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s-Numbers of operators in Banach spaces
by
ALBRECHT PIETSCH (Joua)

Abstract. For each operator between Banach spaces one can define the sequence
of aproximation numbers, Kolmogorov numbers, Gelfand numbers, etc. As an uni-
fieation we present an axiomatic theory of the so-called s-numbers, and we discuss
related ideals of operators.

As has been shown in the famous book of I. Z. Gochberg and
M. G. Krejn [1] the s-numbers are an important tool in the spectral theory
of Hilbert space (cf. [18]). The s-number $,(8) of a compact operator S
from an infinite dimensional Hilbert space H into itself is defined as
the nth eigenvalue of the operator |§|:= (§*S)¥2.

Particularly, the s-numbers can be used to deseribe the ideals in the
ring L(H, H) of operators. Let S, (H, H) be the closed ideal of compach
operators. Then the most interesting ideals discovered by J. v. Neumann
and R. Schatten are defined by ‘

S,(H,H) := {SeSm(H,H): Dlsa(8)? < oo}, 0<p< oo.
1
For p =1 we obtain the trace class of operators, and S,(H, H) is the
ideal of Hilbert-Schmidt operators which are characterized by the in-
equality

' 2 [(Se;, fk)|2< 0o
Tk

for arbitrary complete orthonormal systems (e;) and (f).

The purpose of this paper is to present an axiomatie theory of
s-numbers of operators in Banach spaces. Since we want to give a general
survey, some known results for special s-numbers are reproduced.

Finally, I with to thank my student F. Fiedler for his help by the
elaboration of some proofs and H. Junek for a simpler version of the
proof of Lemma 7.2.
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0. Prerequisites. Let  be a real or complex Banach space with the
closed unit ball Ug. The identity map of H is denoted by I.

A subspace is a closed linear subset. The embedding map of a sub-
gpace M into E is denoted by J # and the canonical map of F onto
the quotient space E/M is denoted by @f.

An operator is a bounded linear map. Let L be the class of all operators
between Banach spaces. The set of those operators which map ¥ into F
is denoted by L(E, F).

Let dim (M) be the dimension of the subspace M, and let codim (M):
= dim(B/M) be the codimension. If the operator § is of finite rank,
then the dimension of the image is denoted by dim.(§).

For aye B' (dual Banach space) and y,e¢ I’ let a,®y, be the map:
2->{8; o) Yo-

Next we state some important lemmas which are used in the following.

LemMA 0.1. (Principle of local reflemivity, of. [B]). Let M be a Sfinite
dimensional subspace of E'. If ¢ >0 then there ewists Re L(M, B) such
that

IRl <1+e and RIgze ==  for all e EnJ7 (M)

where Jg denotes the camonical map of X into B,
Lemwma 0.2. (Cf. [7], p. 199). Let M and N be finite dimensional
subspaces of B with dim (M) > dim (N). Then there exists we M such that
IQFall =

Levma 0.3. (Gf [6]). Let M be a subspace of B with dim (M) = n.
Then there exists a projection Pe L(H, B) such that

ol = 1.

M =PE awd |P|<na?

1. Axiomatic properties of s-numbers. For operators in Banach spaces
there are several possibilities to define sequences of numbers which
coincide with s-numbers in the case of Hilbert space. A report about
such numbers was given by B. 8. Mitiagin and A. Pelezynski [11] ab
the Moscow Congress in 1966 (cf. [12]).

In. the sequel we deal with an axiomatic theory of s- numbers A map

8: S—(s,(9))
from L into the seti of sequences of non-negative numbers is called an
s-number function it the following conditions are satisfied (n = 1,2,...):
@) I8 =8:(8)=8(8)>...20 for 8L
@) sHB+D)< s (8)+1TN  for 8, T L(H, F).
(3) 82 (BST) < |IBlls5(8) | Tl - for Te L(B,, B), 8¢ L(B, F), Re L(F, F,).
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(4) If dim(S) < n then s,(8) = 0.

(8) If dim(E)>=n then s,(Iz) = 1.
The number s,(8) is said to be the n-th s-number of the operator 8.
THEOREM 1.1. The s-numbers are continuous functions simce

(60 (8)— 8, (T)| < |S—T|  Jor 8, Te L(B, F).
Proof. By (2) we have
8, (8) < 8, (T) + 18— 1.
Futhermore the inverse statement of condition (4) iz valid.
THEOREM 1.2.If s,(8) =0 then dim(S)< n.

Proof. The assertion is an easy consequence of (3), (5) and

LevmaA 1.1. Let Se L(E, F). If Aim(8) > n then there ewist a Banach
space G as well as operators X< L(G, E) and Be L(F, Q) such that

I =B8SX and din(@)>=n

Proof. We choose 2y, ..., 2,¢ B such that Sz, ..
independent. Then by the Hahn——Bana.eh theorem there are bl, ey
with (8w, by = 8. Let G:=13,

wa

= (¥, b))
2. s-Numbers of operators in Hilbert space. Now we show that
s-numbers of operators in a Hilbert spa.ce H are determined uniquely by
their axiomatic properties.
THEEOREM 2.1. Let S< L(H, H), and let P(-) be the speciral measure
of the positive operator [S|:= (8*8)2. Then

8,(8) = inf{o > 0: dim(P (o,
for each s-number funciton.

Proof. By the theorem of polar representation (cf. [1], p. 21; [17],
p. 284) there is a partially isometric operator U such that

, Sz, are linearly
b,e F'

X(&) for (£)el

and
for ye B

oo)} < 'n}

8 =TU|8 and & =T*S.
Hence
8 (8) = 8, (I81).
We set o,:=inf{o > 0: dim(P(s, o))< n}. If ¢ > 0 then from

18] = fw oP(do) =G1]+80P(da)+ f oP (do)

0 0 opte
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and

dim ( f dP\(d[o)) <n
we obtain e

sa (1)) < |‘,,7+,GP(M”+S”( | aPlo) < oute.

opts
On the other hand, let o, > & > 0. Then

([ oP (@) ( f o™ 1P(do))

P(oy—e, 00) =

0 op—8
and
dim (P (0, — &, o)) = n
imply
ool o, ) < 5,8) | [ 0P (as)] < 2, (80060 — )",
So we have
0, — e 8 (I8)) <o, +2  for all ¢> 0.

CorOLLARY. Let S¢S, (H, H). Then 8,(8) is the n-th eigenvalue of
the positide operator |S).

3. Approximation numbers and isomorphism numbers. Now we
present two examples of s-number functions. .
For every operator Se¢ L(E, ) the approvimation numbers are de-
fined by
G (s):=int{|S—4|: 4 L(B, F), dim (4) < n}.

THEOREM 3.1. The map

app: S——>(a,n(8))
%8 an s-number function.

Proof. Since the other properties are trivial we prove the condition (5).
Let us assume a,(I5) < 1. Then there exists AeL(H, Z) such that
Hz—A| < 1 and dim(4) < n. Consequently, 4 = Ip—(Iz—A) is inver-
tible by the Neumann series, and we have dim (4) = n. Contradiction.
TEEOREM 3.2. The appromimation numbers are the largest s-numbers.

Proof. Let SeZL(¥,F). Then for each s-number function and
AeL(B,F) with dim(4 )< 7 we have

5a(8) <8 (A)+ IS — A = ||8— 4.

Hence

8.(8) < a,(8) for all SeL.
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For every operator Se L(EB, F) the isomorphism numbers are defined
as follows. If &im (8) < n we set 4, (8): = 0. If dim (8) >n then by Lemma 1.1
there exist a Banach space G as well as operators XeL(G,H) and
Be L(F,G) such that

Io =BSX and dim@>n

In this case let
in(8): = sup {| B[~ | X||7*},
where the supremum is taken over all possibilities.
THEOREM 3.3. The map
is0: S—(4,(9))
48 an s-number function.
Proof. Since the other properties are trivial, we prove

(2) W (8+T)<in(8)+|T] for 8,T<L(E, F).

We may assume 4,(S+T)> |IT|. If 0<e<4,(S+T)—|IT| then there
exish a Banach space @ as well as operators X< L(G, H) and Be L(F, @)
such that

Ig = B(S+T)X, dim(@)>n, and [B|7|X|™ >4y(84+T)—s> |T].
Since |BT'X| < 1, the operator
B8X =B(S+T)X—BTX =1,—BTX
is invertible. From .
Ig = (I¢g—BTX)*BSX and |(Ia—BTX) < ({1—|BTX|)™?

it follows that
i (8) = H(Ia BTX)™ B|~| |7
> (1—|BTX) B~ | x|
= |BIPHIXI — 1T
2 i (8 +T)—&—|T|.
Consequently,
U (8 +T) < 4 () + 1T +&-
TuporEM 3.4. The isomorphism numbers are the smallest s-numbers.
Proof. Let Se¢e L(#,F), XeL(G,E) and BeL(¥#,Q®) such that

I =BSX and dim@)=n

Then for each s-number function we have

= 8, (Ia) < [IBl s, (8) 1 X]].-

Hence

1, (8) < s, (8) for all SeL.
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4. Injective s-numbers. An s-number function s is called injective
if the following property is satistied:
Let M be a subspace of F; then
S (T 8) =8, (8) for all Se L(H, M).
In other words, injectivity means that the s-numbers s,(S) do not depend

on the codomain of S§.
For every operator Se L(E, F) the Gelfand numbers are defined by

0,(8): = inf{[|ST I|: codim (M) < n}.
TreoREM 4.1. The map
gel: §—(0,(8))
s an injective s-number function.
The proof is left to the reader. ,
A Banach space F is said to have the ewtension property if for every

operator S, mapping a subspace M of an arbitrary Banach space B into F
there is an extension § from ¥ into F' such that |9|| = 18]l

B
\.
PIERN
"M \
N

/Y
- So
TewRoREM 4.2. If F has the extension property then -
6.(8) = ,(8) for all S<L(H, F).

Proof. Let S<L(E,F). Since a,(8) are the largest s-numbers, it
is enough to show a,(8) < ¢,(S).

If e >0 we choose a subspace M of ¥ such that
18Tl < ep(8)+2  and codim (M) < m.

. Then there exists an extension T'e L(B, F) of 877 with |T)| = (8T E|.

We set A:=8—1T. Since 4w = 0 for all e M, we have dim(4)< n.
Hence

@ (8) < IS — A = |T)| = ISTE| < 6y (8) +5.

Every Banach space F is a subspace of a Banach gpace F* which

has the extension property. The embedding map of F into F* is denoted
by JZ.

TemorEM 4.3. Let S< L(H, F); then
cn(s) = n(J%'?S)'
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Proof. From the injectivity of the Gelfand numbers and Theorem 4.2
it follows :
Cn (S) = Gn(J%‘nS) = a‘n(Jﬁs)'
TemorEM 4.4. The Gelfand numbers are the largest injective s-numbers.

Proof. Let S¢ L(E, F). Then for each injective s-number function
we have '

80 (8) = 8,(JF 8) < 4, (JF ) = ,(8).
Let 8< L(E,F). Then the modulus of injectivity is defined by
3(8):=sup{o > 0: [|8a]| > olial}-
Without proof we state the following lemmas.
Levwa 4.1. Let 8, TeL(E, F); then
JE+T) < J(8) + T
Levma 4.2. Let Te L(H,F) and S< L(F, G); then
' 3(8T) < IS5 (T).
Moreover, if T is onto then
JETY<F (ST
For every operator S< L(H, F) the Bernstein numbers are defined by.
Uy, (8):= sup{j(8J£): dim (M) > n}.

Remark. It is enough to take the supremum over all subspaces M
with dim(M) = n.
TamorEM 4.5. The map

bern: 8- (u,(S))

is an injective s-nwmber function.
Proof. We only show

(8) Uy (RST) < (1 B)| 4 (S)|\T|| for Te L(H,, E), Se L(H, F), Re L(F, F).
Let 0 < & << %, (RST). Then there is a subspace M, of B, such that
Uy (R8T) —¢ <j(RSTJﬁg) and  dim (M) > n.

Let M:= T(M,), and let T, be the restriction of T to M, considered
a8 a map into M. Then

RSTJT3f0 = R8I Ty and  ||Toll < |71
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Since by Lemma 4.1
0 < u, (RST) — & < (R8I To) < |RST 1 (To),

we have j(Ty) > 0. Hence T is one-to-one, and we obtain dim (M) > n.
Consequently, since T, is onto, Lemma 4.1 implies

N

U (RST) — & < (RSTETo) < BRI (S%) 1ol < IR, (8) 7]

TEmoREM 4.6. The Bernstein numbers are the smallest injective s-num-
bers. :

Proof. Let S<L(H,F). For each injective s-number function we
show that dim (M) >n implies j(8J%) < s,(8). This proves

Uy (8) < 8,(8)  for all SeL.

We may agsume j(8J%) > 0. Let M,:= S(M). Then the restriction &,
of § to M considered as a map into M, is invertible, and we have

1857 = (8T5) .
Now the conclusion follows from
1= 8a(Tar) < 5, (SIS = (T, 8) 11857
< 8, (ST IS5 < 8, (8)5(8TE)2,

5. Surjective s-numbers; An s-number function s is called surjective
if the following property is satisfied:
Let B/N be a quotient space of B ; then

8,(8Q%) =s,(8) . for all Qe L(B|N, F).

In other words, surjectivity means that the s-numbers s, (8) do not depend
on the domain of §.

For every operator Se L(&, ) the Kolmogorov numbers are defined by

@, (8) : = inf {|Q%8]: dim (V) < n}.
THEOREM 5.1 The map
kol: S—>(dn(S))
s a surjective s-number Sfunation.
The proof is left to the reader (ef. [131).

A Banach space B is said to have. the lifting property if for every
operator §, mapping ¥ into a quotient space F/¥ of an arbitrary Banach

icm°®

space F, and for ¢ > 0, there is a litting  § from E into I such that
181 << (1 +2) S0l :

s-Numbers of operators in Banach spaces 209

A F
S//
// Qf‘v
’ ¥
BZ —~F|N
So

THEOREM 5.2. If B has the lifting property then
a4y (8) = a,(8) for all S< L(E, F).

Proof. Let S< L(E, F). Sinee a,(8) are the largest s-numbers, it iy -
enough to show ,(8) < 4,(8). _
If ¢ > 0 we choose a subspace N of F such that

1@FSI < d,(8)+¢ and dim(¥)< n.

Then there exists a lifting Te L(E, F) of Q%8 with |T) < (1+2) Q% 81l
We set A: = §—1T. Since Awe N for all z¢ B, we have dim (4) < #. Hence

4, (8) < IS — Al = |TI| < (1 +2)(dn (8) + ).

Every Banach space F is a quotient space of a Banach space FE*
which has the lifting property. The canonical map of E* onto F is denoted
by Q5.

TeEoREM 5.3. Let Se L(E, F); then

4 (8) = 4, (8Q%).

Proof. From the surjectivity of the Kolmogorov numbers and-
Theorem 5.2 it follows

@, (8) = d,(8Qk) = a,(8Q%).

THEOREM 5.4. The Kolmogorov numbers are the largest surjective
s-numbers. o

Proof. Let S¢ L(E,F). Then for each surjective s-number function
'we have

84(8) = 8,(8Q%) < a,(8Q%) = d,(8).
Lot Se L(#, I'). Then theﬂvmodulus of surjectivity iy defined by
g(8) i=sup{o > 0: S(Tg) > 0T}
LemMA 5.1, Let 8, Te L(E,F); then
g(8+1) < ¢(8)+ 7.
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Proof. We may assume ¢(S-+T)> |IT|. If 0<e< ¢(8+T)— |1
we set o 1= q(8+T)—e Let ye Up. We choose inductively a sequence
of elements ;< F such that

A

Sty +T5, = (o—|Tl)y  and nwlns—g——gi”—,
Sty + Ty = Ty and o] < 1250

‘ o]

Stpp1+ Ty = Ta, . and  [op.) < —,

Then

n—1 _ ' \
Hmnu<(l§ﬂ) i-é@'- for m=1,2,...

Since ||T]| < o, it is possible to define

=S,
and we have 1
=(e—ITly and |o|<1
This proves 8(Ug) > (¢— ||T||) Up. Consequently,
4(8) = e—ITl| = ¢(8 +T)— I T]|—s.

Without proof we state
Levwa 5.2. Let Te L(H, F) and S< L(F,); then

4(8T) < ¢(8) 117!
Moreover, if 8 is one-to-one then
¢(8T) < I81lg(T).
For every operator S< L(H, F) the Mitiagin numbers are defined by
2a(8) := sup{g(@% S): codim(N) > n}.

Remark. It iy enough to take the supremum over all subspaces N
with codim (N) = n.

THEOREM 5.5. The map

mit: §- (vn(S))

8 a surjective s-number function.
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Proof. We only show
(2) V(8 +T) <0, (8)+ T for 8,Te L(E,F).
Let ¢ > 0. Then there exists a subspace N of F such that
qQRB+T)) =0, (8+T)—¢ and codim(N)>n.
Uning Lemma 5.1 we obtain
00(8+1T) < g(QF(5 +T)) +& < ¢(QE8) + Q5T +3
< 0 (8)+ 1T +e.

TeaporREM' 5.6. The Mitiagin numbers are the smallest 'swrjectifve
s-numbers.

The proof is similar to that of Theorem 4.6 and will be omitted.

6. Dual s-numbers. For each s-number function s a dual s-number
fumction s® can be defined by

s2(8): =s,(8) for all SeL.

Without proof we state the trivial
TEEOREM 6.1. Let Se L; then

7

4, (8) 2 6, (8).

Remark. Using the principle of local reflexivity, Miss C. V. Hutton
{3] has proved that a,(S) = a,(Q') for every compact operator §, eof.
Theorem 6.3. On the other hand she was able to compute the approxi-
mation numbers of the identity map I from I, into ¢,

a,(I) =1 and a,(I) =1/2 for n =2,3,...
THEOREM 6.2. Let Se L; then
0 (8) = d,(8").

Proof. Let Se¢ L(E, F). By duality there is a one-to-one correspon-
dence between subspaces M of F with codim(M)<<n and subspaces N
of B with dim(N) < n,

M—>N:={acH: {(»,ay =0 for all e M},
NoM:= {#weH: {w,a) =0 for all acN}.
Now the assertion follows from
18752 = lIQ% 811+
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TrorEM 6.3 Let Se L such that 8 is compact; then
a,(8) = Gn(S’)'

Proof. Using similar arguments as in the preceding proof we obtain
@,(8) > 0,(8'). To show the inverse inequality we need the compactness
of 8.

If £ > 0 then we find #,,...,w,¢ Uy with

§(Tx) = U {Sap-+eU)

as well as a subspace N of P such that
Q% 8"l < d,(8")+e and

Then there is a finite dimensional subspace M of 7 with
NoM and JpSwe M

By Lemma 0.1 there exists Re L(M, F') such that
B <1+

We set Ny: = R(N). Using the definition of the quotient norm on #”[¥,
we choose 2} « N with

18" T g~ | < |QF 8" Tpai +5 < dy (") +25.
Let 2;: = Re;'. Then #e N,, and therefore
”ngsmiu = ”Q%,)RJF‘S%” = ”QirORS"JE%” < “RS"JE-’W“‘%”
S IRIIS" T g —2 || < (14¢) (@, (8") +2 8.

For each e Uy with some index 7, there holds

dim (V) < ».
for ¢ =1,...,n.

and = RIpSw; = 8w, - for i =1,...,n.

18— Say | < o.
Consequently,

@R, 8ol < 9%, Smi,]l 4+ < (1+ &) (@ (8") +25) +5.
This proves
0 (8) < 4 (8") = 0,(8").

The proof of the following lemma ig implicitly contained in [2],
p. 62, or [21], p. 234.

Lmvva 6.1, Let Se L; then
J8) =q(8) and  ¢(8) = j(8).
THEOREM 6.4. Let Se L; then
2 (8) = u, (8').
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Proof. Let & be a subspace of F with codim (N) = n, and let
M:={eF: (y,b) =0 for all ye N}

be the corresponding subspace in ' with dim (M ) = . Then by Lemma 6.1
we have
2(QFS) =j(8'T5p).

Now the assertion follows using the same duality arguments as in the
proof of Theorem 6.2.

Remark. It is unknown whether

%, (8) = v,(8)

holds for all SeL.

Finally we state the trivial

TeEOREM 6.5. Let Se L; then

in (8) < iy ().

7. s-Numbers of diagonal operators. In this section we compute the
s-numbers of diagonal operators §,

8(&1y .oy &) 1= (0161, ey 0 &) With

mapping U} onto I3'. Since 5,(8) =0 for n>m, in the following let
no=1,..., M
THEOREM 7.1. If 1 < p = ¢ << oo then

0, 2...20, >0,

Jor each s-number function.
Proof. Since dim(4) < n for

A&y ey &) 1= (01€1y ooy Oz épy, 05000y 0),
we have
5. (8) < 0, (8) < IS— 4[| = o,

One the other hand, let
J(E1yoens &a) 1= (E1yoes £0y 054005 0)

Q(Exs eevy bnyoves Em) 1= (150005 &n),
and
So(&1y -y &n) 1= (01615 .10y O &p).

Then 8, = @8J, and therefore
1 = 8, (I) < 8a(80) 85711 < QU sa (9) Wl 0™ < 80 (8)a

Consequently,
$,(8) = 0.
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To provev the following theorem we need two lemmas (cf. [9]).
LemMA 7.1. Let M be a subspace of U with codim (M) << n; then there
exwists & = (81 ..., &y) € M with |e|l, = 1 such that the set
K = (ke |al < 1)
has less than n elements.
Proof. We consider an extremum point ¢ of U,. Let us agsume
that K hag at least n elements. If
N:={rell: & =0 for k¢ K}
then dim(N) > x. Hence we find ye MnN with |ly|l, = 1. Since
o 1=max{|s|: ke K} <1,
we have
e+0ye Uy

So ¢ cannot be an extremum point of U,. Contradiction.

for 0 < 6<<1—0g.

Levma 7.2, If 0<<q<p< 00, fiyyenny gy >0, and [, < 1§

for & =1,...,n, then
7+l n
{12 |§k|q#k}1m {;‘ \fquﬂk}llq
>

A+l = n ¢
{;‘ [Eklp:u'k}l/p {%‘ [5k|ﬂl4k}l/p

Proof. We set

@ r= {/TS’:1 ‘Eklp.uk}lm and /3 v= {:? lfqu/‘k}lm'

From .
\ Ek N flc o
< for k=1, ...
lgn-}vl = En—b-l ! 7”
it follows
b | Sonaf!
af S1p |
Consequently,

n+1
{%’ |Eal g}

‘ _ B el a B [B1
{Vg‘] A {0 +1pa” i }?

B a{l+ [‘Envp-llalp/"n—}-l}l/p

{5’ ]Equ”klllq

(3 e e '

=

o |
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THEOREM 7.2. If 1< g<p< oo then

@0(8) = 0u(8) = d,(8) = | b A

where 1[r :=1/q—1/p.
Proof. Since dim(4)< » for

A(dyy oy &p) 1= (0081y ovvy Op1€yny 0, .00, 0),
we have ’
m
(a) an(8) <8 -4l = {3 3}
n
On the other hand, let M be an arbitrary subspace of I with
codim (M) < n. If -

D(&yy ey ) 1= (67 Eqy vnny 0P Ey)

is considered as a map from I onto I, by Lemma 7.1 there exists
€ = (81 +.ey &) € D(M) with ||, =1 such that

K= {k: |g| < 1}

has less than n elements. We set @ := D 'e. Then from Lemma 7.2 it
follows :

|Swll, {A?J CAOC AR P b

' m
m , /
HSJ%'&H? ol = e > K :{ ak}ll?‘>{20_£}1r.
P Sl Sl BE
.1 ki K
Consequently,
m
r 1
(0) A PAA S
By Theorem 6.2 we have
(d) d,(8) = 0,(8) = { a3
n

Finally, the assertion follows from (a), (¢) and (d).

It p = oo the proof must be changed in an obvious way and we do
not need Lemma 7.2.

Tn the case 1< p << ¢< co the s-numbers a,(8), ¢,(8) and &.(8S)
seem to be unknown. A special result was proved by S. A. Smoljak
(ef. [19]).

3 - Studia Mathematica LI.3
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TaEOREM 7.3. If p =1 and ¢ = 2 then

h—n+17%
a,(8) = 4,(8) = max
' n<hm Z o

Remark. Let I, be the identity map of I* onto I;*. If

= {wez;": Zm’gk =0}
1

then codim (M) << 2. Since

i —
|23 = 1/v2,
it follows
<1)V2.
On the other hand, from Theorem 7.3 we obtain

=V(m—1)jm >1//2

This proves that the s-numbers an,kc,, and d, are’different in general.
Remark. In the next step one should try to compute the value of
a, (L) for the identity map I, of 1" onto I. Using the operators

as(I) = dy(I) for m = 38,4, ...

1 1
Aﬁ:=g’e®e and Am:=Im—~7n—e®e with ¢ = (1,...,1)

it ecan be proved that
a,(I) =1/2 and a,(l) =1/m.

From R. 8. Ismagilov the author was informed about the following result:

mie+e

(L) =0( ) for each ¢> 0.

There is some kind of duality between s-numbers.
Levuma 7.3. Let dim(B) = dim (F) =m, and let S< L(B, F). If 8 is
invertible then
un(s)cm—n—i-l(’g“l) =

Un (S) dm—nv+1 (S—l) =1.

Proof. Let M be a subspace of ¥ with dim (M
then codim (N) < m—n-+1, and from

FSTENSIE| =1

and

we obtain
un(s)cm—-n-f-l(s—l) =1.

>0 IE N: = 8 (M)

icm
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The proof of the other equality is analogous.

Remark. Tt is unknown whether, with the same assumption as in
Lemma 7.3, there holds

@n(s) [ (S-l) =1.

Up to this time we can only proye an inequality. For this purpose, if
&> 0, we choose a Banach space G as well as operators X« L(@, F) and
Be L(I', @) such that

in(8)—e<|B[TIX|™, Iz =BSX and dim(@)=n
Let A :=8"—XB. Then from dim(X)>n and A(F
follows dim(4)< m—mn-+1. Consequently,

(6 (8) = &) G2 (87")

NX(G) = {0} it

<IBIXIH ST -4l <1

As an immediate consequence of Theorem 7.2 and Lemma 7.3 we
obtain

THEOREM T.4. If 1 < p < ¢ << oo then

in(8) = 1, (8) =, (8) = {2”7 %% '}_m

where 1[r = 1[p—1/q.
8. Relations between some s-numbers. As a consequence of the
preceding results (Theorems 3.2, 3.4, 4.4, 4.6, 5.4, and 5.6) we have
THEOREM 8.1. Let Se L; then

0 (8) = 6,(8) = 4, (8) = 4, (8)
and
4, (8) = d,(8) =

U, (8) = 4,(8).

The following statement is” well-known (cf. [8]).
THEOREM 8.2. Let Se L; then

a,(8) = w4, (8)-
Proof. Let 8¢ L(®, F). Since

4,(8) 1= it {|QF S||: dim(N) < n}
and

U () 1= sup{j(8J%): dim (M) = n},

it is enough to show
Q¥ 81l = j (837
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We may assume j(SJ%)>0. If M, := S(M) then dim(M,)>n.
Consequently, by Lemma 0.2 there exists ze M such that

Q% Sal| = [18al} =1.
Now the inequality which we want to prove follows from
1= |80)l > §(8T5) ol and 1 = Q% Sa] < QXS] lel.
TEEOREM 8.3. Let S L; then
6, (8) = vn(8).
Proof. Using Theorems 6.2 and 6.4 we have
0, (8) = @,(8') = u, (') = v,(8).

The results are represented in the following diagram where the arrows
point from the larger s-numbers to the smaller ones,

n (
/ ’ { N .
a, (8) ) i (8).
N ) P vm)/

e

8) PRACAN

THEOREM 8.4, Let SeL; then
0,(8) < on?d, (8)  and  a,(8) < enMe,(S)

where o 18 a positive constant.

Proof. Let 8¢ L(E,F). For ¢ >0 we choose a subspace N of ¥
such that

Q%8I < d,(8)+& and  dim(N)< n.

Then by Lemma 0.3 there exists a projection P L(F, F) with N = P(F)
and |[P|| < (n—1)"". Next, by

JY+N):=y~Py
we define an operator Je L(F|N,F). Then
171 < Mp—Pl| < 1+ (n—1)"2 < gn
Wwhere o = V2. From

8—P8 = (Ip—P)8 = JQ%8
we obtain

0 (8) < 18— P8I < TG 81 < o™ (dn(5) +9)-
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The proof of the other inequality is similar and will be omitted.
Remark. It is unknown whether

4, (8) < a1y (8)

"holds for an exponent a << 1/2.

THEOREM 8.5. Let Se L; then
Uy (B) < 0, (8)  and  0,(8) < 0?4, (8).

Proof. Let S< L(HE,F). If 0 < &< u,(S) we choose a subspace M
of E such that

U, (8)—& < j(8J%) and  dim (M) = n.

Let N: = S(M). Since j (SJ%) > 0, the restriction &, of S to M considered
a8 a map onto N is invertible, and we have

J(8T5) = IS
Let Pe L(F, N) such that PJ% = Iy and |P| < #*. Then
Iy = 87 P8IE.
Consequently,
i (8) 2 87 P W5 7 = n B IST Y = a7 (w0 (8) — &)

The proof of the other inequality is similar and will be omitted.
The next statement was proved by B. 8. Mitiagin and G. M. Hen-
kin [10].
THEOREM 8.6. Let S« L; then
,(8) < n2, (8) and  d,(8) < nPu,(S).
Remark. Probably there holds
() < m,(8) and  d,(8) < nu,(S).

A smaller exponent of # as @ = 1 is impossible since for the identity map
I of I, into I, we have -

Ug(I) =v,(I) =1/n and o, (I) =d,(I) 21/2, of. [3].

As an immediate consequence of the preceding results we obtain
TurgorEM 8.7. Let Se L; then

4, (8) < @nin(8)

where g 8 a positive constamt.
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9. Ideals of operators. For each subelass 4 of L we set
AE,F) := AnL(E, F).

A is called an ideal of operators if the following conditions are satistied
(cf. [15]):
L) If age B and yoe T then a,@y,e A(E, F).
(2) If Te L(B,, B), S< A(E,TF) and Re L(F, Fy) then RST < A(H,, T,).
(3) If 8y, 8¢ A(E,F) then 8,+8,c A(H,F). ‘

A subclass A of L with properties (1) and (2) is said to be an idol
of operators.

Let s be an s-number function. Then we define

S§:=.{Se L: i’sn(S)“’< oo} for 0 << p < o0,
1

and .
82,:= {Se¢ L: lims, (§) = 0}.
n

We have the trivial
TarorEM 9.1. The class Sj is an idol, 0 < p < oo.
THEOREM 9.2. The class S3, is o closed idol.

Proof. Let Se L(E,F). We suppose that, for every positive &> 0,
there is Sye 8%, (B, F) with [|§ —8,/| < &. Then we find a natural number n,
such that

8,(8o) <&  for m = my.

Consequently,
8, (8) < I8 — 8ol + 84 (80) < 26

and therefore Se< S5 (#, F). This proves the closedness of S (B, F).
Let K be the clags of compact operators. Then we state the known
(cf. [14], p- 146)

TeEoREM 9.3. S5 = S = K.
Proof. Let Se K(E, F). If ¢ > 0, we choose ¥y, ..., Yy e I' such that

for n = ny,

8(Ug) = Ll,) {9:+eUp}.
Let N be a finite dimensional subspace of F' with yy,..., ¥, < N. Then
1@% Sli < e. Consequently,
d,(8)Y<e  for all n > ny= dim(W).

This proves K < S

icm
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Now the inverse statement will be established. Let S SEYE, F),

If ¢ > 0, we choose a natural number » with d,(S)< s. Hence there is
a subspace N of F such that

19%8l<e and dim(¥)<n.

Since Uy is compact, we find Y1y aeey Yme F such. that
m
(ISI1+&) Uy = U {ys+2Ug}.
1

Let z¢ Uy. Then |Q% 8z < ¢ and, therefore, |[Sz—y|| < & for some y< N.
Since |jy|| < ||S||+e, we have
ye Udyiteln)

Consequently,

m

Swe |\ {y;+2eUg for all ze Ug.

1

This proves S < K. :
Finally, S8 = X! follows from ¢,(8) = d,(8) and Schauder’s

theorem (ef. [21], p. 275).

An s-number function s is called additive if the following improvement
of condition (2) of § 2 is satisfied:

(2% Span—1 (8 +T) < 8, (8)+8,(T) for 8,Te L(B,F)and m,n =1,2, ...

TrrorREM 9.4. Let s be an additive s-number function. Then S5 is an
ideal of operators, 0 << p < co.

Proof. Let 8;, 8¢ 85 (E, I'). Since
(01+02)" < gp(0f +of)

with g,:= max (2?7}, 1), we have

for 0y, 0,20

an('g1+sz)ﬂ< 22 81 (8314 85)°
T 1

<2 ) (5a(81) + 84 (8,))?
1

] 0

<20, (D) (S0P + ) 5(80)7).

i 1

If p = co then
I%Lmsn(’gl'*“'gz) = lzmszn—l(’gl'l'sz) gh;fnsn('s’l)‘*‘li}bnsn(sz) =0.
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Remark. By the definition
T2 (8): = {Zs,,w)ﬂ}”” ~for Se S
Y

we obtain a quasinorm X7 which iz in general not a norm even in the
case 1< p < o0.

The following statement is proved in [14].

THEOREM 9.5. The approximation numbers, Gelfafnd numbers and
Kolmogorov numbers are additive.

Remark. It seems to be unknown whether the isomorphism numbers,
Bernstein numbers and Mitiagin fiumbers are additive.
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