

Compact, non-nuclear operators

by

WILLIAM J. DAVIS and WILLIAM B. JOHNSON* (Columbus, Ohio)

Abstract. If X is a super-reflexive Banach space, then there are nearly Euclidean subspaces E of dimension n in E and projections P of X onto E with $\|P\| = O(n^{\alpha})$, where $\alpha < 1/2$ does not depend on n. Thus, if X is super-reflexive and Y is arbitrary there are compact operators from X to Y which are non-p-summing for all p. It follows that if either X or Y is super-reflexive there are compact, non-nuclear operators from X to Y.

Grothendieck [6] asked, "if all operators from X to Y are nuclear, must either X or Y be finite dimensional?" We show that this is true if either X or Y is super-reflexive.

Notationally, all spaces are infinite dimensional Banach spaces unless specified otherwise. For the definitions and basic properties of p-summing and p-nuclear operators, the reader is referred to [5]. In this note we use only the result of Pietsch–Pełezyński (cf. [5]) that for each $p, 1 \le p < \infty$, $\pi_p(I_n) \ge C_p n^{1/2}$, where $\pi_p(I_n)$ is the p-summing norm of the identity operator on n-dimensional Euclidean space and C_p is a positive constant which depends only on p.

Super-reflexive Banach spaces were introduced by James [8], and Enflo [4] has shown that a space is super-reflexive if and only if it can be renormed to be uniformly convex. However, all we use here is the Gurarii–James theorem [7], [9]: If X is super-reflexive, then there are positive constants A, B, $1 such that, if <math>(x_i)$ is basic in X with constant ≤ 2 , $1 \le ||x_i|| \le 4$, then $A(\sum |a_i|^q)^{1/q} \le ||\sum a_i x_i|| \le B(\sum |a_i|^p)^{1/p}$ for all scalars a_1, \ldots, a_n . (A sequence (x_i) (possibly finite) is basic with basis constant $\le K$ if for arbitrary j < m and scalars $(t_i)_{i=1}^m$, $||\sum_{i=1}^j t_i x_i|| \le K||\sum_{i=1}^m t_i x_i||$.) Such inequalities and the Dvoretzky theorem [4], [13] allow us to construct rank n projections from super-reflexive spaces onto nearly Euclidean subspaces which have norm $< Cn^{1/2p}$ for arbitrarily large n. The existence of such projections allows us to show the non-equivalence of the uniform and p-summing norms of finite rank operators from X to Y when X is super-reflexive.

^{*} The second author was supported in part by NSF GP-33578.

^{6 -} Studia Mathematica LI.1

82

The following lemma was pointed out to the authors by A. Pełczyński.

LEMMA. For any $\varepsilon > 0$, $\delta > 0$, and integer n, there is an integer $k = k(\varepsilon, \delta, n)$ such that if $(x_i)_{i=1}^k$ satisfy $||x_i|| \leqslant 2$, $||x_i - x_j|| \geqslant \delta$ for all $i \neq j$, then there are distinct indices $(n_i)_{i=1}^{2n}$ such that $(x_{n_{2i-1}} - x_{n_{2i}})_{i=1}^n$ has basis constant at most $1 + \varepsilon$.

Proof. We need the following elementary facts: If $\alpha > 0$ and p is an integer, then there is an integer m = m(p, a) such that if dim $U \leq p$, U a subspace of some Banach space X, then there exist norm one functionals $(f_i)_{i=1}^n$ in X^* such that $x \in U$ implies $||u|| \leq (1+\alpha) \max |f_i(u)|$. Also, for any $\alpha > 0$ and integer m, there exists an integer $s = s(m, \alpha)$ and a $2^{-1}\alpha$ net for the 2 ball of l_{∞}^m whose cardinality is at most s.

Let $\alpha > 0$ (smallness of $\alpha = \alpha(\varepsilon, \delta, n)$ to be specified later) and set $k = s(n-1, \alpha) + 2n$. Let $n_1 = 1$ and $n_2 = 2$ (so that $(x_{n_1} - x_{n_2})$ has basis constant 1).

Suppose we have chosen n_1, \ldots, n_{2p} so that for $1 \leqslant q \leqslant p$, $\left|\left|\sum_{i=1}^{q} a_i(x_{n_{2i-1}} - x_{n_{2i}})\right|\right| \leqslant (1+\varepsilon)^{(p-1)/n} \left|\left|\sum_{i=1}^{p} a_i(x_{n_{2i-1}} - x_{n_{2i}})\right|\right|$ for arbitrary scalars (a_1, \ldots, a_p) . For m = m(p, a), pick norm one functionals $(f_i)_{i=1}^m$ so that for each $u \in \operatorname{span}(x_{n_{2i-1}} - x_{n_{2i}})_{i=1}^m$, $\|u\| \leqslant (1+a)\max_{1 \leqslant i \leqslant m} |f_i(u)|$. Define $H \colon X \to l_\infty^m$ by $H(x) = (f_1(x), f_2(x), \ldots, f_m(x))$. Now k - 2p > s(m, a), so there must be distinct indices n_{2p+1} and n_{2p+2} , different from those indices already chosen, which satisfy $\|Hx_{n_{2p+1}} - Hx_{n_{2p+2}}\| < a$. Thus, for arbitrary $u \in \operatorname{span}(x_{n_{2i-1}} - x_{n_{2i}})_{i=1}^p$ and scalar b, there exists $i, 1 \leqslant i \leqslant m$, such that $\|u + b(x_{n_{2p+1}} - x_{n_{2p+2}})\| \geqslant |f_i(u + b(x_{n_{2p+1}} - x_{n_{2p+2}}))\| > (1+a)^{-1} \|u\| - |b| a \geqslant (1+a)^{-1} \|u\| - a\delta^{-1} \|b(x_{n_{2p+1}} - x_{n_{2p+2}})\|$. Thus if $a = a(\varepsilon, \delta, n)$ is chosen small enough, $\|u\| \leqslant (1+\varepsilon)^{1/n} \|u + b(x_{n_{2p+1}} - x_{n_{2p+2}})\|$.

Now for $1 \leq q \leq p$ and scalars a_1, \ldots, a_{p+1} we have

$$\begin{split} \left\| \sum_{i=1}^q a_i (x_{n_{2i-1}} - x_{n_{2i}}) \right\| & \leqslant (1+\varepsilon)^{(p-1)/n} \left\| \sum_{i=1}^p a_i (x_{n_{2i-1}} - x_{n_{2i}}) \right\| \\ & \leqslant (1+\varepsilon)^{(p-1)/n} (1+\varepsilon)^{1/n} \left\| \sum_{i=1}^{p+1} a_i (x_{n_{2i-1}} - x_{n_{2i}}) \right\|. \end{split}$$

This completes the inductive construction and hence the proof. We are now in a position to produce nicely complemented $l_2^{n_1}$ s in super-reflexive spaces. Recall that spaces X and Y are λ isometric if there exists a linear map $T: X \stackrel{\text{onto}}{\to} Y$ satisfying $||T|| \cdot ||T^{-1}|| \leq \lambda$. Normalized basic sequences (x_n) and (y_n) are called λ equivalent provided the linear extension of the map $x_n \rightarrow y_n$ is a λ isometry from span (x_n) onto span (y_n) .

Proof. Fix n. Let $1>\alpha>0$ and let $k=k(\alpha,1,n)$ from the lemma. By Dvoretzky's theorem ([4], [13]) there is a subspace V of X which has a basis $(y_i)_{i=1}^k$ of unit vectors such that $(y_i)_{i=1}^k$ is $1+\alpha$ equivalent to an orthonormal basis in I_i^k . Let $y_i^* \in V^*$ such that $y_i^*(y_j)=\delta_{ij}$, and let $g_i \in X^*$ be an arbitrary Hahn-Banach extension of y_i^* to all of X. Then $\|g_i\| \leqslant 1+\alpha$ and for $i\neq j$, $\|g_i-g_j\| \geqslant (g_i-g_j)y_i=1$. By the lemma, choose n_1,\ldots,n_{2n} so that $(h_i=g_{n_{2i-1}}-g_{n_{2n}})_{i=1}^n$ is basic with constant $1+\alpha$. James [10] has shown that, since X^* is super-reflexive, there exists r>1 and a constant K so that if (u_i) is any basic sequence in X^* with basis constant $\leqslant 2$ and $\|u_i\| \leqslant 4$, then for all sequences (a_i) of scalars, $\|\sum a_i u_i\| \leqslant K(\sum |a_i|^r)^{1/r}$.

Consider the projection $Px = \sum_{i=1}^{n} h_i(x) y_{n_{2i-1}}$. We have for x in X

$$\begin{split} \|Pw\|^2 &\leqslant (1+a) \sum |h_t(w)|^2 = (1+\alpha) \left(\sum \left(\operatorname{sgn} h_t(w) \right) h_t(w) h_t \right) x \\ &\leqslant (1+\alpha) K \left(\sum |h_t(w)|^r \right)^{1/r} \|w\| \\ &\leqslant (1+\alpha) K \left(\sum \|h_t\|^r \right)^{1/r} \|w\|^2 \\ &\leqslant 2 (1+\alpha)^2 K \|w\|^2 \cdot m^{1/r} \,. \end{split}$$

Thus, with t = 2r, $||P|| \le \sqrt{2K}(1+a)n^{1/t}$ as desired. We are now ready to prove the main result of this paper.

THEOREM. If X is super-reflexive and Y is arbitrary, there is a compact operator from X to Y which fails to be p-absolutely summing for all p.

Proof. We show that the p-summing and uniform norms fail to agree on the finite rank operators. By the proposition, let U have dimension n, be 3/2 isometric to l_2^n and let P be a projection of X onto U having $\|P\| \leqslant K_X n^{1l}$. Let T_1 be an isomorphism of l_2^n onto U such that $\|T_1\| = 1$, $\|T_1^{-1}\| \leqslant 3/2$. Let $V \subseteq Y$ be 3/2 isometric to l_2^n and let $T_2 \colon V \to l_2^n$ such that $\|T_2\| = 1$, $\|T_2^{-1}\| \leqslant 3/2$. Then if I denotes the identity on l_2^n and if J is the embedding of V into Y, consider the map $S = JT_2^{-1}IT_1^{-1}P$ of X into Y. The restriction of this map to U is $JT_2^{-1}IT_1^{-1}$ and for any p between 1 and ∞ , $\pi_p(S) \geqslant \pi_p(JT_2^{-1}IT_1^{-1})$. With $R = T_2^{-1}IT_1^{-1}$, $I = T_2RT_1$ and there exists C_p such that $C_p\sqrt{n} \leqslant \pi_p(I) \leqslant \|J_1\| \|T_2\| \|\pi_p(R)$, [3]. It follows that $\pi_p(S) \geqslant C_p\sqrt{n}$. However, $\|S\| \leqslant \|J\| \|I\| \|T_1^{-1}\| \|T_2^{-1}\| \|P\| \leqslant (\frac{3}{2})^2 \|P\| \leqslant Kn^{1l}$, where t > 2. Thus $\pi_p(S)/\|S\| \geqslant A_p n^{1/2-1l}$, where A_p depends only on X and p, and not on n. The p-absolutely summing norm is thus not equivalent to the operator norm on the finite rank operators, so by standard

arguments, the compact operators which are p-absolutely summing for some p are category 1 in the compact operators from X to Y.

By a simple duality argument, we obtain the following

COROLLARY 1. If Y is arbitrary and X is super-reflexive, there is a compact operator from Y to X whose adjoint fails to be p-summing for all p.

Remark. The operator itself may, however, be 1-summing since every operator from a L_1 space to a Hilbert space is 1-summing.

COROLLARY 2. If either X or Y is super-reflexive, there is a compact, non-nuclear operator from X to Y.

Added in proof. We prove the following improvement on the Proposition of our paper (d(X, Y)) denotes $\inf\{\|T\|\cdot\|T^{-1}\|$: T is an isomorphism from X onto Y. We follow exactly the notation of the paper).

Proposition A. The following are equivalent conditions on X.

- (1) X does not contain l_1^n uniformly for large n (i.e., $d(E_n, l_1^n) \rightarrow \infty$ for any sequence (E_n) of subspaces of X).
- (2) There are t>2 and functions N=N(n) and $K=K(\lambda)$ so that if E is a subspace of X with $d(E,l_2^N) \leqslant \lambda$, then E has an n dimensional subspace which is $Kn^{1/l}$ complemented in X.

From Proposition A we deduce (cf. proof of the Theorem of the paper):

THEOREM B. Suppose X does not contain l_1^n uniformly for large n and Y is arbitrary. Then there is a compact operator T from X to Y (respectively, from Y to X) so that T (respectively, T^*) is not p-summing for any p.

In particular, the T of Theorem B is not nuclear.

Given an unconditional basis (x_i) , the U-constant of (x_i) is the smallest constant K for which $\|\sum_{i \in I} a_i x_i\| \leqslant K \|\sum_{i \in B} a_i x_i\|$ whenever $A \subseteq B$ and (a_i) are scalars. Brunel and Sucheston ([1], Proposition 1 and [2], Lemma 2.3) proved that if (x_n) is a bounded sequence in a Banach space and $\|x_i - x_j\| \geqslant \delta > 0$ for all $i \neq j$, then for each $\varepsilon > 0$ and integer n, there exists a subsequence (y_i) of (x_i) so that every length n subsequence of $(y_{2i-1} - y_{2i})$ has U-constant less than $1 + \varepsilon$. This result and a standard limiting argument yields that the conclusion of the Lemma in our paper can be improved to " $(x_{n_{2i-1}} - x_{n_{2i}})_{i=1}^n$ has U-constant at most $1 + \varepsilon$ ".

Suppose that X does not contain l_1^n uniformly. Then neither does X^* , so by a result of Pisier [13] there is r > 1 so that $\inf \| \sum \varepsilon_i a_i u_i \|$ $\leq 2 (\sum |\alpha_i|^r)^{1/r} \sup \|u_i\|$, where the inf is over all choices $\varepsilon_i = \pm 1$ of signs. Thus if (u_i) has U constant less than 2, then $\| \sum \alpha_i u_i \| \leq 4 (\sum |\alpha_i|^r)^{1/r} \sup \|u_i\|$.

The proof of $(1) \Rightarrow (2)$ in Proposition A is identical to the proof of the Proposition of our paper, except that we use the improved version of the Lemma to guarantee that $(h_i)_{i=1}^k$ has U-constant less than $1+\alpha$ and use

Pisier's result in place of the Guararii–James theorem. Of course, implication (2) = (1) in Proposition A is a well-known consequence of Grothendieck's inequality (cf., e. g., [11], p. 298).

References

- [1] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1973).
- [2] On J-convexity and some ergodic super-properties of Banach spaces (to appear).
- [3] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Int. Symp. Lin. Spaces Jerusalem (1961), pp. 123-160.
- P. Enflo, Spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), pp. 281-288.
- [5] D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), pp. 346-361.
- [6] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. 16 (1955).
- [7] V. I. Gurarii and N. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 35 (35 (1971), pp. 216-223 [Russian].
- [8] R. C. James, Super-reflexive spaces, Canad. J. Math. (to appear).
- [9] Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), pp. 409-419.
- [10] M. I. Kadec and M. G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10 (1971), pp. 453-457 [Russian].
- [11] J. Lindenstrauss and A. Pelezyński, Absolutely summing operators in \$\mathscr{L}_p\$ spaces and their applications, Studia Math. 29 (1968), pp. 275-326.
- [12] V. D. Milman, New proof of the theorem of A. Dvoretzky on intersections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), pp. 28-37 [Russian].
- [13] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de l_n^l (to appear).

THE OHIO STATE UNIVERSITY

Redefied May 29, 1973

(682)