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THE TOPOLOGY OF THE UNIT INTERVAL
I8 NOT UNIQUELY DETERMINED
BY ITS CONTINUOUS SELF MAPS AMONG SET SYSTEMS

BY

JIRf ROSICKY (BRNO)

Sneperman [5] and Warndof [6] have proved that the usual topology
of the closed unit interval {0, 1) is uniquely determined by its continuous
self maps. It means that if T is an arbitrary topology on <0,1) (i.e.,
a system of subsets of (0,1) closed under arbitrary unions and finite
intersections) such that the system of continuous self maps with respect
to T is equal to the system of usual continuous self maps, then I is the
usual topology on (0, 1>. Their method shows that the same assertion
is true even if T is a system of subsets of {0, 1> closed under finite unions.
M. Sekanina has put the problem whether this assertion remains true
if we take arbitrary system T of subsets of (0,1). The continuity of f
is understood naturally: f~! Xe T for any X e T. We shall show that the
answer is negative. Namely, we shall construct for the usual topology
on {0,1), and even for any non-discrete completely regular locally con-
nected topology, a sequence of mutually different systems such that
their system of continuous self maps is equal to the system of original
continuous self maps. A completely regular topology is supposed to be T,.

BASIC DEFINITIONS

Denote by exp A the system of all subsets of a set 4. Let A = expA.
Put U= {4 —X | X WL W =UNAand A|C= {XC| X A} for any C < 4.
We remind that U is called a topology if it is closed under arbitrary unions
and finite intersections. The closure and the frontier of C < A in a topology
A will be denoted by Cly(C) and Fry(C) or briefly (if there is no danger
of misunderstanding) by CI(C) and Fr(C). If B is a system of subsets of
a set B, then (A,B) = {f: A>B|f ' XA for every X ¢B} is the system
of continuous maps from % to B. We shall extend the notion of connected-
ness from topological spaces to arbitrary A < exp A. Such an U is defined
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to be connected if N < {B, A}. Analogously to the topological case it may
be easily shown that if U is connected, B < expB, and fe (A, B), then
B|f(4) is also connected.

CONSTRUCTION

Let A be a topology on the set A and X < A. Let X = X, and
X" = Cly(X")— X" for every ne N, where N = {0,1,2,...}.

LEMMA 1. Let n > 2. Then X" = Cly (X" ') nX"2,

Proof. If we X", then we CL(X"Y), o¢ X"~ = Cl(X"~?)— X"2.

Further, C1(X"") = C1(CL(X"~%)— X"~ < Cl(X""?), whence ze X",

If ze C1(X" ) nX""% then x¢ X" '. Hence ze¢ X".

Put F,(¥A) ={X c A|X"" =0 and every component of UAX
belongs to A} for every me N. Clearly, Fy(UA) =A and F(A) < F,(A)
c...c F,(AW < ...

PrOPOSITION 1. Let U be a topology on A, and B on B. Then

(A, B) < (F,(A), F,(B)) for any ne N.

Proof. Let fe (A,B), ne N, Ye F,(B), and X = f'Y. Then f(X°
< Y. Further, f(X') = f(Cly(X)—X) < Clg(¥Y)—Y = Y .

Let ¢ >2 and suppose that f(X*!)c Y*!, f(X*?) < Y% Then,
by Lemma 1,

f(XY) =f(Cly(X~Y) nX*7%) € f(Cly(X*Y) N f(X2)
< Olg(f(X* ) N f(X?) = Clg(Y ) nY% = T°.

Therefore, f(X*) < Y' for every ie N. Since Y"*! =@, we have
X"t =0,

Let T be a component of A|X. Thus f(I') is connected and there
exists a component U of B|Y with f(T) < U. Since f~'(U)e A and T

is a component of f~!(U), we have T¢ . Thus Xe F,(A) and, therefore,
fe (Fn(U), F,(B)).

LOCALLY CONNECTED COMPLETELY REGULAR TOPOLOGIES

LeMMA 2. Let A be a locally connected topology on A,Z = A and every
component of Z be closed in . Then Z' < Cl (Fr(Z) N Z).

Proof. Let e Z' = Cl(Z)—Z and let U be a connected neighbourhood
of z. Then U N Z +# @. There exists a component 7' of Z such that UnT
# @. By the supposition, T« %. Therefore U NT is closed in A | U. Since
U is connected, UNT¢A|U. There exists a te UNT with te C1(U —T).
Therefore te Fr(T'). Since U is locally connected and 7 a component of Z,
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Fr(T) < Fr(Z) (see [2]). Hence teFr(Z)nZ, i. e., UNFr(Z)nZ + Q.
From the local connectedness of U it follows that xe Cl(Fr(Z) nZ).
COROLLARY 1. Let A be a locally connected topology on A. Then A°
= F,(N)° for every ne N. ’
Proof. Let ne N. Then A < F,(A) implies A° < F,(N)". Let X ¢ F,(A)°,
Y = A—X. By Lemma 2,

Y'  Cl(Fr(Y)nY) = C1(C1(X) n ¥) = C1(XY).

Further, Y' n X' = @ and, therefore, Y' < X?. We have X* < Cl(X')
< C1(Y) and X*NY =@. Hence Y' = X?, which implies Y'+t! = X+
for all ie NV.

In the same way we can prove that X*+! = Y**2 for all i« N. Thereby
we get X, Ye, i.e. Xe A"

COROLLARY 2. Let U be a locally connected topology on A and let XN
be such that | X is connected. Then F,(A)|X is connected for every me N.

Proof. Let f: X—>A be the inclusion mapping. Then fe (A|X, A).
By Proposition 1, ZNnX =f"'ZeF,(A|X) for any ZeF,(A). Hence
F,(AW|X < F,(AIX). The result follows from Corollary 1 and from the
fact that an open subspace of a locally connected space is locally connected.

Let I be the usual topology of the closed unit interval I = (0, 1).
Let ¢,deI and c¢< d. Put

D(e,d) = {c—!— °
24

ieN,i> o}u {c—}—(d—c) ill

ieN,i>0}.

Clearly,
Dfe, d) < ¢, ), (—D(ca d))l = {c¢, d}.

LEMMA 3. Let 0< a,< ay<1. Then for every me N there exists a
D, e F,(JI) with the following properties:

1° (D,,,)! = D, for every me N.

2° Dy, = {0}, a,e D,.

3° If 8 < I is connected, SND,+@ and card(S Nn{0, a,>) > 1, then
8NnD,,., +O for every ne N.

Proof. We use the notation D, = (D,). Sets D, will be constructed
by induction. Put D, = D(0, a,) u{a,, a,}. Clearly, D,e F,(3J), D; = {0}
= Dy, and D,, D, satisfy 3°. Moreover, every element = of the set

(Dy—O1(D})) —{as} = Dy —{as}

has the immediate predecessor ¢’ in D, and the immediate successor x'’
in D, (with respect to the usual order of real numbers).

Suppose that there exist D,e F,(J) for every 1 < k < n such that
D; = D,_,, D,_, satisties 3°, every element z¢ B, = (D, —Cl(Dy,,)) —{as}



182 J. ROSICKY

has the immediate predecessor '« D, and the immediate successor z’’' ¢ D,
and a,e C1(D,). Let
F = [D(E,z)vD(z,2")].
zeE,,

It can be easily verified that #’ < Cl(D,).

Put D,,, =F uD,_,. Let T be a component of D,,,. If TnF +#0,
then card(F) =1. If TNnF =@, then T¢J by induction.

Let teD,. ,. Then teCl(D,,,) = ClI(F)uCl(D}) < ClI(F)uCl(D,).
Since t¢ D,,, 2 F and F' < Cl(D,), we have teCl(D,). Since t¢D,,,
2D, ,=C(D,)—D,, we have te D,. Conversely, let te D,. If ic¢ F,,
we have te D, ., by construction. Then Cl(D,_,) < C1(D,,,,) and D,ND,_,
= . Hence te Cl(D,_,) implies te D, ,. If t = a,, then a,e D, , for
a,¢Cl(D,,_,). We have proved that D, , = D, and, therefore, D, e F,  ,(J).

Let 8 =< I be connected, SND, #@, and card(8 N0, ayd) > 1.
Now, SNE, # @ implies SNF # . Let SNCI(D,_,) #9 and suppose
that SN D, , =@. Then 8 nD,_, # I and, by the inductive assumption,
SnD,_, #@, a contradiction. If a,e SN D,, then a,e SNC1(D,_,)NnD,
c 8nD,_, and, therefore, SND,_, #@, i.e. SNnD,., # 0.

It remains to prove that every element ze E,, , has the immediate
predecessor (successor) &' (x'')e D,,, and a,e Cl(D,,;). The second as-
sertion follows from a,e C1(D,_,). Let

ze B, , = (Dn+1—CI(Dn))‘—{a'2} =(FuD, ,)—-Cl(D,) = F
for D,_, = D}, < CI(D,).

By construction # has the immediate predecessor (successor) =’ (z'’)
in D,,,.

THEOREM 1. Let A be a locally connected topology on A and let B be
a completely regular topology on B. Then

(Fp(A), Fo(B))= (A, B) for every ne N.

Proof. Let ne N. By Proposition 1, (%, B) < (F, (%), F,(B)). Suppose
that there exists fe (F, (%), ¥,(B)) such that f¢ (A, B). Then we can find
a zero-set X eB such that Z = f~'(X)¢ A. There exists a be Z'. Further,
X = h7'(0) for some he (B, J). Put g = hf. Clearly, ge (F,(%), F,(3J))
Let K be the component of J|g(A) containing g¢(b). Let U be
a connected open neighbourhood of » in WA. By Corollary 2, F,(N)|U
is connected and, therefore, ¥, (3J)|g(U) is also connected. Since J < F, (J),
J|g(U) is connected. We have 0e g(U) for UNZ +# 3. Hence 0¢ K and,
therefore, Cl1(K) = {0, a,> for some a,e I. We have 0< g(b) < a,< 1.
Take D, e F,(3J) from Lemma 3 for k < n and a, = ¢g(b). Put C = ¢g~'(D,).

(«) Fr(g~'(Dy)) ng™"' (Dy) = C"* for every k< n.
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We have Fr(g~'(D,))ng~*(D,) < ¢ '(D,) =C =C° Let us take
teFr(g~"(D,_,))ng~*(D,_,). Since g(t)e D,_,, we have g(t)¢ D,, i.e. t¢C.

Let U be a connected open neighbourhood of ¢. Analogously as above,
it can be shown that g(U) is connected in J. Therefore g(U) < (0, ay).
Since teFr(9~'(D,_,)), we have Ung'(D,_,) #9 # U—g~'(D,_,).
Hence card g(U) > 1. Since g(U) N D,_, # O, it follows from 3° of Lemma 3
that g(U)nD, #0,i.e. UNC #@. As U is locally connected, te C1(C).
We have proved that te (', i.e. Fr(g~'(D,_,))ng~*(D,_,) < C.

Let 0<k<mn—1. Suppose that Fr(¢~'(D;))ng~'(D;) < " for
every k< i < n. Let te Fr(g~'(Dy)) Nng~'(D;). Let U be a connected open
neighbourhood of ¢. Then ¢g(U) is connected, g(U) < <0, a,>, card g(U)
>1, and ¢g(U)nD, #90. By Lemma 3, ¢g(U)nD,,, #©. Therefore
te Cl(g7"(Dy4y)). Since te g7'(Dy), te (97" (Dyyy))'. Further, Dy, e Fy  (3)
< F,(J).Since ge (F,(A), F,(JI)), wehave g~! (D;,) ¢ F,(A). By Lemma 2,

te OL[Fr(g™" (Dysr) N9~ (Dia)]-
By the inductive assumption, te C1(C"*~!). In view of Lemma 1,
D, = D;_, = Cli(D;,,) NDy,, = Cl(Dy,,) "Dy,
and, therefore,
971 (Dy) = 97 (CUDy1.)) NG (Diy)-

Hence te g='(Dy.,,). Since te Cl{g~'(Dy,,)) and g7 (Dryy) NG (Dyy,)
=@, we get teFr(g~'(Dy,,)). Thus

te Fr (g_l(Dk+2)) NG (Dyyg) € C*F2

by the inductive assumption. Therefore te C1(C"*~1)AC"*-? and, by
Lemma 1, te C"*. The proof of («) is completed.
By Lemma 3 and («) for ¥ = 0 we have

Fr(2) nZ = Fr(g=(0)) ng~(0) = Fr(g™ (D)) ng~"(Dy) < C".

By Lemma 2, Z' < C1(Fr(Z) nZ). Hence be C1(C") = C" for ("¢ F,(N).
Further, ¢(b) = a,¢ D, and beg '(D,). Consequently, beCl(Z) and
Zng Y(D,) =@ implies

be Fr(g~'(D,)) ng~"(D,) = C*'.

A contradiction to 0" nC"*~!' = @. The proof is completed.

PROPOSITION 2. Let A +# exp A be a locally connected completely regular
topology on A. Then F,(N) S F,,,(A) for every ne N.

Proof. Let ne N. There exists a zero-set Xe¢UA such that X¢ U,
i. e. there exists an xe Fr(X). Further, X = h~'(0) for some he (A, J).
Let K be the component of h(A) containing 0. Then Cl(K) = (0, a)
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for some ae¢I. Let U be a connected open neighbourhood of x. Then
h(U) is connected, 0e h(U), and cardh(U) > 1. Therefore 0 < a. Take
D, e F, ., (J)from Lemma 3 fora, = a, = a. Let C = h™' (D, ,,)e F, ,(N).
In the same way as («) in the proof of Theorem 1 it can be shown that

O # Fr(X)nX = Fr(g~' (D)) ng~'(D,) = C"*1.

Therefore, C¢ F, ().

Remarks. 1. The minimal T,-topology U = { X | 4 — X is finite} U {O}
on A is an example of a locally connected 7',-topology which is uniquely
determined by continuous self maps among set systems (see [4]).

2 (395 (U3, UF ().
Indeed,
neN neN

where
: 1 1
f(z) = ?(1—1— sm;) for zeI, x #* 0 and f(0) = 0.
We are going to show that #, (U) do not exhaust all systems of subsets

of A with continuous self maps the same as for a non-discrete locally
connected metric topology W on 4. Let A be a topology on A. Define

17’(91) = ‘h-l{% neN,n #0} ( he(QI,S)I.

PrOPOSITION 3. Let A be a locally connected topology on A and B a com-
pletely regular topology on B. Then (ﬁ’(‘l[), 17'(23)) = (A, B).

Proof. By the definition, (%, B) < (F (), F(B)). Since F(A) < F, (%)
and D, e f‘(S) for D, from Lemma 3, the proof of Proposition 3 follows
from that of Theorem 1.

PROPOSITION 4. Let W # exp A be a locally connected metric topology
on A. Then Fo(¥) S F(A) S Fy ().

Proof. Every closed set of a metric space is a zero-set and, therefore,
FoA) = F (A). Now Fy(A) # F (A) can be proved analogously as Proposi-
tion 2, because D, e f’(S).

We claim that F () = F, (A). Let xe A be non-isolated in 4 and U,
a connected neighbourhood of x. By regularity and local connectedness
of A there exists a connected open neighbourhood U of z such that
Cl(U) ¢ U,. Since U, is connected, there exists

ye C1(T) NCL(4 — (U u{y})).
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Hence we have a sequence {y;|ie N} =« A —(U v {y}) converging to y.
Clearly

X = {g} u{y;lie N}e F,(N).

Suppose that Xe F (). Then there exists an he (A, I) with
1)1
X =09~ 0£neN.

Evidently, h(y) = 0¢Cl(h(U)). Since h(U) is connected, UNX is
infinite, a contradiction.
For the JI-pattern of this proof I am indebted to M. Sekanina.

MORE ABOUT F,(%)

LeEMMA 4. Let A be a topology on A and N° = F,(A)°. Then every compo-
nent of WA is open.

Proof. Let T < A be a component of 4. Since T ¢ A, we have (A — T)?
= @. Clearly, any component of A — T is a component of A and, therefore,
is closed in A. Hence A —TeF,(A), i.e. Te F,(A)° =A< A.

PRrOPOSITION 5. Let U be topology on A. Consider the following statements:

(i) A s locally connected.
(ii) (Y| X)° = F, (U X)° for every X .

(iii) (A X, A|X) = (F, (A X), F,(A| X)) for every X .

Then (iii) = (ii) < (i).

All statements are equivalent if W is completely regular.

Proof. By Corollary 1, (i) = (ii). A topology U, for which every com-
ponent of any X e is open, is locally connected (see [2]) and, therefore,
(ii) = (i) by Lemma 4. Further, (iii) = (ii) (see [4]). If A is completely regular,
(i) = (iii) according to Theorem 1.

LEMMA 5. Let A be a metric continuum on A and Ze F,(N)—U. Then

Z' nCl(Fr(Z) nZ) + 0.

Proof. Let x¢ Z'. There exists a sequence x,, #;, ... of points of Z

converging to x. Let T, be the component of Z containing x,. All T, are
subcontinua of . Therefore

H= 1s T,

n—>00

= {we A |every neighbourhood of z intersects infinitely many T,}

is a continuum (see [2], § 47, II, Theorem 6). Note that H = (Z' nH)u
U(Z NH). Suppose that ZNH #@. Let T be a component of ZNH.
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Since Z NHe F,(A H), we have T <% H. By [2], § 47, III, Theorem 2,
we have Clyy(T)NFryy(ZnH) #0, i.e.

TN(Z'nH) =T NClyy(Z'nH) #09,
which contradicts to ZNZ' = 3. We have proved that ZNnH =@, i. e.
Hc Z\.

Further, Cly(T,) NFry(Z) #0O (see [2]), i.e. T,NFry(Z) #O for
all n. Let t,e T, NFrg(Z). Then t,e Fry(Z) N Z for all n. Since A is com-
pact, there exists an accumulation point of {¢,|n =1,2,...}. Hence
Cly({t,Imn =1,2,..})nH #0, i.e. Clg(Fry(Z)NnZ)nZ' #0Q.

COROLLARY 3. Let U be a metric continuum on A. Then F,(A) is con-
nected.

Proof. Let us take XeF, (), O #X #A4 and Y =4 —X. Since
Cl(Fr(Y)nY) = Cl(X") = X', we infer by Lemma 5 that X'nY' #@,
a contradiction.

COROLLARY 4. Let A be a metric continuwum on A such that the set A,
of all points of A in which W is not locally connected forms a locally con-
nected continuum. Then (A, A) = (F,(A), F,(A)).

Proof. Let f, X and Z be as in the proof of Theorem 1. Since A4,
and A, = A — A, are locally connected, it follows from Theorem 1 that

ZNA e ﬁlA1 c % and Z NAze Al A,. Therefore Z*' < A, and, by Lemma 5,
Z'nOl(Fr(Z)NZ nA,) = Z'nCl(Fr(Z)nZ) +# 0.

The rest of the proof is the same as the last section of the proof of
Theorem 1.

PrROBLEM. Does (U, A) = (F,(A), F,(A)) hold for any metric con-
tinuum A? (P 904)
An example of a continuum satisfying assumptions of Corollary 4:

.1
{(O’y)l—1<y<l}u{(w,y)|0<w<1,y=sm;}.

Compactness is here essential as is shown by the following example
of a connected metric topology A with (U, A) # (Fy(A), Fy(A)):
ExXAMPLE. Let

4= 10,030 {@mio<o<t,y=sin}

with the topology U induced by the topology of the Euclidean plane.
Let
B={0,y)-1<y<1}

and let g, be the projection of 4 onto B. Clearly, g, is continuous.
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Define g,e I® as follows:

1
(y+1 for —E->y> -1,

9:(0,9) = 1 1 1
= for ——<y<—
g T TgSY¥s
\ y otherwise.

Clearly, g, is continuous and therefore g = g,g,¢ (U, J). Let f(i)
= g(t) for te A —{(0, 0)} and f(0, 0) = 1. Note that fe I4 and f¢ (U, J),

because
0,0 H) ()

We claim that fe (F,(%), F,(J)). Let Xe F,(J). If 3, 1e X or },1¢ X,
then f~1(X) = ¢7'(X)e F,(A). Let 3¢ X, 1¢ X. Then f}(X)=¢ " (X)—
—{(0, 0)}. Further, Cl(f~'(X)) = Cl{¢~'(X)). Hence

(F~(X)* = (971 (X))* u{(0, 0)} U

Since 1¢ X, every component of f~!(X) is closed in UA. Therefore
fFHUX)e F,(N). Let 3¢ X, 1e X. Then f~'(X) =g (X)u{(0,0)}. }¢X
implies (0, 0)¢ Cl(g~*(X)). Therefore (f~'(X))' = (§~'(X))'¢ UA. Since }¢ X,
every component of f~'(X) is closed in A. Therefore f~(X)e F, ().

Since A contains an are, (U, A) # (Fy(A), Fy(N)).

Note. This paper is essentially a continuation of the study of reali-
zations of subcategories of the category of topological spaces in the cate-
gory &, begun in [1] and [4]. Objects of the category &~ are pairs (4, N),
where % < exp A and (%A, B) is the set of morphisms from (4, A) to (B, B).
Clearly, the category of topological spaces and continuous maps is a full
subcategory of & . A realization F' of a full subcategory £ of &~ into ¥~
is a full embedding ¥: £ — &~ preserving supports of.objects and maps,
i.e. FOO' = [J, where [J: £—Ens and [1': ¥~ — Ens are the forgetful
functors into the category of sets (cf. [3]).

Theorem 1 implies that F, is a realization from the category of locally
connected completely regular spaces into &~ for any n. By Proposition 2
restrictions of these realizations to any full subcategory of these spaces
containing a non-discrete space are mutually different. Hence the cate-
gory- of locally connected metric spaces has at least countably many
realizations in &~ while the category of metric spaces has only two realiza-
tions in &~ (see [4]).
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