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Compact, non-nuclear operators

by
WILLIAM J. DAVIS and WILLIAM B. JOHENSON* (Columbus, Obio)

Abstract. If X is a supoer-refloxive Banach space, then there are nearly Euclidean
subgpaces B of dimension n in B and projections P of X onto ¥ with ||P|| = O (n?),
whore @ < 1/2 does not depend on m. Thus, it X is super-reflexive and Y is arbitrary
there are compaet operators from X to ¥ which are non-p-summing for all p. It follows
that if either X or ¥ is guper-reflexive there arve compact, non-nuclear operators from
X to X.

Grothendieck [6] asked, “if all operators from X to Y are nuclear,
must either X or Y be finite dimensional?” We show that this is true if
either X or ¥ is super-reflexive.

Notationally, all spaces are infinite dimensional Banach spaces
unless specified otherwise. For the definitions and basic properties of
p-summing and p-nuclear operators, the reader is referred to [61 In this
note we use only the result of Pietsch-Pelezyniski (cf. [B]) that for each
P, 1< p < 00, my(L,) = Oy, where m,(I,) is the p-summing norm of
the identity operator on n-dimensional Buclidean space and. €, is a positive

. constant which depends only on p. .

Super-reflexive Banach spaces were introduced by James [8], and
Enflo [4] has shown that a space is super-reflexive if and only if it can
be renormed to be uniformly convex. However, all we use here is the
Gurarii-James theorem [7], [9]: If X is super-reflexive, then there are
positive constants A4, B,1<p <2< < oo such that, if () is basic
in X with constant <2, 1< ol <4, then A(Y|al9" <] S| <
B3 lay*)" for all sealads aq, ..., d,. (A sequenco (z;) (possibly finite)
is basic with basis constant < K if for arbitrary j<m and secalars

J
E, || D) | < K| g‘ #a.) Such inequalitics and the Dvoretzlky
tus] g )

theorem [4], [18] allow us to construct rank n projections from. super-re-
flexive spaces onto nearly Buclidean subspaces which have norm < Onti*
for arbitratily large n. Tho existence of such projections allows us to show
the non-equivalence of the uniform and p-summing norms of finite rank
operators from X to ¥ when X is super-reflexive.

* The gecond aubhor was supported in part by NSF GP-33578.
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The following lemma, was pointed out to the authors by A. Pelezyriski.

LeMMA. For any &> 0, 5 >0, and integer n, there s an integer
k = I(s, 8, n) such that iof (,)L.; satisfy |l < 2, llo;—xy] > 6 for all ¢ # j,
then there are distinct mdwes ()i, such that (Bp,,  —oy,.)iey has basis
constant ot most 14 e.

Proof. We need the following elementary facts: If « >0 and p is
an integer, then there is an integer m = m(p, a) such thatif dim U< p, U
a2 subspace of some Banach space X, then there exist norm one functionals
(f)™, in X* such that we U implies ||| < (1 -+ a)max|fy(u)|. Also, for
any o> 0 and integer m, there exists an integer s = s(m, a) and a 27'a
net for the 2 ball of 1% whose cardinality is at most s.

Let a >0 (smallness of a = a(e, 4, n) to be specified 1zbter) and set
k' =s(n—1, a)+2n Let n; =1 and n, = 2 (so that (z, —,,) has basis
constant 1).

Suppose we bave chosen -#y,..., g,

q D
”1=Z; a’i(mnzi_l - w’nzi)” < (1 "‘I‘ E)(p_l)m”ig; ai(xnzi__l

lars (@y,..., @). For m =m(p, a), pick norm oné functionals (f)iv,
" so that for each " wespan(w,,  — o, ), U< (1+a) max |folw)].
Define H: X—>I% by H(2) = (fi(@), fal@), ..., ful(®). Now k—2p
> 8(m, a), so there must be distinet indices 7y,,, and %,.,, different
from those indices already chosen, which satisfy “Hwnzm —Hay,, ol < o

'I.‘hus, for arbitrary wespan (v,  —o, i)f‘=l and scalar b, there exigts
i, 1< ¢ < m, such that |lu-+b( “"nz,,ﬂ

(o)l — bl > 1+ o) lull — @87 B (g, ,, — Ty, M = (L) 1wl

— a0 |Jul] — ad™ Ju+b( (Tngyy — By, )l Thus if @ = a(e, 8,n) is chosen

small enough, |Ju|| < (1 &) 1’”Hu+b g1~ Tngp )l
Now for 1<qg<p and scalars a,,.

-y Gpy1 We have
g
”Z “f(w"zi—l‘wﬂzi)]
=1

so that for 1<¢<p,

~a,,,)|| for arbitrary sca-

2
< @+a@ | (@, —an,)
T=l

+1
<(1+ 5)(1’—1)/"’(1 -+ 8)”"' H?Z: a{(mnm;_.l - w“zi) “ *
e

This completes the inductive construction and hence the proof.

We are now in a position to produce nicely complemented IMs in
super-reflexive spaces. Recall that spaces X and Y arve 1 isometric if there
exists a linear map T:. X" 2y satistying || 7|7~ < A. Normalized basic
sequences (z,) and (y,,) are called A equivalent provided the linear extension
of the map @,~y, is a 1 isometry from span (z,) onto span (y,).

7‘2p +2 ” = ]f"'(u_}_b "2;11-(—1 w"2p+2))] =

icm®
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ProroSITION. If X is super-reflemive, there exists t > 2 such that for
any &, >0 there are o sequence of subspaces (U,) of X with dim U, = n,
and projections P,: X g U, suoh that U, i8 (1--e,) isometric to 13 and
[P, = O(n'").

Proof. Fix n. Let 1 >a >0 and let & = I(a, 1, n) from the lemma.
By Dvoretzky’s theorem ([4], [18]) there is a subspace ¥ of X which has
a basis (y,)%, of unit vectors such that (y)E., is 1-4a cquivalent to.
an orthomormal basis in ¥¥. Let yje V* such that 47 (y,) = dy, and let
gec X* bo an arbitrary Hahn-Banach extension of y7 to all of X. Then
llgll < L+ oaand for ¢ # j, llg;— g4l = (9: — g5)¥; = 1. By the lemma, choose
Mgy ones Mon 8O that (B =gy, —gny,Vie1 is Dasic with constant 1+ a.
James [10] has shown that, since X* is super-reflexive, there exists r > 1
and a constant K so that if (u,) is any basie sequence in X* with basis constant
<2 and |lu| < 4, then for all sequences () of scalars, || Yaus| < K (3 la, ")

n

Consider the projection Py = Z’hi(m)yn2 _.+ We have for z in X
=1

<(1+a Z'hi = (L+a) ( Y (sen (@) hy(0) hi)o
<(l+a (me(m " o

<@+ E ()" ol
<2

(14 a)2 K |z)? - n¥"

([Pa]*

Thus, with t = 2r, |[P|<V2E(1+a)n" as desited.

“We are now ready to prove the main result of this paper.

TrEOREM. If X is super-reflexive and Y is arbitrary, there is o compact
operator from X to ¥ which fails to be p-absolutely summing for oll p.

Proof. We show that the p-summing and uniform norms fail to agree
on the finite rank operators. By the proposition, let U have dimension
n, be 3/2 isometric to I3 and let P be a projection of X onto U having
IP|| < Kxn*. Let T, be an isomorphism of I} onto U such that |T,| =1,
ITTY < 3/2. Let V < X be 3/2 isometric to I and lot Tp: V1§ such
that |74 = 1, |77 < 8/2. Then if I denotes the identity on I3 and if
J is the embedding of V into ¥, consider the map 8 = JT‘llT“IP of
X into Y. The restriction of this map to U is JT; IT7! and for any p
between L and oo, m, (8) 5= n, (J Ty ITTY. With B = T 117, I = T, BT,
and there exists C, such that C, l/n < 71, (1) < 1Tl ||1’,,|| 7, (R), [8]. It follows
that  a,(8) = O l/" Howwer, ISI < W T HIZE P < @2 IP <
Ent, where t>2 Thus m,(8)/|I8]| = A,n**~*, where 4, depends only
on X and p, and not on n. The p-absolutely summing norm is thus not
equivalent to the operator norm on the finite rank operators, so by standard
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arguments, the compact operators which ave p-absolutely gumming for
some p are category 1 in the compact operators from X fo ¥.
By a simple duality argument, we obtain the following )
OOROLLARY 1. If ¥ is arbitrary end X is super-veflexive, there is a com-
pact operator from Y to X whose adjoint fails to be p-summing for all p.
Remark. The operator itself may, however, be l-summing since
every operator from a L, space to a Hilbert space is L-summing.
COROLLARY 2. If either X or Y is super-reflexive, there is @ compact,
non-nuclear operator from X to Y.

Added in proof. We prove the following improvement on the Proposi-
tion of our paper (d(X, ¥) denotes inf {||7)- 17 T is an isomorphism,
from X onto Y}. We follow exactly the mnotation of the paper).

PRrOPOSITION A. The following are equivalent conditions on X.
(1) X does mot contain 17 uniformly for large n (i.e., &(H,,[7)—o0
for amy sequence (E,) of subspaces of X).

(2) There are t > 2 and. functions N = N(n). and K = K(1) so that
if B is o subspace of X with d(B,1¥)< 1, then B has an n dimensional
subspace which is Kn'lt complemented in X.

From Proposition A we deduce (cf. proof of the Theorem of the paper):

TurorEM B. Suppose X does not contain I} uniformly for large n and
Y is arbitrary. Then there is a compact operator T' from X to Y (respectively,
from X to X) so that T (respectively, T*) is not p-summing for any p.

In particular, the 7 of Theorem B is not nuclear.

Given an unconditional basis (#;), the U-constant of (#;) is the smallest
constant K for which IIZa ;| \Kllza ;| whenever A < B and (a)

are scalars. Brunel and Sucheqton ([1], Pr@posmon 1 and [2], Lemma
2.3) proved that if (@,) is a bounded sequence in a Banach space and
lo;—m;l > 6 > 0 for all & s j, then for each ¢ >0 and integer n, there
exists a subsequence (y;) of (z;) so that every length n subsequence of
(Y951 —Yp;) has U-constant less than 14 e This result and a standard
limiting argument yields that the conclusion of the Lemma in our paper
can be improved to “(m,,,  —m,,)io; has U-constant at most 1--s”

Suppose that X does not contain I uniformly. Then neither does
X*, 50 by a result of Pigier [13] there is »>1 so that inf| ¥ e;o5u
\2(2|a|)1/* sup [u;l, where the inf is over all choices s, = -:1 ()i
signs. Thus if (w;) has U congtant less than 2, then H_E w;
4( 3 loy ") sup Jlogg).

The proof of (1)=(2) in Proposition A is identical to the proof of the
Proposition of our paper, except that we use the improved version of the
Lemma to guarantee that (k)% has U-constant less than 1« and use
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Pisiex’s result in place of the Guararii-James theorem. Of course, implication
(2)= (1) in Proposition A is a well-known consequence of Grothendieek’s
inequality (cf., e.g., [11], p. 298).
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