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STUDIA MATHEMATICA, T. LI (1974)

A real variable characterization of H”

by
RONALD R. COIFMAN (St. Louis, Mo.)

Abstract. An explicit representation theorem for functions in H?(R) for p < 1,
ig given by means of a purely rcal variable construction. From this representation
many of the classical results concerning these spaces, as well as representations of
their duals, follow easily.

The purpose of this note is to give an explicit representation theorem
for functions in H?(R) for p < 1. This iz done by a purely real variable
construction. Specifically, welet 0 << p < 1 and define a p-atom as a function
b having support in an interval I and satisfying:

[b(@)| < and fb(w)m"dm =0

1
7

for all 0< 7a<[%] —1 ([w] denotes the integral part of z). We then

have:
TumoreM I. A disiribution f is in HP(R)(}) if and only if there
ewist o, R and b;(x) p-atoms, ¢ = 0,1, 2, ..., such that

and
(1) Al < D laal? < BlIf i,
[

where 4., B depend only on p.

This representation theorem for H* functions was obtained by C. Herz
in the martingale case (see [4]) and by C. Fefferman in our case. Fefferman
observed that this result is an easy consequence of the duality between
H* and B.M.O.; and, actually, is equivalent to the duality.

() Our space HP (R) consists of boundary distributions of the real parts of the

traditional Hardy spaces.
() All sums are to be interpreted in the sense of distributions.
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The proof sketched here is an explicit decomposition of f into p-atioms
and yields simultaneously the duality results for all 0<p<1. This decom-
. position is roughly the same as in the corresponding martingale case
(see [4]).

‘We start as in [1] by defining the maximal functions.

E¥() (@) = sup | [ (81— (o+ et)dt] . (7

Simple integration by parts arguments show that

RO(f) (%) = ¢, sup |[f(e—t)n(t) @4
-SRI

where 7 has compact support and k-1 continuous derivatives and

b ot 1 1
n® = f Pl d (M)’ it

dtk+1 tk
This realization of R® enables us to use it as in [3] to obtain Calderén—
Zygmund type of decompositions from which the inequality

Iflae < A5 | BO () ()]

follows. For k> 1/p Fefferman and Stein [3] obtain the converse inequality
by showing that the maximal non-tangential Poisson integral has L?
norm equivalent to that of R®(f). Henceforth we will take [[B®(f),
(where % is the least integer > 1/p) as an equivalent norm on H?.

In order to prove the left side of inequality (1) we let

fa—o)F, 0<t<1,
0, otherwise

rrlc (t)
and first show that

(2) [ sup

1 -1 ?
f~r,a (»wn—-—) b () dt’ Ao < ey
& e
for all p-atoms and k> 1/p. We can obviously assume that b(?) has support

() It can be shown that if fe HP and k> 1/p the integrals can be defined as
follows: it is enough to consider first integrable f in HP (R), prove duality estimates
for this class (this is proved here) and then pass to the limit.
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in an interval I = [—a, a] centered at 0, and let I = BI = [—Ba, 5a].
It is clear that

(8) B9 (0) (2) <

for all ; however, if o lies outside I it is enough to consider the integrals
-1 w—1 ©
j :r,c " )b(t)d’t for e >|—2]—. By the definition of a p-atom, the abso-

lute value of this last integral equals

J=0
S
<% (|47 wona< 2
e [-}-7-]-;-1

||
Thus,

[ IBP®) @)Pde < oy,

@l >l
This, together with (3) implies (2). Moreover, any function of the form
2la;b; clearly belongs to HP if 3|l < oco.
In order to show the right hand side of inequality (1) we need the
following refinement of the Calderén—Zygmund decomposition (see [2]):
LemmA. Let fe H? and 1> 0, there ewist g,, ai such that

f=q +;’ @,
where |9, < o, d has support in Ii and satisfies
faﬁ(w)w’”dm =0 for k< [%]-1.
Moreover, the imtervals If are disjoint and
Lf)li = {m: R(’E)(f)(w) > i}.

Theorem I follows by taking 1 = 2%, k = 0, +1, 42, ..., and decom-
posing f as above: By letting

f=gk+2 a’;.c
‘
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a.e. a8 k—-oco and g¢,(z)—0 a.e. k——co;

=2 (Y= Yok

Since each interval I}, is contained in one of the intervals Ii we

can define
i
2 Fger -

J
B

BL(®) = gpya (@) — g (@) on I, and, thus, is bounded by o2**%. It is also
clear that

it is clear that g(®)—f(@)
thus, we can write

f= 2 (G141 — 90)
Bh(@) = ai (@) —

1
by () = TPt Bi.(@)

is a p-atom and f = 3 Y albi(s) wheve af = c2"**|IL|'P. But
k1

2 Dl = 5’0”2’“’1{13"‘)(]”,)(00) > 29| < [[B¥(f) () P dee,
2

—co

which proves Theorem I for feL*n HP.(*)

1
Let p;(f)(») denote the polynomial of degree [?] —1, having the
property ‘

If(f(m)—PI(f)(w))wi =0 fori< [-117] —1.

The representation of the dual of H® as a Lipschitz space follows
from

COROLLARY.

@< o [ 1792 a0)” s [ @)= px0)] .
)

Thiy inequality follows immediately from Theorem T gince it is trivial
to check it for atoms having support in a fixed integral I.
The duality reyult is obtained from the fact that

1
upzr [ 10(0) ~p2(0)] a0
) |

is & norm equivalent to that of the Lipschitz space A,, a = —;'—o— —1 (see [B]);
if p = 1 this is the B.M.O. norm.

(%) A limiting argument using the Corollary proves it in general.

%
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Following a suggestion of C. Fefferman we would like to complete
gome results stated in [3]. These observations were made in a discussion
with G. Weiss. We restrict our attention to p > %, the other cases being
technically lightly more complicated but involving no new ideas.

‘We have

Turorem II. Let k(x
and satisfying

) be differentiable for » = 0 with support in |@] <

’ 1 o 1
[ ()| <W and  |k(£)] < TP )
0<a,p and ;L\ﬂ‘}l Th
<4 g T FPEy e e
e xfllee << | lzo
for
1 1 1 (G+a
>p= = where — — — =2 .
o0 ‘p/po>2 where 72 a+/3’5
Examrrn. The operator
. 1l1ll
L(f) =lim [ fo—g)—rdy
&0 a<|]/[<1 k'/l
satisfies the conditions of the theorem for a = 1—a' and g = A(L—a)+ %,

1 1
where - s v == 1. The result reads

T3 Mizze =

1

Do

for p = p,

L2

a .

gll fllaw

when.

S

. b1
We observe here that, if po< 1 i > ) and 14-A< 1, the kernel

of T, belongs to L. The result we hawve is, however, best possible (i.e. it
is false for p = py).

‘We now sketeh the proof of Theorem II. It iy obviously enough to
show that H? is mapped into L” (this w111 show that both %+f and (= *f)~
= Jok j' belong to .LP).

Wo consider firgt a p-atom b supported in I centered at 0, where

2p,—1
2po—1-+ap,

%) ft denotes the Fourier transform of the principal value distribution defined by k.

[I| < 1, and suppose y =
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Then, for |z| >2[I|",

T |2—tpg
b (z)] =Uk(m_y)b(y)dy - U[k(w—y)—k(m)]b(y)dy <ol S\U“-“ﬁa

and
f [Exb(z)|Pods < e.

o> .

If |z < 2|I]” we write B(E) = |&77|EPKk (&) and using standard results

about fractional integrals we see that the operator induced by % maps

1 1
I into I? for 7 = ?—|— B. Using this and Holder’s inequality we have

(l—fi) ) (J—Z‘l) o
oxbodo < oIt * /([Ilxbl2) T <olIp" (o) <.
lzj<21 21"
If [I| > 1 then (k*b)(x) = O for |z| = 2|I| and
(1_3"'_) o (1-—_:‘.]-0.) B
xbma<olTl */(flBxbP)® <elIl ([ 112 <e.
|t <211}
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Cerrection to ‘“Convergence of Baire measures’
Studia Mathematica 27(1966), pp. 251-268

by
R.M, DUDLEY (Cambridge, Mass.)

In my paper [2], Theorem 4 is false. It was quoted from [8], p. 223
(Engligh), p. 96 (Russian). There exist separable metric spaces S on which
every Borel probability measure is tight, but such that there are relatively
compact sets of probability measures (for the usual weak topology) which
are not uniformly tight. One example was given by R. Davies [1]. D. Preiss
[4] showed that there are many such spaces, in particular the space of
rational numbers, or any separable metric space which is a Borel subset,
but not a G4, in its completion.

Theorem 4 was used in [2] only for a weakly convergent sequence,
where it is true (LeCam [3], p. 222, Theorem 4). The proof is not difficult.

Another correction: the notation used near the end of p. 267 in [2]
disagrees with the usual notations as in (3], [5]; o should be replaced by 7.
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