k(sup |p'1)e |I]’“‘ I J, includes more than k&

intervals I, we make a parbltlon of J,, into subintervals ,,;, I =1, 2

such that each J,,; includes at least & and at most 2k intervals I,,. From
Rolle’s theorem it follows that each ¢, j = 1,2, ..., k—1, has at least
one zero in each J, ;. Repeated use of the mean value theorem yields

sup lp| < (Suplg') [omtl < .o < (80D [pP]) [t

m,l m,l ml
and hence

D' (suplp)) < OpelTn il

I,CIm1 In,

Summing this inequality over I we obtain (1) also in this case and the
proof of the lemma is complete.

We introduce some notation. We let | E| denote the Lebesgue meagure
of a set 7 in R or R* and set AB = {lo; we B}, 1> 0.

If @ is an interval on R, fe I'(w) and ac R et

¢ . 1 gl =1
n(w7 f) = (3 f2wal f(t)dt

o0

Oul@; £) = D W+ Casms(@; NI
Finally set @ = {(@, y)e R*; |z| <10, |y| <10}
We ghall now prove the main lemma in the proof of Theorem 1.
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LeMMA 2. Let I be a compact interval on R, let ¢ and pe C(I) and
assume that y is real-valued. Set

Ex(@,9) = N [ Yoo w)du, (o,y)e R, N >2
I

and
feL'(0,1),

1 .
Tyf(@,y) = [ Ey(z—t,9)f()d, (@,9)e R*.
0 .

Then if 4 < ¢ <
q such that

oo there ewists a constant Oy depending only on I, y, ¢ and

N S o < ONIIZ olq(l‘)g-N Yl zago,y -

Proof. First set A = 10max(suply’|, supl|y’’|, 1). Starting from
I I

the left endpoint of I we make a partition of I into intervals wy, k& =1, 2, ...
., K, such that |wg [ |y"|du = AN for k<K and |ogl f]q)"|du
P
< AN-L Tt follows that [wk[ > N~ for k< K and that K < GNW
We set B = {uel; v (u) =0} and let {I,}; be the component
intervals of INFH. If there ex1st intervals I, for which there is at least
one value of % such that w, = I,, we denote the corresponding inter-

vals | o by 2, m =1,2,..., M,. The intervals w, which are not
arCly M,

included in |J £, are denoted by £,, m = M,+1,..., M. We have
m=1
constructed a partition {Q,}2 . of I with the following properties:
(2) [, fllp"[d%}AN—l (unless Q,, = wg).
Qm
(3) If more than one interval w, is included in Q,,, then y’’ has constant
gign in Q,,.

(4) For every »n I,nL,, is non-empty for at most three values of m.

‘We have
Jlwilaus 3 [ly”ldu
'qm

IoNQp#8 1,

and using (4) we obtain
(5) DU Swra) <s 3( [1vr1auf, 0<e<1.
m Sy n Iy

= N [ eNeurmvtd) o y)du and

@

If w is a subinterval of I we set Ky (x,y)

1
T4f(@,9) = [ Ej@—t, 9)f()ds, fe L}(0,1).

icm
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Extending f to R by setting f(t) = 0 for te R\(0, 1) we obtain

- N fesN(m+vw(M))(p(u)f(Nu)du

We are going to prove that if Q,, = wg, then
M 1Tl < O f | du) "N (log )| f a1y

4< g oo

We fix m and for each integer ! let !, w!,..., denote the intervals
oy, in 2, for which 2711 < [w,] < 277 (if there is any), where w!is to the
1

left of ! if i< j. Then set Ty%, = 5 Ta,leZ,k=0,1,2,3, and
J=TR(mod 4)
By = (Tm,,,f)? F,,; is the inverse Fourier transform of a measure on

= {N(ul-i— o)y N (1w (%) —Hp(ua))); Uge Dyt = 1, 2} and a computa-
tion shows that for every s,

(®) {835 (81, 82) e BH < N [ || due| 2,

Qm
We choose xe C*(R?) such that [y[>1 in @ and g 0P (R?) and has
support in a unit square with center at the origin. Choosing (w1, @s)
= () f{®,), where § belongs to a suitable non-quasi-analytic class, we

may also assume that
© (@) = 0@,

|o] o0,

where § is a small positive number. Using (8) and (2) we eagily prove
that

(10) |supp (£F10) | < ON* |2, [ ly]du.
; 2,

From Schwarz’s inequality and Plancherel’s theorem it follows that

l1g]l zoogrzy < 2m|suppd [ lg [l z2cm2) s
if §e OF(RY), and hence
(11) llglizarmy < 0|‘5‘1]?13‘.9|1/2 ﬂlqll.‘lilﬁ(nﬂ)
‘We have

“TN.Z,kf lze@) = = ||, k“z; 12(0) < |l kHLq/zmz)

for each ] and & and using (11) with g = xT;, and (10) we obtain

(12) I3 Fllzae < O [ [w"ldu)‘“""“lvlﬂ—z'qznxlﬂz,kll;’i(m).
Om ke
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‘We now fix  and write w; instead of oj. We have

= D x(THNTFS)
4,4'=k(mod4)
and shall prove that two terms y(TW¥f)(IXf) and x(THf)(Txf) in this
sum are orthogonal in I*(R*) if j < j', 4 < ¢ and (j,§) 5 (¢, ).
To show this we shall prove that their Fourier transforms have
disjoint supports. It is sufficient to prove that the distance between the
set

By = {(V (gt ), N (p (wa) + p (w))); wre @, e oy}

and the corresponding set. H; ; is larger than V2. Without loss of generality
we may assume that j <.

Now assume that u,e w;, Uye w;, Vi€ 0y Ve wy and that |N(u,+
A+ ) — N (03 +2,)] < V2. It follows that i’ < §'. Setting o = min (v, — u,,
%y —1v,) and using the definition of 4 and the intervals w; we obtain

| 3 (p () 4+ () = N (p (02) +9(0a))| = N | [ w'aé— [ y'ag|

Yo+-Q uy+-e )
>N| [ was— [ vag—N(2N)4/10)
%12+E !
—Nf (& vp—uy) — ' (£)|dE— AV2[10

f ([ Wwiau)ae—ajs>a2—4)5> V3,
Dip1l Pj4
which ig the desired estimate.
From the orthogonality it follows that

P allzzmy < 2 D I (TR (TR 2w,
7,3°

for each % and using the rapid decrease of y and trivial estimates of T;! f
we obtain

(13) 2 F s 220y < O Z TR NIV )22 HONT1F Se0,
where @, = (log N)'*¥¢Q.

We are now going to estimate Ty f and shall firgt study Ky

. Letting
#; denote the left endpoint of w; and setting

o(u) = g;(u; y) = eNVPutu-—vlud g gy 1y

icm
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we obtain
log)
E(@,y) = é¥ouN [ e, o) gy,
0
We algo seb

loy)

.] = N f e’tNm( ) w) duw
and then have
K (@,y) = ™glo+yp' (u)).
From the definition of w; it follows that
le(w)l < ¢ and o' (w)] < O(ogN)+%21  for 0< u< |oyl

if |y < 10(og N)*** and mtegra,tmg by parts in the integral defining g
we can. prove that

(14)  |g®(a)] < O(log N)*** (N2~ min (N2, [a] ™), .
Setting »; = ((/&»«1)27&\7"12’ i2nN"'2Y, i< Z, we obtain

s =10,1,2.

Tt (@, y)l < 1 J glo+ v’ (u) —t) e (1)t |

T 00 %y
We also seb n = n(®,y) = [(2n) " N2~ (w+yy' ())], where [ ] denotes
the integral part. It then follows from (14) that

8

9
S (obyw () —1)| < OQog N (N2~ (1 +[i—nl) ™,

tewn;, 8§ ==0,1,2, and hence

b Ty—1
\ —iN2=l3~1u
2_, V»€ s

glo+yy' () —1) = te s, (@,9)eQn

Vaz 00

‘where

) < O (LB~ Qog Ny +R N2 (L [i—n)™,  weZ

(see [2], Lemma 3).
Using this representation of g we obtain

0

Y5 (0, 9)] < CQog M)+ D' (L+i—nl)7 Oy, (43 /)

om0

= Olog Ny ** 3 (1) Oy, (ussi 1)y (@1 9)€ Qs

lu[<N?
gince f vanigshes outside the interval (0,1).
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From Schwarz’s inequality it follows that
< O(log)™ D' (L+lu)™ Oy, (s )7
luj<N?

* (®,9)e QN .
We shall now estimate the sum in (13) using the above inequality. The
technique is similar to the proof in [6].

Tt follows from the definition of the intervals w; that |p’(u;) — v’ (us)]
> N-12% if § # 4§’ and we may also agsume that the above dlﬂierence is

less than a small constant for all j,j’. We let s, be the smallest integer
such that N—12' > 27" and conclude that s, < ClogN. We also set

oy ={(J;5; =9 ()| <277,

seZ, s <8, and dsb—{y,y = Wy}
Se‘u’mng ni (2, y) = [(2m)~ Nz“l(w+yw (u))]] and defining n.(2,9)
analogously we see from a geometrical argument that

i, y) e Qu; ny(2, y) = m, ny (2, y) =0} < O(IOgN)1+2[’N_222Z+8
for all integers n, n' if (j, ') e of,. Also (2, ¥)eQy, (j, ') o, implies that
O(J.OgN)lHsz—l"D

15)  |T¥f (@, y)P

2707 < Iy (o)

i@, y) —nye (2, )| <

Hence
00 SN Dap S G+ @S ),
ExA 1KI<N? pi<n?
where
8(u,v) = ClogN)y+® 3 3 I,
<8 (£,7) ey
and
Lisr = [ [ Oay Gy Oy G 702y
N
< -Ds 2 Gsluj (“n-}-u; f)202luj/(%n‘+v; f)27
In—n'j<0

‘where

D, = CO(log N)+® N-29%+5  angd

Trom Parseval’s formula it follows that

< Oogy ™ 3 3 2( [ ifprar)( [ IfPae).

<y In—n|<Cy Hntp o

0, = O(log N)y-® yyo—i-9,

an  Su,»)

‘We set

B, ={neZ;In—k0,|<C}, FkeZ,

@ © .
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and

A= U Hpouy el

ne By

Hence |4,;| < 0(logN)""*2-% and the last sum in (17) is majorized by

2”“;"£h(,‘ﬂfl 12 dt)(n{yv a) -—28+12(Af |f|2dt)(Af.|f1“dt)

<02 3 [ 1ftaia,ult [ iptaa,)

/.l I Av.k

< O(log N+ f f1*dt < O(log M) | flibao,ry-
0

Hence the left-hand side of (16) is less than C(logN)"*™||f|[}aq,,y and
(7) follows if we use (12) and (13).

In the case £2,, = wy the above argument yields (7) with the first
factor after the constant removed and an application of (5) and Lemma 1
completes the proof of Lemma 2.

‘We ghall now usé the above lemma to prove the multiplier theorem.

Proof of Theorem 1. Cover I' with finitely many small open discs
Dyyj =1,2,...,m, 80 that 6 is 0 and m = 6*in QnD; for each] Choose

@ OF (R?) such that suppy, = Dy, j=1,2,
a neighbourhood of I.

n n
Writing m = m{1— Y ¢)+ > mp, we observe that the first term is
1 1

, 1y, and Z(pj =1 in
1

¢* and has compact support and thus is a multiplier for L? (R?) for 1< p
< co. We then fix j and shall study me;.

Performing a rotation we may assume that suppy; = I xR, where
I is a ocompact interval on R and that & equals the distance to
a curve {(u, v)e R* uel,v = p(u)}, where pe 0°(I), in suppg,. Since
(6(x, v)/|v—p(w)])* is 0 in a neighbourhood of suppe; it is sufficient to
prove that (v—u(w)5@;(4,v) is a multiplier (here . = max(a,0),
we R). We may also assume (following Hérmander [8]) that ¢;(u,v)
== g () (v p(w)), where pe C(I) and ge OF (R). ,

Letting K denote the inverse Fourier transform of (o — v ()5 (w, v)
we got

(18)  E(@,y) == (@m)™ [[ g (u)o(v—yp(w)(v—v(w)i dudv
Ixe

= (2m)"? [ ) g () du f o (v) v dw.
I
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We let Q' and Q" be two squares in the plane with sides parallel to
the coordinate axes and side length 1/8 and assume that the distance
between them is >1/8 and < 2. Then let f have support in @' and set

Suf(@,v) = [[ RN @—1), Ny—s) [, s)dtds, (2,9)eQ", N >2.
Y

We shall prove that

(19) 18 xS lz2gy < Cg N2 Qog N || fllzay, 4<g< o0

The last integral in (18) equals Cy~'~*=40 (y~2"%), y— -+ oo, and it follows
from Lemma 2 that

@) ( [[  |[PEN@—,¥y—s)f,e)d|dedy)"

{my)eQ"ily—sizcg} B

< O s log P [1£(0, o) @t),  4< g<eo,
R

for all values of s if ¢, is a positive constant and an analogous estimate
holds for ¢ =

If |ly—s| < ¢, and ¢, is chosen small enough, then it follows from
repeated partial integrations in the first integral on the right-hand side
of (18) that

|N2K(N(w—t),l\7(y—s))|<0v - (®,9)eQ", (t,8)e Q'

and hence (20) holds with |y—s|> ¢, replaced by |y —s| < ¢,. Minko-
wski’s inequality for integrals yields (19) and Theorem 1 can be obtained
from the following standard argument.

Choose @ e CP°(R), non-vanishing only in the interval (1/2,2), such
that 2 D(27F) =1 for ¢t>1. Set Kyz) = K@ P2 *|z)), zeR?
=0, 1 2,
If f has support in a square with side length 2%~ it; follows from (19)
with ¥ = 2* and a change of scale that
B+ f | zagey < 4< g o0,
and the same estimate can be obtained for a general f by writing f = 3 fy,,

0 ok(1j2—2/g—a) 7.4 1 f“Lq(R?) ,

i
where y; are characteristic functions of squares with side length 2%-3.
H 0<ax1/2 and 4<q< 4/(1—-2a) or a>1/2 and 4 < ¢ < oo,

) oti—2a-a) ks converges and hence m is a multiplier for L¢(R®). The suf-

0 -
ficiency of the condition on p in Theorem 1 then follows from interpolation
and duality.
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That the condition is also necessary follows from essentially the
same simple argurment as in the case when I'is the unit circle (see e.g. [4],
pp. 10-11).

The following result on summability of Fourier integrals is a conse-
quence of Theorem 1.

CororLARY 1. Let T, Q and m satisfy the conditions of Theorem 1 and
suppose that 0c Q and m(0) = 1. Assume that either 0 < a<1/2 and
4/(3-+20) <p<20r a>1/2 and 1< p < 2. For B > 0 define the operator
8p on LP(R%) by (SRf)" = mgf, where my(w) = m(Rw), we R:. Then
Snf converges to f in L7 (R?) when R tends to infinity if fe L?(R?).

Proof. There exist positive numbers d, and d, such that I' c {ze< R?;
dy < |a] < dg}. We choose ¢ and ¢ in O (R?) such that ¢ (#) = 1 in a neigh-
bourhood of the origin, suppe < {we R?; 2| < dy} and ¢@)-+y(z) =1
for |o] < dy. Let fe L?(R* and write Szpf = Szf+Saf, where (Szf)”
= @Mz, (»ng,f )' = ’l/)R’m'R} and ¢p and ypg are defined in the same way
as Mmp.

Since gpme 02, we have Ilzim I82f —Fllzo@y = 0.

A dilation shows that the functions my are multipliers for L?(R?)
of uniformly bounded norm and using the fact that y iy smooth and van-
ishes in a meighbourhood of the origin we conclude that hm ||SRf”Ly(R.)
== 0, which completes the proof of the corollary.

A sinilar results on summability of Fourier series can also be obtained
from Theorem 1, gince a continuous multiplier for L?(R?) corresponds
to a multiplier for I?(T* (see [10], p. 260).

2. Proof of Theorem 2. We ghall use the following lemma.

LemmA 3. Let I be a compowt interval on R, let e C*(I) and assume
that vy is real-valued and ' (8) > 0 for te I.- Set

§f(@,9) = [er O,

(@, y)e B2, fe LMT).
Then

@1) 18 lloagty < Co I~ fp" =4 iy,

d<g< oo, g/lg-3)<p<K oo,

where C, does not depend on I or .

Proof. We first assume that 4 < g<< oo, p = ¢/(¢—3) and that
the right-hand side of (21)is finite. We use the method in [3], pp. 289-290.
‘We have

(8f (2, )2 = g il £ (1) f (5) it ds,
{(t,)ed % I;b<8}
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and getting u = t-+s, v = p(t)+y(s) we get

(8 (@, y)* =2 f [ et mf()f(s)ly' (1) —y' ()]~ du do,

where ¢ and. s are functions of % and v and D is the image in the (u, v)-plane
of I xI under the above mapping.

Defining » by 2/g-+1/r =1, using Hausdorff~Young’s inequality
and changing variables once more we obtain

187 e, < ( f f FOI1F()I 1y (1) —
We set £ = o' (1), 7 = »'(s) and it follows that

I8 Iy < O[] IF@FIFOI1E~ "l (1) " (s)) " dédn) ™.
w)yxy" (1)

We now use Holder’s inequality and the theorem on fractionary integrals
as in the case of non-vanishing eurvature (cf. [8]) and conclude that

(22) 18/ llpagey < (f FOPY [y () P0dE) Yo" = Cyllfy"~lIzoyry

o (8)]'7"dh ds ).

where p, = p/r. Hence (21) is proved in the case p = ¢/(¢—38) and the
remaining cage follows from Hélder’s inequality.

Proof of Theorem 2. The result in Theorem 2, case (ii) follows
immediately from Lemma 3 and it remains to treat the ¢ cagse. We may
agsume that I' = {(u,v)e R?; uel, v = p(u)}, where I is a compact
interval and pe C*(I). We set

8 f(@,y) = [e i fo)ar
I

and

S.f(,y) = [ HHwOFmya, n=1,2,3,...,
In
where I, are the component intervals of {feI;n’'(t) =+ 0}.
If ¢, p and y satisfy the conditions in Theorem 2 it follows from

Lemma 3 and Lemma 1 that

]

18 £ ll oy < ) 18 llzagme < O S’||f|w“| ) oy

n=1

o0

<y X (suply Yy oy <
n

n=1

O M 1" | ™oy

and Theorem 2 is proved.
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The following result on. restrictions of Fourier transforms follows
from Theorem 2 by duality.

CoroLLARY 2. (i) If I' satisfies the conditions of case (i) in Theorem 2,
then

IF L zoriasy < Co IS |z
f1<g<4/3, L<p<q3lg—1) and y > (¢—1)/q.
(ii) If I' satisfies the conditions of case (il) in Theorem 2, then the above
inequality holds also for y = (g—1)/q.
The following estimate follows from Corollary 2 if we apply Holder’s
inequality.
COROLLARY 3. Let I' be a O™ curve in R?, for some imileger n > 3,

which has non-vamishing curvature except at finitely many points. Assume
that the highest order of comtact of the tangent at these points is n—1. Then

W lzoasy < Op,ollflzam s
Flr<p<Koo 19 oo and 1/(n+1)p+1/g> 1.
© 'We ghall finally give examples of curves I" for which the conditions
on y in Theorem 2 cannot be weakened. We begin with case (ii) and let
= {(u,v)e R 0 < u<<1/2,v = p(uw)}, where (i) = ¢, 0<t<<1/2,
'],nd p(0) == 0. Assume that 4 < g < o0, ¢/(g—3) < p < o0 a,nd that

18 llzamey < Copg I~ 200,112

We shall prove that then necessarily y >1/¢. We set f(t) = (" (®)?,
0<t<e and f(¢) = 0, e<t<1/2, where f = yp/(p—1) and ¢ is a smwll
positive number. It follows that

10 1
8f(@,9)| > 7= f W, bl<Io W<

1
109 (e)’
and hence '

& 8

f(z/)")ﬂd‘l(m/)( g)) M (V_‘,“([ L e "pdt)]“’
0
Using the choice of f we obtain

&

(f (wf{)1’1:'/(7’-»-1)(;”)(7)’—1)/1’ <0,

0

oy (“/1(8))1,47

and a calculation shows that this can hold for small values of ¢ only if
y > 1/g.

The same argument works also in the cage p == oco. We then let I’
be given by the function vy, defined by () = e~ Vsin(1/th), 0 <t < e,
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and y(0) = 0, where k is a large positive integer and ¢ a small constant.
We agsume that 4 < ¢< o0, ¢/(g—3) < p < oo (the same argument works
for p = oo) and shall prove that there is no constant C,, , such that.

(18f ety < Opglf 191 lizap,q-

We set f(t) = ¢, 0<t<1/n, and f(f) =0 otherwise, where
B = p/g(p—1) and n is a large positive integer, and the above inequality
yields
1/n
([ 1w Pat)=me < 0, megmnia,
0

A computation shows that the last integral is larger than cyn¥#+1/~2g=fn
where ¢, > 0, and we obtain a contradiction if % is chosen large enough,
eg. k> q. ‘

We finally remark that a counterexample constructed in a similar
way shows that if 1/(n+1)p+1/¢ < 1, then the inequality in Corollary 3
does not hold.
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