Extended rotation of the covariant vector density

by MICHAL LORENS (Katowice)

Abstract. In the present note a notion of extended rotation G_{ab} of an arbitrary vector density w_i of weight -p, $p \neq 0$ is defined axiomatically (Definition 1). Under assumption 1°, 2°, 3° it is proved that such a rotation has the form

$$G_{ab} = C^i_{ab} w_i + w_{(a,b)},$$

where C_{ab}^{i} is an object with transformation formula

$$C_{a'b'}^{i'} = A_i^{i'} A_{a'}^a A_{b'}^b C_{ab}^i + p (\ln |J|), [a'\delta_{b'}^{i'}].$$

The object C^i_{ab} can be prescribed in the following form:

$$C_{ab}^{i} = W_{ab}^{i} - \frac{2}{n-1} C_{[a} \delta_{b]}^{i},$$

where W_{ab}^{i} is a tensor and C_{a} has transformation rule:

$$C_{a'} = A_{a'}^a C_a - \frac{n-1}{2} p(\ln |J|), a'$$

Some further properties of the extended rotation are investigated by means of objects W^i_{ab} , C_a , $D_a=\frac{2}{n-1}\,C_a$.

Introduction. Let w_i be a covariant vector and let G_{ab} be a differential concomitant of the first order of w_i .

We assume that the G_{ab} satisfies the following conditions:

- (i) G_{ab} is additive with respect to $(w_i, \partial_j w_i)$,
- (ii) G_{ab} satisfies a certain Leibniz rule concerning the product of w_i by a scalar σ and
 - (iii) G_{ab} is a covariant tensor of valence (2, 0).

In [4] the notion of rotation has been derived from the above hypotheses.

In the present note we define axiomatically the extended rotation of an arbitrary covariant vector density w_i of weight -p, $p \neq 0$, but we do not assume that it is a differential concomitant of the first order of w_i .

140 M. Lorens

Let X^n be an *n*-dimensional manifold. If transformation of the coordinate system has the form

$$x^{i'} = x^{i'}(x^i), \quad i, i' = 1, 2, ..., n,$$

then we put

$$A_i^{i'} = rac{\partial x^{i'}}{\partial x^i},$$

$$A_{i'}^i = rac{\partial x^i}{\partial x^{i'}}, \quad J = \operatorname{Det} \|A_i^{i'}\|.$$

1. Let w_i be a covariant vector density of weight $-p, p \neq 0$. Then the transformation rule of w_i has the following form:

$$(1.1) w_{i'} = \varphi(J) A_{i'}^i w_i,$$

where

$$arphi(J) = egin{cases} |J|^p & ext{for a W-density,} \ (ext{sgn} J) |J|^p & ext{for a G-density.} \end{cases}$$

If we denote by $U_{,j}$ the partial derivatives of a function U, then we have from (1.1)

(1.2)
$$w_{i',j'} = \varphi(J)_{,j'} A^i_{i'} w_i + \varphi(J) A^i_{i'j'} w_i + \varphi(J) A^i_{i'} A^j_{j'} w_{i,j}.$$

The object $(w_i, w_{i,j})$ is called the differential extension of the first order of w_i . Its transformation rule is defined by (1.1) and (1.2).

Now we formulate the following definition:

DEFINITION 1. A system of n^2 functions

$$G_{ab}, \quad a, b = 1, 2, \ldots, n,$$

is called the extended rotation of the covariant W- (or G-) vector density (1.1) of weight -p, $p \neq 0$, if it satisfies:

1° G_{ab} depends on w_i , $w_{i,j}$:

$$(1.3) G_{ab} = G_{ab}(w_i, w_{i,i});$$

 2° G_{ab} is additive with respect to $(w_i, w_{i,j})$:

$$(1.4) G_{ab}(w_i + w_i, w_{i,j} + w_{i,j}) = G_{ab}(w_i, w_{i,j}) + G_{ab}(w_i, w_{i,j})$$

 $(w_i \text{ and } w_i \text{ are covariant vector densities of weight } -p);$

 3° G_{ab} satisfies the following Leibniz rule for the product of w_i by a scalar σ :

(1.5)
$$G_{ab}[\sigma w_i, (\sigma w_i)_{,j}] = \sigma G_{ab}(w_i, w_{i,j}) + w_{[a}\sigma_{,b]};$$

 $4^{\circ} G_{ab}$ is a W- (or G-) tensor density of weight -p and valence (0,2):

(1.6)
$$G_{a'b'} = \varphi(J) A_{a'}^a A_{b'}^b G_{ab}.$$

From (1.4) and (1.5) it follows that G_{ab} is a linear function with respect to $(w_i, w_{i,j})$. In fact, putting $\sigma = a = \text{const}$ into (1.5) we have

$$G_{ab}(aw_i, aw_{i,j}) = aG_{ab}(w_i, w_{i,j}).$$

Hence we obtain the following form of G_{ab} :

$$G_{ab}(w_i, w_{i,j}) = C_{ab}^i w_i + C_{ab}^{ij} w_{i,j},$$

where

$$C^i_{ab} = \mathrm{const}, \quad C^{ij}_{ab} = \mathrm{const}, \quad a, b, i, j = 1, \dots, n.$$

Putting (1.7) into (1.5) we find

$$(C_{ab}^{ij} - \delta_{[a}^i \delta_{b]}^j) w_i \sigma_{,i} = 0,$$

where δ_a^i is the general Kronecker delta. Since w_i and $\sigma_{,j}$ are arbitrary, we have

$$C_{ab}^{ij} = \delta_{[a}^i \delta_{b]}^j.$$

Inserting (1.8) into (1.7) we obtain

$$G_{ab} = C^i_{ab} w_i + w_{[a,b]}.$$

Now we determine the transformation rule of the C^i_{ab} . From (1.6) and (1.9) it follows that

$$(1.10) C_{a'b'}^{i'}w_{i'} + w_{[a',b]} = \varphi(J)A_{a'}^a A_{b'}^b (C_{ab}^i w_i + w_{[a,b]}).$$

Putting (1.1) and (1.2) into (1.10) it is easily seen that

$$C_{a'b'}^{i'}A_{i'}^{i'}w_i = [A_{a'}^aA_{b'}^bC_{ab}^i + p(\ln|J|), [a'}A_{b']}^i]w_i.$$

Since here w_i are arbitrary, we get

$$C_{a'b'}^{i'} = A_i^{i'} \{ A_{a'}^a A_{b'}^b C_{ab}^i + p (\ln |J|)_{,[a'} A_{b']}^i \}.$$

We have thus obtained the following

THEOREM 1. Every extended rotation of a covariant W- (or G-) vector density of weight -p, $p \neq 0$, has the form

$$G_{ab}(w_i, w_{i,j}) = C^i_{ab}w_i + w_{[a,b]},$$

where C^{i}_{ab} is an object with transformation formula (1.11).

Let C^i_{ab} be the object with transformation formula (1.11) and

$$(1.12) C_a \stackrel{\mathrm{df}}{=} C_{ia}^t.$$

From (1.11) it follows that C_a is an object with transformation rule

(1.13)
$$C_{a'} = A_{a'}^a C_a - \frac{n-1}{2} p(\ln|J|)_{a'}.$$

142 M. Lorens

Now we assume that $n \ge 2$ and put

$$W_{ab}^{i} \stackrel{\mathrm{df}}{=} C_{ab}^{i} + \frac{2}{n-1} C_{[a} \delta_{b]}^{i}.$$

It is easily seen that W_{ab}^{i} is a tensor of valence (1, 2). Thus we have the following corollaries:

COROLLARY 1. The object C^i_{ab} has the form

(1.14)
$$C_{ab}^{i} = W_{ab}^{i} - \frac{2}{n-1} C_{[a} \delta_{b]}^{i},$$

where W_{ab}^{i} is a tensor of valence (1.2) and C_{a} is an object with transformation (1.13).

COROLLARY 2. $C^i_{(ab)} \stackrel{\text{df}}{=} \frac{1}{2}(C^i_{ab} + C^i_{ba})$ is a tensor, $C^i_{[ab]} \stackrel{\text{df}}{=} \frac{1}{2}(C^i_{ab} - C^i_{ba})$ has precisely the same transformation rule as that of C^i_{ab} .

COROLLARY 3. The extended rotation is an antysymmetric tensor density if and only if

$$W^i_{ab} = W^i_{[ab]}$$

2. Let us consider a field of an object C_{ab}^i of class C^1 on X^n , $n \ge 2$. The object

$$(2.1) D_a \stackrel{\mathrm{df}}{=} \frac{2}{n-1} C_a,$$

where $C_a = C_{ia}^i$ has the following transformation formula:

$$(2.2) D_{a'} = A_{a'}^a D_a - p(\ln |J|)_{a'}.$$

M. Kucharzewski has proved in [2] that every covariant derivative of a density g of weight -p, $p \neq 0$, has the form

$$(2.3) F_i(\mathfrak{g},\mathfrak{g}_{,i}) = \mathfrak{g}_{,i} + K_i\mathfrak{g},$$

where K_i is an object with transformation rule (2.2).

Now we introduce the following notation:

It is known (cf. [3], p. 83) that the following equality is true:

$$RotGrad \sigma = 0$$
,

where σ is a scalar field of class C^1 . We shall require that the extended rotation in the sense of Definition 1 satisfies

$$\mathfrak{g}_{;a|b}=0,$$

for any density g of weight -p, $p \neq 0$.

We prove the following

THEOREM 2. The extended rotation fulfils (2.5) if and only if

$$(2.6) W_{ab}^i = 0, V_{ab} = 0.$$

Proof. From (1.9), (2.1), (2.3) and (2.4) it follows that

$$\mathbf{g}_{;a|b} = (C_{ab}^i + D_{[a}\delta_{b]}^i)\mathbf{g}_{,i} + (C_{ab}^iD_i + V_{ab})\mathbf{g}.$$

If $\mathfrak{g}_{;a|b}=0$ for every density \mathfrak{g} of weight $-p,\,p\neq 0,$ then we obtain

$$C^i_{ab} + D_{[a} \, \delta^i_{b]} \, = \, 0 \, , \hspace{5mm} C^i_{ab} \, D_i + V_{ab} \, = \, 0 \, .$$

Thus we have (2.8).

If (2.6) holds, then it is easily seen that $g_{ab} = 0$.

This completes the proof.

Remarks.

I. Let X^n be an $L^n(1)$ and let A^i_{ab} be an object of the linear displacement in L^n . Then we can define the extended rotation as follows:

$$W_{ab}^i \stackrel{\mathrm{df}}{=} S_{ab}^i, \quad C_a \stackrel{\mathrm{df}}{=} \frac{n-1}{2} p \Lambda_a,$$

where $S_{ab}^i = \Lambda_{[ab]}^i$, $\Lambda_a = \Lambda_{ai}^i$.

If w_i is a covariant vector density of weight -p, then we put

$$\boldsymbol{w_{a|b}} \stackrel{\mathrm{df}}{=} (\boldsymbol{S_{ab}^i} - p\boldsymbol{\Lambda_{[a}}\,\boldsymbol{\delta_{b]}^i})\boldsymbol{w_i} - \boldsymbol{w_{[a,b]}}.$$

Such an extended rotation coincides with the alternation of the covariant derivative of w_i with respect to Λ^i_{ab} .

II. Now we assume that in X^n there is given a field of an object A_a with transformation formula

$$\Lambda_{a'} = A_{a'}^a \Lambda_a - (\ln |J|)_{a'}.$$

Then we can define the following extended rotation of a covariant vector density of weight, $-p p \neq 0$:

$$w_{a|b} \stackrel{\mathrm{df}}{=} -p \Lambda_{[a} \delta^i_{b]} w_i + w_{[a,b]}.$$

In this case we have $W_{ab}^i = 0$.

(1) In X^n a field of an object A^i_{ab} with transformation rule

$$A_{a'b'}^{i'} = A_i^{i'} A_{a'}^a A_{b'}^b A_{ab}^i + A_s^{i'} A_{a'b'}^s$$

is given.

We notice that $W^i_{ab} = 0$ if and only if $g_{,a|b} = V_{ab}g$ for every density of weight $-p, p \neq 0$.

III. Let w_i be a covariant vector density of weight p = 0 (i. e. w_i is a covariant vector or a J-vector). It is easily seen (1°, 2°, 3°, (1.9) and (1.11)) that

$$G_{ab}(w_i, w_{i,j}) = C^i_{ab}w_i + w_{[a,b]},$$

where C^i_{ab} is an arbitrary tensor of valence (1.2).

If we assume (cf. [4]) that G_{ab} is a differential concomitant of the first order of w_i , then we have

$$C^i_{ab}=0$$
,

i.e.

$$G_{ab}(w_i, w_{i,j}) = w_{[a,b]}$$

References

- [1] S. Golab, Rachunek tensorowy, Warszawa 1966.
- [2] M. Kucharzewski, Kovariante Ableitung der Skalare Dichten, Prace Naukowe U. Śl., Prace Mat. 1 (1969), p. 61-70.
- [3] E. Kurcius and M. Lorens, Note on gradient and rotation, ibidem 2, 4 (1973), p. 51-56.
- [4] J. A. Schouten, Ricci-Calculus, Berlin-Gröningen-Heidelberg 1954.

Reçu par la Rédaction le 14. 7. 1972