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STUDIA MATHEMATICA, T. LI. (1974)

A multiplier theorem for ultraspherical series
by
WILLIAM C. CONNETT* and ALAN L. SCHEWARTZ* (8t. Louis, Mo.)
Abstract. Multiplier operators on ultraspherical expansions of fe L (dg;) with
A>0, 1< p < oo, are studied by realizing these operators as a kernel of singular

integral type. It then follows from the Calderén-Zygmund theory that such operators
must be of strong type p-p for 1 < p < co and weak type 1-1.

1. Introduction. Let A > 0 be fixed and define I? to be the collection
of all f for which
[f I am [ < oo,

‘where
dmy (@) = (L—a2)*~%,
For fe I3, define the ultraspherical series for f to be

@) ~ D) 6.l R} (=),

where i
R (@) = P}(a)/P}(1), ¢ f F(@) B}, (a) dm,,
and ' '
(hp)™ = f LB} (2) T dm, (),
‘where
Zz"P‘ 1 Qwz+22) "%,
&,

If the transformation M is defined by

Mf(ﬁ) "’5: mncnhn-R:L (m)7

then M is called a multiplier.

* Both authors were supported by the United States Air Force Office of Scientific
Research, Grant No. 71-2047.
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The purpose of this paper is to show how some abstract arguments
from the theory of homogeneous spaces can be used to realize multiplier
operators for ultraspherical polynomials as convolution operators with
kernels of Calderén-Zygmund type. This realization allows us to conclude
that M is of strong type p-p for 1< p < co and weak type 1-1. (¥ is
of strong type p-p if for any fe L? || Mf|l, < Olfll,; M is of weak type 1-1 if
for any fe L}, {z|Mf(x) > A} < C17'||f|l;.) There are other utilizations
of this realization to which we will return at another time. '

- This technique was first utilized by Coifman and Weiss in their study
of analysis on higher dimensional spheres [3]. Since X, =~ 80(k+-1)/80(k)
a natural convolution structure for X, can be derived from the group
structure in 80 (k-+1). Although we will prove some new results in multi-
plier theory, our major contribution is to show how this realization of
M can be obtained when there is no group structure on which to base
the convolution.

The multiplier theorems of Coifman and Weiss only apply to the case
when 21 is an integer. The same is true for the results of Strichartz [11].
Results for all 1 but only some values of p, 1 < p < oo, were obtained
by Muckenhoupt and Stein [9] and Bonami [1]. Another approach to
this question is from approximation theory, where results for all A > 0,
all p > 1 were obtained by Butzer, Nessel, and Trebels [2]. However, the
conditions they impose on the sequence {m,} are much more stringent
than ours. .

If [1] is the greatest integer function and (1> = A —[4], then for all
p=1 and all 2 >0 we have the following

THEOREM. If m = [A+3]+1 and

a) m, = O0(1),

oN+1 : )
b)) A, = 027, y = 1-G4D,
=2
then M s of strong type p-p for L < p < oo and weak type 1-1.

Remark 1. An interesting special case is the sequence {m,} = {n*}
with @ > 0.

See for example Muckenhoupt [8].

Remark 2. The above theorem is stated in its gimplest form. A slightly
better — but notationally more complicated — theorem can be proved
using “fractional” differences in the style of Strichartz [11].

Remark 3. A simpler but equivalent statement of b) (baged on the
fact that h, ~ 0;n* for some 0, > 0 vide infra (2.4)) is that for any posi-
tive integer M

oM
2 | A™ 2 < KoM -2,
=M )

icm

A muliiplier theorem for ultraspherical series 53

The proof is based on ideas of Coifman and Weiss [4]. In order to
use these it is necessary to have a convolution structure, *, for Ij and an
approximate identity ¢, such that

lim g#f =f (feIL}).
r—0

This identity must also satisfy certain smoothness conditions.
Fortunately, both of these exist. The convolution structure is deseribed
in §2. The approximate identity is based on the Poisson kernel for ultra-
spherical polynomials, and its properties are discussed in § 3.
The approximate identity is used to “mollify” the multiplier transfor-
mation in the following sense. If f(x)e If, and by abuse of notation we
write @;(2) = @,_;{(%), then

f=lm fxq;
and also
f=1lm feprq
80 that

Ny 1

f=1lm fxg,*p, = lim {2 Pip1 ¥ Qg — Q3% P;) *f+%*%*f}~
N—>00

n-re0 g

We may assume that ¢, =1 and [f =0, so the last term dissappears,
and by simple rearrangement we obtain

F= D (Gra—p)*(pra+o)f
i=1
= 2 Yok (Pignt+ ) kS,
te=l

where v; = @;.—@;. And, speaking formally, we obtain

n
Mf =lm > Mo (gepn+ o) %]

N-200 1,00

= lim ko, xf.

We claim that under suitable conditions on M, &, is an operator of strong
type p-p for 1L < p < oo and weak typo 1-1, with the constants independent
of the m.

Our method is to show that each %, is a kernel of Calderén—Zygmund
type since it satisties a Ilérmander condition (see Hormander [7]). In
§ B the results of these computations are used to prove that the k, satisty
the Hormander condition uniformly' in the n.
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2. Uliraspherical series and convolution structures. The ultragpherical
ot Gegenbauer polynomials can also be described by

Pi@) =1, Plz) =24,

and

(2.1) . nPi(x) =2(n+A—1aP._—(n+24—2)P: (=), = =2,3,4,...

In particular, for A = 1/2 we obtain the Legendre polynomials P, = P42
A complete treatment of the subject can be found in Szegd’s book [12].
We will have particular need for the following facts:

(2.2) PA(1) = I(n+22) /T2 I (n+41),

and if we define dm,(s) = (1—22)"""dg,

1

(2.3) fp _2¥al(nt24)

@) dm;(8) = Oy rz( %—l—/‘L)l’(n-[-l

We shall be interested in expansions in terms of the mnormalized
polynomials

R (2) = Py (2)/Pp(1)
sinee P, (1) =1, B (a) = P} (w) = P, ().
By (2.2), (2.3), and Stirling’s formula, we obtain

2 i () 2" %al(2)  T'(n41)
(2.4) (W) —f(R P, (@) = = T Fm £ 57)
21—21 I‘Z 2;[
N____TTZ_E_(A_)S_._,)_ —'23'=0]~’"/—21

in particular hY? = n4-1/2.
We will leave off the index 4 whenever there seems to be no danger
of confusion.

I
(2.5) (@) ~ Doyl Bi(w
(2.6) g(@) ~ Dbl Ry (@)
Then under appropriate hypotheses on f and g
(2.7) JI@g@dmy (@) = 3 b,e,h,;

in particular if fe I?

(2-8) - [ if@ram, (e

Zch

n=0
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In the special case 2 = 1/2 we have the Legendre coefficient defined by
1
= [f(@)P,(0)de
-1

and the Legendre scries of f is given by

2.9) F(@) ~ D en(n+3)Pp(@).

=0

‘We now describe the convolution structure for the ultraspherical
series, For f and ge L' we wish to define a function fxge I* such that

(2.10) % gl < 1Al llglls
and
(2.11) Frg@) ~ D byo Ry (a)

if (2.5) and (2.6) hold. Proceeding formally, we replace b, and ¢, in. (2.11)
by their defining integrals and we arrive ab

1 1
(212) frg@) ~ [ [ f@) (2,9, 2) dmy(y) dmy (2),
1 =1
where, at least formally,
(2.13) 2, 9,2 ZR” @) B (y) Ry (2) by
n=0

In fact the sum in (2.13) is known to converge to the value

21 (1 — o — g% — 2% 4 2mye)*
T2 [(1—a?) (1—y?) (1 —e)

Dy, y,2) =

it —1<a,y,2<1 and 1—a22—y%—2%42ayz >0, and to zero otherwise
(see Hirschman [5], [6]). D, has the following propetties for —1 < @,¥y,#
<1:

(2.14) Di(w,y,2)> 0,

(2.15) [ Dy(@, 4, 2) B (@) dmy(2) = B (y) B, (2).

Setting 7 = 0 in (2.15) we obtain
1

(216) [ Dat, g, 2)dmy(@) = 1.

-1

We can now define fxg(x) by setting it equal to the right-hand side
of (2.12), then (2.10) and (2.11) are easy consequences of (2.14), (2.15),
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and (2.16). The convolution can be extended in a natural way to give
a Banach algebraic structure for the measures on [—1,1]. We will not
be concerned with this except in one gpecial case: if §, is the unit point
mass concentrated on x, we define

1

F#8.(9) = [ F(2) Dalm, y, 2)dmy(2).

-1

(2.17)

(The reader can find details of this extension in an analogous situation
with Bessel functions instead of ultraspherical polynomials in Scehwartz’s
paper [10].)

We will often use the change of variables @ == cos0, y = cosp,
2 = cosy then we define

dpa () = dmy(cosB) = sin®(0)dd (el <1, 0 <0< ),

and
Di0, ¢, p) = Dy(2, ¥, 8),
then
(2.18) G0, 0,p) =0 unless lp—yl <0 <g-+yp.

When there is no danger of ambiguity, we will delete the index A.
J.--du and [...dm denote integration over the intervals [0, =] and
[—1,1] respectively. X denotes summation as all repeated indices range
over N = {0,1, 2,...}. C denotes a constant which need not be the same
ab each occurrence.

3. The Poisson kernel. In this section the Poisson kernel is defined,
and shown to be compatible with the convolution structure of Section 2.
The main result is Proposition (3.1) which shows that the kernel satisfies:

a) an integral Lipschitz condition; and b) has a good bound on. its
growth near the origin. The following is a very natural definition. The
Poisson kernel for the ultraspherical polynomials of index 1 is

(3.1) Py(0,¢) = 5"k, R} (cos 0) A (cosp).

We have adopted the following conventions
r=1=s ¢b,9) =P y(0,0), ¢(6)=q,(0,0).
From the definition of couvolution, it follows that

(3.2) (0, 0) = [ () D0, 9, v) du(p)

since both sides have the same ultraspherical series (cf. (2.1B)).
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The following properties of the kernel are well known (see for example
Muckenhoupt and Stein [8], p. 27). Let

B =1(0,qp,s,t) =1—2s(cos Ocosq -+ sinOsinpcost) + 8%

A .y
(3.3) (0, 9) == (1= [ B simt)au(0),
. sinA0sinTRg ] )
(8.4) 7r(0 ) < O =5 =3 0<r<1/2,
, -
(3.5) (0, ) < O 0<r<1/2.

P (0=
Trom (3.1) and the orthogonality of the ultraspherical polynomials
it follows that
(3.6) [0, p)du(0) =1.
A simple cormputation gives
B0, q@,8,1t) = [L—2scos(0—g)-+s2]+ 2ssin Oing (L — cost)
= O[(0—q)%4r2] + 4ssin Oningsint /2
= Or)0—g)

(3.7)

which is 11011-110;1;:1.’5&0, 80
(3.8) 7:(0,9) 0.
Finally, if |0—¢| =5 >0, ¢,(0, ¢) < 723+ by (3.5). This, together
with (3.6) and (3.8) implies that ¢, is an approximate identity as r—0.
PROPOSITION 3.1. There are constants Oy and O, such that

. P — ol
a) [lp.(0, ¢) — 0, (0, o)l dp(0) <01*|-,--“—,

0 — ) o N
b) [onl0, q'>(-'-»7ﬁ’-'~») an(0) < Oy 0 < a< 1,

where O, depends only on the a.

The proof of this proposition iy long and technical. The first step s
to find a bound on the devivative of P, (0, ¢).

Lemma 3.1,

) 1.
(3.9) "(;q)'*l’,,<0, o) = 0["1’;' M (4 0)]'l)ﬂ(07 ),
where )
M(p, 0) < 1/sing
and

Mip, 0)< el if 9< 02,
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> . ’

Proof. ‘ Case 1. I @, < 27, the integral in (3.11) is broken into two parts,
and an estimate from (3.5) is need i ~, arts

|0E/0‘7’l du(t) and an (,,fﬂ"[;llllfht(‘ from (3..)) is used in both parts,

0
I%Ps(e, 90)\ AL — %) (1)

B T gint 4r .y o g <
3 - <
< w‘lz(l—sz)f Osin|0—gp|  du(f) . Of 7r Eo) (0 f 7,
B B*gint .
+n"12(1~sz)f Csin 6 |cosp| (1 — cost) d’”(t),,_. f 7 (0 £)du(0 fm 00— £g)2 2 d0
B BHiging ar
' ' ™ 9 ™
Now < o f( 0 )z/H- an < Gttt ﬂg 0
sinff—g| _  sinl0—gl _ | 0=k 0 s
efr
E(ﬂ,%&t)\ 16—l = ! . . . \ :
and The penultimate inequality follows from the observation that
sin 6 cospl(L—cos?) _ sinfleosp|(l—cost) _ o 0 £ 3r
7 TS Sesinfs — - < =1 Cld =4
¢8in Osing (1 —cost) sing 0—§&, 0—¢, 7
by (3.7); hence the first inequality of the lemma follows. To obtain the gince & < 3r and 0 > 4r.
second one, observe that if ¢ < 6/2, then 0—p=>0/2 s0 Case 2. If 2r < gy € ©/2, then (3.11) is broken up into four parts.
sin 6]eosp| (1 — cost) <0 sin 0]eosg| (1 — cost) o sin. O r gt ey n
< < O y .
B P <O Of+ J+ [+ { =I4+II++II+1IV.
» P17 Po+r

and the second relation follows as well.

Proof of Proposition (3.1). Without loss of generality it may be

assumed that ¢
Ig-w,mfoﬂow c.

An argument similar to the one in case 1, gives

(3.10) <@g and @—gp<r.
[}
It will be stfficient to prove the proposition for g, < =/2, since the proof An estimate derived from (3.4) yields ’
for the other values of g, follows by a simple change of variable. my-t in2h
By the mean value theorem and (3.9) T < f A t:mff)d@A
e —£,)° sintOsin*&, .
100, 010,06, gl duo) -
g 0 g T
|q)_(po‘ i 0 o ’Y" ' ( ﬁ]ll ) a0 ¢ e do < C.
<0 (w0, E)au(0)+ [ 1M (&, 0)g, 10, £0)au(0)], =Y ) (0- ) sing ,J (O=&)3 "~
where for each 6, gy < & < . To prove a), it is sufficient to Show that Using (3.4) aguin. we obfiain
(3.11) f(pr(ﬁ, So)au(0) < € TLT = ¢ ")0;\.,“,?“ _Hmy:a - d0
and AL O 1 P ,\,‘i]lloﬂinafu
e
(3.12) rM (&, 0 ¥
J ‘ (&, 0)9,d,(0) < O. , ¢ “f’ ing V' ¢ (hm(mo)) o) < €.
The boundedness of (3.11) is shown by considering two cases. o sin & Tor sing,
"
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The estimates of II and IIT both use the fact that

sin 0 gin (g +7) : sinr
- <0 = (| cosr <+ cos <
sing, S g [ +e08@ sing, | ¢

i]rgl the final integral, 2H(0, &, s, 1) = B(0, ¢; s, ), from which it follows
at

V< [ Op(8, 9)au(9) < 0.
Po+7
We now turn to the integral in (3.12) which we tveat in two cages.
"K will denote the value of the integral in (3.11).

Case 1. If ¢ < 2r, let A = {6: £ < 0/2} and B = {0: &, > 0/2}. Then
JrM (&, ), (6, &)au(0) = [+ [.
A B

It 0c 4, rM (&, 0) is bounded, hence [ is comparable to K.
A

e B, rM (&, 0) < r/sin &, < or/sin 6, so we must estimate the integral

kiEall

[ gt taautn = [+ +

Er<O0<n—r, r/sing is bounded by a constant independent of #
and 6, so IT is comparable to K.

An estimate from (3.5) gives

f=I+II+III.
—

™

T

of+ [ (vfsin)g,(0, E)du(0) <2r [sin¥'6d6< 0 (4>0).
0

Case2. If ¢ > 97, then &,>7, so 1/sinéy < efr, and rM (&, 6) is bounded

ind%)endent of » and 6 and the integral (3.12) is once more eomparable
o K.

This. concludes the proof of part (a) of the proposition. Part (b) is
proven first for ¢ = 0,

i 0 a ™ ki
f @, (8) (7) du(B) < C fm—“-z(o/r)“e“dog Cri-¢ f 636 < (.

For general ¢, use (3.2) to obtain

16—ol\" gy
[ 0,00 a0 = [[ oewi0, 0.0 (E-2 duimaus.

0
0=l >r 10> 4

By (2.18) the integrand is zero unless |0 —p| < yso the above is bounded by

f% () (;—‘u)udu (»)<0.

y>r

A multiplier theorem for ultraspherioal series 61

4. Difference computations. In this section we give two propositions,
the proofs of which employ difference arguments of a highly technical
nature. For a sequence {a,}, we define

A, = a,, and A%a, = A Ve, — A ta, it B =1,2,3, ...

ProposrrioN 4.1 Suppose feI®, and f ~ Je,h,R,; then there is

a constant IC depending only on A and m such that

(4.1) f(iL e Y [ () 2 i () =5 K.Z(/]’“ ) P
We shall first prove (4.1) in the Legendre polynomial case 4 = 1/2
with m =2, since in general we will need (4.1) with m = [A4+1/2]41;
we will then extend the proof to general values of A.
From the recurrence relation (2.1), we obtain
(20— 2) (n+1/2)P, (2)
=ty (04 3[2) Py (#) — 2 (0 +1[2) P, (2) 4+ by (0 —1/2).P, . ()
with
ty = (n4-1)/(n+3/2) and
Thus
(20 —2)F () ~ 3 (1001 — 200+ Dpy1Onyr) (0 +1/2) Py ()
= DA s+ (@0 41)7 (Ao + A6y )1 (0 +1/2) Py ().
Application of (2.8) yields
[—apfi@)am(z) < 0 Y (426, (n+1[2) + 05 Y)((n-+1)7 Ao (n +1/2).
The first term is of the form desired in (4.1). The second term is
only a little different. We claim

e, \? 3
(4.2) Z(Wj"]) By < OZ (A2, .

This inequality will complete the proof of Proposition (4.1) in the Legendre
case. Tnequality (4.2) is sotually o special ease of the following
LnMMA 4.1 Suppose Y [ hh < oo, then for every positive inieger &

b, =n/(n—1/2), n=0,1,2,...

(4.3) 1) P < MY (1) P

Sfor some constant M.
Relation (4.2) is simply (4.3) with & =1, A = 1/2, ond @, = de,.
Proof. We make use of the classical partial summation formulas:

q—1

] n
Danby = > Ay(by—bpia) +Ad,, where 4, = D e

neal T =0
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Putting
Gy = (”'I_l)n%hm
so that
A <K(’n—l—l)‘2k“hn,
and
bn = w?b

we obtain

q g—1 .
20+ e Ph S B 3 [ +1) 4]+ Wngal)] X [0 +1) 74+ Ay |1y +
n=0 n=0

v

+K(q +1)-—2k+1 Imq|2 hq'
The lemma can then be obtained by first letting g increase without
bound, so that the last teim vanishes, and then applying the Schwarz
inequality in the form
| 3 Butialin| < (el B} g )

We now proceed to a proof of the proposition in the geneml case.
From the recurrence (2.1), we obtain

(237-2)77/7»1‘)%(9}') = “nhnve-an-l-l( ) Zhﬂ
where

n(®) by By (2),

‘ 4y = (n4+L)(n+2+1), n=0,1,2,3,...,
by =0, and =(n+2A-1)/(n+i-1), n=1,2,3,...
Thus 4

(44) (22— ~ D10y y =26, 4 byi10041) B R (),

= D [ L0+ A+ 1) Aoy + Aty 1) 10y By (a).

An expression for the ultraspherical coefficients of (22— 2)* “f (@)
in terms of differences of the ¢,’s can be obtained by reiterating (4.4).
The next lemama gives a compact form of the expression, but first we make
the following definition. If p and g are polynomials, and r = p/q, then we
write degr = degp —degq.

LemMA 4.2. Suppose f ~ Zo,h,R,; let
o = [(20~2)"f(2) By (@) dm (@)

2% &
o =3 > ek

=1 i=0

2)f ()

Then
(4.5) YA ey,

where Q¥ is a rational function in n of degree j—2F.

icm
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The proof is by induction. The coefficients in (4.4) are e, so (4.5)
holds with % = 1. Let us assume (4.5) holds for a certain value of k. Then
by (44)

(4.6) At = Ayt [P + A

Tf we now use (4.5) for every occutrence of o and ¢, in (4.8) and make
use of the fact() that degdQl = (deg@Q%)—1, (4.5) will follow with &
replaced by k+1. The computation is Immhtafoed by the use of a Leibniz
type diffevence formula A*(a,b,) = (4 a,) b, -+ 2(Ady,,1)(4b, ) A Gy yn 4 bn
‘We now use lemma (4.2) to obtain an estimate of [(1 —a)™(f(«))* dm (@)
in terms of differences of the coefficients of f. Xt will then be a short step
to the proof of the proposition.
LuMMA 4.3, If fe L?, then
(4.7) [ —a)y™(f(a)fdm(@) < KX

for some constant K independent of f, where

oo m

=2 D ln+1)" & e, h,.

n=0 j=1

Proof. If m == 2k is an even integer, this follows by lemma (4.2)
and (2.8).
If m = 2k-+1, we let

g(@) =fl@)(1—a)° ~ D dh,R,,
80
§(@)(1—) ~—} 3 {82, + A0+ 27 (46D + A6 TR R,

by (4.4). Then by (2.7) )
“8) [ @ @L—ap*am(@) = [g(@)lg(@)(1—a)]dm()
= %chﬂ)Aﬂogzlh,,—%chﬂu (n+2)"H (AP + Ac) ) b,
An application of the formula

Z a4, B, = 2 Apb,,

n=M s

N
n:Zai and B,

te=n

wlere

n
= Dby
dem M

() We valways undenstand 4% to bo the sequence with terms QF (n +1) ~ Q% (n).
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with a, = 4% and B, = ¢ h, shows that thefirst sum of (4.8) is bounded
by

(4.9) Dl 4e,y Phooy+ ) (468 6P AR,

Now Ah,_; < O (n+1)""h, so the expression in (4.9) is bounded by a multi-
ple of X by lemma (4.2). Similarly the second sum in (4.8) is also hounded
by a multiple of X, and so (4.7) follows.

. Proof of Proposition 4.1. By substitating m—j for &k and A,
for #, in Lemma 4.1 and rmtemtlng the resulting relation m —j times We
conclude

S # 0, h, < 0 [4"6, T by

Thus Proposition 4.1 follows from Lemma 4.3.
The following proposition shows that the condition given on the
m-th differences of {m,} implies certain conditions on the lower differences.

PROPOSITION 4.2. Suppose {m,} is & bounded sequence such thai

oN+1
(4.10) D) 14" P hy, = 0(27H),
n=2N
where m = [A+31+1 and vy = L—{A+ 3D, then
|Aomy| = O™, 4 =0,1,...,m—L.

Proof. The proposition is trivial if m = 1, so without loss of generality,
we assume m >1. We will make repeated use of the following trivial

inequality
! oN+1

2
by
which holds for all real a.

The idea of the proof is to find a polynomial P of degree at most
m —1 which satisfies

(4.12)

(411) na < OuzN(n—I-l)

| 4% [m,—P ()]} = O (n™)

for ¢ =1,2,...,m—1. Then the boundedness of {m,} together with
(4.12) for ¢ == 1 imply that P is in fact constant so that (4.12) becomes
equivalent to the conclusion of the lemma.

"We proceed by first showing that P = P,_, can be chosen so that
(4.12) holds for ¢ = m —1, and secondly by showing that if for some 4, > 1
there is a polynomial P = P; such that (4.12) holds for 4, <i<m—1,
then we can define a new P = P, _; such that (4.12) holds for 4,—1 <1
< m—1.
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Let k < j and choose N such that 2% < % < 2¥+1; then

. oo ZP"'I—
|4ty — A < D) '\ VLV,
P=N , P
o oP+l_g +1_
- i m 1/2 1f2
<P=2N[n=221) (4™ m,)h, " x [_2 l/hn]

SO D) 97 gFM) ¢ Qfpmtr4a-1),
PoN
where we have used (4.10) to estimate the sum in the firgt pair of brackets,
and (4.11) for that in the second pair.
We thus obtain

(4.13) [A™ g — AN, < QR0

(4:13) implies that {4™ 'm,} converges to some lm:ut L,
If we let oo in (4.13), we obta.m (4.12) with P(k) =P,_, (k)
Ly B™ ftm—1)!, and ¢ = m—1.

Now suppose (4.12) holds for some polynonm.l of the form P(k)
= P;, (k) Z Lﬂai/@' and ¢ = 4, 41, .

A=y ’
An argument similar to the one above can be used to show

(4.14) | 4%~ [y — Py (§)]— 4= [y — Py (B)]| < OG0~

The argument is almost the same except we rely on (4.12) with ¢ = %o
and P = P, and (4.11), where we formelly used (4.10). BEquation (4.14)
implies that if 4, >1{Alo"’[m,c—1’i ()]} is a convergent sequence with
limit, say, Ly_;. Thus, letting j—>co in (4.14) we obtain

| 4% [y, =gy ()] — Ly, | < O t0=D,
Now define Py 1 (B) =Py (70)-]—1310_170*0 /(4—1)!, then (4.12) holds for
P =P, , and with 70‘1<z<m-1

Thus (4.12) holds for P =P, and ¢ =1, 2, ..
| [my—P ()] < K (§+1)7Y thus

L, m—1

.y m—1, In particular

P 1

M —P (1) —mo-+-P(0)] < D |4 [my—P(j)]
Jret
N1
<Z KE(j+1)" < Klogn.
Je0

Since {m,} is a bounded sequence, it follows that P(n) = O (logn) and is
thus constant, whence A‘P =01if ¢ =1,...,m—1 and the proposition
is proved.

5 — Studia Mathematiea LI,1
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5. The singular integral nature of the kernel. In this section, we
show that the operator M can be given as the limit of & sequence of kernels
which satisty a version of Hormander’s condition with a uniform constant.
We define ¢y, 9; and &, as in the introduction, and introduce

ap = My, * ((Pr+9"r/2) = (M(‘Prlz'*?jr))*(qor"l"%/a%
and when 7 = 2~ we write a; for a,; finally
S
Ta(0,9) = ) g 8,(0).
=

The appropriate version of Hormander’s condition in our case is

[ 1764(8,0) — T (0, 90) | A (6) < O
2 \

where
B ={0: |0—p| >2lp—a0l}-
The integral equals

n—1

[ Tt 8,(6) = T by (O Ap(0) < ) [ gk 0y(6) — s 04y (0)1u(0).
r i=0 B

(5.1)

PROPOSITION B.1. This last sum is bounded by o constant C independeni
of 1, @, @y, where the m, are bounded and

oN+1

(5.2) > 14mm )ty = 027
oN i

for y =1—(A+1/2).
The proof of this will be given after the following chain of lemmas.
Lmvwma B.1. If (5.2), then
(8.3) [ (1= cos )™ | My, 2du(6) = O ().
LeMMA 5.2. If (8.3) and if 0 <9<y, then

6 n
(5.4) [ 13y, (0) (7) au(0)< 0.
Lmnoaa 5.3, If (5.4), then

[ 1% 8,(6) = 0% 8,,(6)1d1(0) < Omain{r/ lp —gol ' 1o~ ol
E
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P n
Proof of lemma (5.1). If ¢, = (1—- E) = (L7 then My, ~
~ Ecnmnhn-Rn'
It was shown in proposition (4.1) that

J (L= cos 0y | My, 2an(0) S K 3 (4™ (mye,)P .
‘We proceed to estimate D™(m,e,). By a Leibniz formula for finite
differences we obtain

m

(5.6) A (my0,) = j}j(g) Hm, A",
and consequently the sum in (5.56) will be bounded by a constant multiple

of the largest term in (6.6). For j << m we estimate the factors separately.
In the second factor

Am“j(l — ,.)n.w' = (1 ___,,.)M-:l( __,,.)m-—j’ .

(5.5)

thus

4™ e il < O (L — iy,
In Proposition 4.2 we estimated the 4'm, and obtained |4m,| = O (n~7)
for j < m. Putting these together, we obtain

D 1By, 4™, 0, < O 3™ (L — )2 (0T

< 07.2m—212n21—21(1_7.)2n < Opm—2] (q,.—2/1+2j——1) _ 0(7.2(111—-1)—1) = 0(7,211).
. ) ) ¢
(Using here the fact that Yn’ (1——7)”<W;;1—.)
On the other hand if j = m '
oo N+l C e oN+1_y .
2D et 1ammh, < 3 (@¥r@—r)s N |42,
M=o \W : oo N
< ort Zzzy(l_r)zNﬂz_zNy = o2 EEN(zmzy)(l__T)zN+l <or,
F=0 M=o

The penultimate inequality follows from an argument reminiscent

. of the Cauchy condensation theorem. Let 1< ¢; then

o0

%’ 2L — PV = (L) 20 (L — ) AL — 1)
= (L—r)2 42 (2 (L~ 1)) 4 {45 (L — 1)) +...
< (A=) 20H (L =) LB (L Y - 40 (L — ) L

o
= Z NEYL =)V L o,
0

A gimilar argument holds for 0 g <1
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These two estimates together yield
f(1—cos O™ | My, *du(8) = O(r*).

Proof of lemma (5.2).

fuwn(%)” ap(6) = f+f
0 0 r

The first integral is trivial sinee 6/r < 1.

[ 1o (3 a0 =5 [ 1w @10 auo)

[f‘ Ozﬂ_zmd,u(ﬂ)]llz

% cr""[ f | My, (6)*(L — cos e)mcz,u(o)]”2 X [ f 92@'-"'“)010]”2

0
< or R[N O

< f |3y, (6) 0 au(0)] " x
0

Proof of lemma (5.3).

B1) [ lax,(6) Ol My llpr* 0
E

— Ok 6:1:0(6)'(1/‘(0) < Ir—(Pr* 6970”1'

The first factor is bounded since
kg . r ™
[ 1Myap = [ + [ =1+10,
0 0 r
r r
1< [ (3rp, (0P au@]" | [ sin?0a6]" < 018y o < O lpplur .
0 ]

K .
But [l < e (1—r"a? < ST 50 I} is bounded.

I "\
< [ uno1(z) o<

by Lemma 5.2. The second factor of (5.7) is bounded by lp —gol/r by Pro-
position. 8.1, so we obtain
9~ ol

J 1% 8,(6) —a,% 8,,(6)|4u(6) < o—

The other estimate is more involved. If |6 —gy| > 2|p —@,l, then

1
10 —¢ol < 10—l +lp—@| < 10 -9+ 5 16~ @l
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80

[0 —gol <2180—¢| and |p—g)<0—g|.

Hence

—_ n
f]ar*é 0)|du(6) < (W %)fm*a 1("” (””') du(0)
16—l ro\
8,(0)] < .
<¢ (l<p %)f]“'* (0) ( )dﬂ(e)<6(l¢-%l)

This last inequality follows from the nature of the support of the con-
volution kernel.
Consider

[ o s, auto)

= [[ [ 1300810, 0) +prn(e) @8, 2, 0D (e, 9, 0)%
—g\"
X(]qp " I) ap (&) dp(e) dp(y)du(0).

The integrand is supported only in the region |p— 6| < v <
so the integral is bounded by

ffle, ) (e (e) + @ e ))(E—:_a

<0 [ 1307, (610(8) [t pon ) (2] w0

&+

1
) dp(€) du(e)

+0 [ 0 +onieldute [ 20,0 (£) auce).

_The first term is bounded by Proposition 3.1; the second by Lemma 5.2.

The conclusion of the proof of Proposition 5.1 requires only that
we add the terms together.
) N

" . 1y
2 f[ai*aw(())—ai*éq,o(ﬂ)ldﬂ(0)< ZTW—%I _FZ(_?J’I(F ol )
1B . i1 - '

where N ig chosen so that
2V lp— ol S L < 2V o — o).

N
D 2=l <

im]

°°1 1 7
. 2-M g 0.
211,(2’199—¢ol) (2N!¢ %I) 2

i= =

Then

lp—@ol 2V —1) < 2,
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Thus each operator k, satisties the Hormander condition in a uniform
mannei.

That M is of strong type p-p for all 1 < p < oo, and weak type 1-1
follows from the methods of Coifman and Weiss ([4], pp. 71~75) and the
observation that there is a constant A independent of # and 7 such that

S@,r) < A8 (@, 7r[2) (~Ll<a<l,r>0)
where
Sz, ) = m{{w—r, v+r]n[—1, 1T}
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Ersetzbarkeit von konvergenzireuen Matrixverfahren

von

JOHANN BOOS (Tibingen)

Auszug. Dic Lrsotzbarkeit von konvergenztreuen Matrixverfahren wurde von
‘Wilangky, Chang, Macphail, Snyder und Bennett in den Arbeiten [11, [4], [6] und [7]
betrachtet., In der folgenden Arbeit werden weitere notwendige und hinreichende
Bedingungen fiir die Ersetzbarkeit gegeben.

1. Einleitung und Bezeichnungen. Wie iiblich bezeichnen wir mit o,
m, ¢, ¢, bzw. T den Raum aller (komplexwertigen) Folgen, der beschréinkten
Folgen, der konvergenten Folgen, der Nullfolgen bzw. den Raum der
absolut summierbaren Folgen. Weiter bezeichnen wir mit e die Folge mit 1
an jeder Stelle und mit ¢* (ke N) die Folgen mit 1 an der k-ten Stelle und
null sonst.

Die Elemente aus o fassen wir als (unendliche) Spalten auf. Ist 4
= (@) p=n Cine unendliche Matrix mit komplexen Koeffizienten und

@ = (W), € », 50 definiert das ,,Matrixprodukt” Aw: = (y, = 3 Guira
Ie=1

eine lineare Abbildung von d,: = {xew: ¥, existiert fir alle neN} in
o; A als Transformationsmatrix nennen wir Matrizverfahren. Ebenso
ist fiir @, Se w in natiirlicher Weise das ,,Matrixprodukt” '

definiert, falls die Reihe existicrt und § die zu ¢ transponierte Folge ist.
Bezeichnen wir mit

™~
0yt = e d : lim, x: m]im y, = lim Ay, ©Xistiert
A ', A n 'kl

N0 L]

das Wirkfeld von A, so heilt 4 Iaomergcmzvreu, Wenn ¢ S 64 gilt. A heiBlt
ab?olm konvergenstrew, wenn

lely: ={wedy: y = Aael}  gilt.
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