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Extended rotation of the covariant vector density

by MicHAL Lorens (Katowice)

Abstract. In the present note a notion of extended rotation Ggp of an arbitrary
veetor density w; of weight —p, p # 0 is defined axiomatically (Definition 1).
Under assumption 1°, 2°, 3° it is proved that such a rotation has the form

Gap = Copw;+wWigp
where (%, is an object with transformation formula
Cly = AV A2 A%, t+pnlJ)), [a,ﬁg',].

The object CZy can be prescribed in the following form:

. 2
= Wip—
ab ab n

i
-1 G[adb] ?

where Wi, is a tensor and C, has transformation rule:

n—1
Ga: = Ag,C'a-— Tp(ln IJI)’a', .
t
Some further properties of the extended rotation are investigated by means

. 2
of objects Wap, Ugs Dg = —— Clo-

Introduction. Let w; be a covariant vector and let G, be a differential
concomitant of the first order of w;.

We assume that the G, satisfies the following conditions:
(1) G, is additive with respect to (w;, d;w;),
(ii) G, satisfies a certain Leibniz rule concerning the product of w; by
a scalar ¢ and
(iii) G, is a covariant tensor of valence (2, 0).

In [4] the notion of rotation has been derived from the above hypo-
theses.

In the present note we define axiomatically the extended rotation
of an arbitrary covariant vector density w; of weight —p,p # 0, but

we do not assume that it is a differential concomitant of the first order
of w;.
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Let X™ be an n-dimensional manifold. If transformation of the coor-
dinate system has the form

g =22, 1,1 =12, ...,m,
then we put
AV = __awi
z awi ’
.0 .

1. Lét w; be a covariant vector density of weight —p, p = 0. Then
the transformation rule of w; has the following form:
(1.1) w; = g(J) Ajw;,
where
|J|P for a W-density,

p(J) = .
(sgnd)|J|? for a G-density.

If we denote by U, ; the partial derivatives of a function U, then we
have from (1.1)

(1.2) wi, = 9(J) p Abw; + () Abyw, + ¢ () AL A, ;.

The object (w;,w; ;) is called the differential extension of the first
order of w;. Its transformation rule is defined by (1.1) and (1.2).
Now we formulate the following definition:

DEFINITION 1. A system of % functions
Gy a,b=12,...,n,
is called the extended rotation of the covariant W- (or G-) vector density
(1.1) of weight —p, p # 0, if it satisfies:
1° G, depends on w;, w; ;:

(1.3) G = Gop(wy, w; 5);
2° G, is additive with respect to ('w,-,Aw,-’,-):
(1.4) Gab("{’i‘l"lzvn "fe',j‘i‘?g’i,j) = Gab(’ll”n ’tfi,j) +Gab(’¢20a's 7';71:,3')

(1{7,- and w; are covariant vector densities of weight —p);

3° @, satisfies the following Leibniz rule for the product of w; by
a scalar o:
(1.6) G [ow;, (ow;) ;1 = oG g (w;, wi,j)+w[aa,b];

4° G, 18 a W- (or G-) tensor density of weight —p and valence
(0, 2):
(1.6) Goy = @(J)AG ALG .
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From (1.4) and (1.5) it follows that G, is a linear function with respect
to (w;, w;;). In fact, putting 0 = a = const into (1.5) we have

Gop(aw;, aw; ;) = aGy,(w;, w; ;).
Hence we obtain the following form of G;:
(1.7) Gap (W5 w; ;) = Copw;+ Cyw; 5,
where
¢, = const, (% = const, a,b,%,j=1,...,n.
Putting (1.7) into (1.5) we find
(szjb_' 6faag])wia,j =0,

where &% is the gencral Kronecker delta. Since w; and o ; are arbitrary,
we have

(1.8) Coy = 6104
Inserting (1.8) into (1.7) we obtain
(1.9) Gab = Of,bw,-+w[a’b].

Now we determine the transformation rule of the C%,. From (1.6)
and (1.9) it follows that

(1.10) Cg’b'wi'+w[a’.b’] = ‘P(J)Ag'Ag'(szb’wi+w[a,b])-
Putting (1.1) and (1.2) into (1.10) it is easily seen that
e Aiw; = [A2 A} Chp+p (i), o 5 1w;.
Since here w; are arbitrary, we get
(1.11) Cay = A {AZ A} Cop+p (I |J]), 10 451}

We have thus obtained the following

THEOREM 1. Every extended rotation of a covariant W- (or G-) vector
density of weight —p, p # 0, has the form

Gap(Wiy wy,5) = Copt0;+ Wi 4,

where Cy is an object with transformation formula (1.11).
Let O, be the object with transformation formula (1.11) and

(1.12) C, = Cly.

From (1.11) it follows that C, is an object with transformation rule

-1
(1.13) Co = A50,— = p(n|J)),0
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Now we assume that » > 2 and put

. dat . 2 i

It is easily seen that W?, is a tensor of valence (1, 2). Thus we have
the following corollaries:

COROLLARY 1. The object C', has the form

. , 2 ;

where Wiy, is a tensor of valence (1.2) and C, is an object with transformation
(1.13).

COROLLARY 2. Cig L1, +C) is a tensor,  Ciay L 3(0i,— 1)
has precisely the same transformation rule as that of Cy,.

COROLLARY 3. The extended rotation is an antysymmetric tensor density
if and only if
W:Jb - WEab]'

2. Let us consider a field of an object C%, of class C* on X*, n > 2.
The object

(2.1) p,% 2 ¢
. a ’n;—l a?

where C, = C:, has the following transformation formula:
(2.2) Dy = A%D,—p(In|J]), -

M. Kucharzewski has proved in [2] that every covariant derivative
of a density g of weight —p, p # 0, has the form

(2.3) Fi(a,9,;) =9+ K;q,

where K, is an object with transformation rule (2.2).
Now we introduce the following notation:

Wap 2 Cibwi"{‘w[a,b],
(2.4) 0.2 = 8,0+ D8,
Vs = Diayy-
It is known (cf. [3], p. 83) that the following equality is true:
RotGrado =0,
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where ¢ is a scalar field of class C'. We shall require that the extended
rotation in the sense of Definition 1 satisfies

(2.5) Gap = 0,
for any density g of weight —p, p # 0.
We prove the following
THEOREM 2. The extended rotation fulfils (2.5) if and only if

(2.6) Wi =0, Vg =0.
Proof. From (1.9), (2.1), (2.3) and (2.4) it follows that
Qiap = (Cib'l‘-D[aaE])g,i'i‘(szbDi'*' Van)g-

If g,, =0 for every density g of weight —p,p # 0, then we
obtain

fzb”*‘D[a =0, CoD;+Vg =0.

Thus we have (2.8).

If (2.6) holds, then it is easily seen that g.,;, = 0.

This completes the proof.

Remarks.

I. Let X" be an L*(*) and let A%, be an object of the linear displace-
ment in L". Then we can define the extended rotation as follows:

) A n—1
Wiy S 8y €S

where 8%, = Alyy, 4, = Ag;.

If w; is a covariant vector density of weight — p, then we put

A,

at .
Wap = (szb —PA[a 53]) W; — Wiq,p}+
Such an extended rotation coincides with the alternation of the
covariant derivative of w; with respect to A,,.

IT. Now we assume that in X” there is given a field of an object 4,
with transformation formula

Ay = A%A,—(In|J]), ..
Then we can define the following extended rotation of a covariant
vector density of weight, —p p # 0:

at -
Wap = — PAg 85 Wi+ Wig,p)-

In this case we have W:, = 0.

(!) In X" a field of an object Af,,b with transformation rule
ALy = AY A% A8 A%, + AV A4S,
is given.



144 M. Lorens

We notice that W,, = 0 if and only if g ,;, = Vg for every density
of weight —p,p #0.
III. Let w; be a covariant vector density of weight p = 0 (i. e. w; is
a covariant vector or a J-vector). It is easily seen (1°, 2° 3° (1.9) and
(1.11)) that
Gy (W;, Wy ;) = Oy -+ Wia,

where €', is an arbitrary tensor of valence (1.2).
If we assume (cf. [4]) that G,, is a differential concomitant of the
. first order of w;, then we have

i
Cab = 01
i.e.

Gop(w;y w; 5) = Wia,b
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