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Algebraic polynomially bounded operators

by W. MrAx (Krakdéw)

Abstract. Let T' be a polynomially bounded operator in the complex Hilbert
space. We prove several theorems concerning the structure properties of such 7' which
are algebraic in the sense that they satisfy the equality «(T) = 0 for some % which
belongs to the unit disc algebra. There are used the Lebesgue type decompositions
of polynomially bounded operators. One considers also polynomially bounded n-tuples
of commuting operators which are algebraic in a quite general sense.

Let H be the complex Hilbert space and let L(H) stand for the al-
gebra of all linear bounded operators in H. The identity operator in H
is denoted by I.

We say that the operator Te L(H) is algebraic if p(T) = 0 for some

n
polynomial p(2) = Da;2". The concept of an algebraic operator extends
il
ia a natural way to polynomially bounded operators, that is such ones
that

lp(T)|| < Ksup|p ()|

lz]=1

for all polynomials and some finite K. If T is polynomially bounded, then
we show easily that there is a unique representation » — u(T') of the unit
dise algebra such that for u;(z) = 2* (4 = 0,1) we have u;(T) = T* and

flu(T)|| < Ksup |u(z)|. The generalization of the concept of an algebraic
|z]==1

operator reduces now to the following definition: the polynomially bound-
ed operator T is algebraic (in general sense) if #(T) = 0 for some %
which belongs to the unit dise algebra.

In the circle of the concept of general algebraic operators Sz.—Nagy
and Foiag developed the theory of contractions of class C° (see [11],
Chapter III) and a large part of what we discuss in the present paper
is patterned after this theory. Also Arveson in [1] proved several theorems
related to contractions which are algebraic in the general sense. The
recent results of Furuta [3] and Wadhwa [13] who considered algebraic
operators of class €° (see [11], Chapter I for basic properties of operators
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of this class) and the results of the above mentioned authors suggest
the problem of characterization of quite general, as defined above, al-
gebraic polynomially bounded operators. The present paper pays some
tribute to several questions related to this problem.

1. Let (T4, ..., T,) (T;e L(H)) be a n-tuple of commuting operators.

We say that it is polynomially bounded if for some finite K
1p(Tyy ..., Tp)ll < Ksup |p(2)]
zeQP

for-all polynomials p(2) = p(21, ..., 2,) = Y @y . &L 250
kg0

O™ stands here for the product € x € x...x C (n times) of the unit
circle ¢ = {4: [A| = 1}. If n = 1, then the tuple reduces to the singleton
T = T, and then we say that T is polynomially bounded.

If the n-tuple (7,,...,T,) is polynomially bounded, then there is
a representation v — u(T,,...,T,) of the polydisc algebra A (C") = uni-
form closure on C" of the algebra of polynomials. The algebra 4(C")
may be identified with the algebra of functions which are analytic in the
polydise D" = DxDx...x D (n-times) (D = {A: |A| <1}) and contin-
uous on the closure D* — see [9]for references. It is plain that (T4, ..., T,)
=T, for wi(2,...2,) =2 and

o (T, e TRl < Klul| - for ued(C7),
where |u| = sup |«]|.
o
The Hahn-Banach theorem and the Riesz—-Kakutani theorem yield

that there are complex measures u(f, 9) (f, g¢ H) on Borel -subsets of C"
such that:

(1) lef, < ENFllgh  (f, ge H);
(2) (W(Ts, .y Ty 9) = fwdp(fy 9)  (f,g¢ H, ued(C™).

The measures u(f, g) satisfying (1) and (2) are called elementary measures
of the representation u —u(T,, ..., T,).

It follows from the Ando’s theorem of (2] that if T,, T, are com-
muting contractions, then the pair (7,,7,) is polynomially bounded
with constant K = 1. Other examples of polynomially bounded tuples
may be derived from the dilation theory — see [H], [11] for references.
We mention yet the operators of class €°. They are polynomially bounded
because by Proposition 11.4 of [11], if Te %¥°, then

I (T)l < sup p(2)+ (1 — o) p (0)| < (e + 11— el lipll

1z|=1

for every polynomial p.
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2. Suppose we are given the polynomially bounded operator 7.
Let m be the normalized linear Lebesgue measure on C. We say that T
1s m-continuous (m-singular respectively) if the representation u — u(T)
of the algebra 4 (0) generated by 7 has a system of elementary measures
which are absolutely continuous (singular respectively) with regard to m.

ProPoSITION 1. Suppose Te L(H) 4s polynomially bounded. Then T
has a decomposition T = T,+ T, (direct sum), where T, is8 m-continuous
and Ty is m-singular. Both T,, T, are polynomially bounded with the same
constant K as that of T. Moreover, T, 18 similar to a singular wunitary
operator.

Proof. The first parts of the assertion follow easily from Theorem 2.1
of [6]. Only the last part requires a proof. This part may be derived from
Theorem 10.5 of [12]. We will give the direet proof.

Suppose just that T, is the singular part of T. Then there are m-sin-
gular measures u(f, g) with f, g varying over the space corresponding
to T, in the decomposition 7 = T,+ T, and such that

(3) (w(To)fy9) = [udu(f,g) for ued(C).

Since by the M. and F. Riesz theorem (see [4], Chapter 4) the only m-sin-
gular measures which are orthogonal to A(C) are zero measures, the
measures u(f, g) are determined uniquely by condition (3). Since the
left-hand side of (3) is a bilinear form in f and ¢, the values of u(f, g)
on a fixed but arbitrary Borel set in C are bilinear in f and g. On the other
hand |u(f, 9) (o}l < ||u(f, 9)ll < K|/f]lllygll for Borel subset ¢ of C. It follows
that for every such o there is the unique operator ¥ (o) such that u(f, g) (o)
= (E(0)f, g) for all f,geH. Also ||E(o)| < K. Consequently, E(-) is
a weakly countably additive operator measure. Hence E(-) is strongly
countably additive and

u(Ty) = [udE for ued(C).

We next show that ¥ is a spectral measure i.e. E(oNy) = E(o)E(y)
for Borel subsets of C. The proof is patterned after the proof of the spectral
theorem for normal operators. To begin with we consider the measure

v (o) = [udp(f,g)

for some ueA(C) and fixed f, g. Then for every ved(C)

[vdv, = [wodu(f, 9) = (v(T,)f, w(Ty)* g) = [vap(f, u(T)*g).

Since both measures v,, u(f, u(T)*g) are singular and v is varying over
A(C), the Riesz Brothers theorem yields that v, = u(f, »(T,)*g).
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It follows that for a fixed Borel set o«
Jux.du(f, 9) = ulf; w(T)*9)(0) = (W(T)E(o)f, 9) = [udu(E(s)f, g).

Since the measures in the above equality are m-singular and % is
an arbitrary element of .4 (C), the Riesz Brothers theorem used once
again implies that the measures y,u(f, g9) and wx(E(0)f, g) are equal.

We conclude therefore that for every Borel set ¢

1u(fy 9)(v) = (E(ony)f, 9) = u(E(0)f, g)(y) = (E(y)E(s)f, g).

Since f and g are arbitrary vectors we have E(ocny) = E(c)E(y)
q.e.d.

We conclude now that the mapping h — fhdE is a representation of
the algebra of all continuous functions on C. It follows that 7, is strictly
invertible and Ty = [#"dE for n =0, +1, 42, ... Hence |77 < 4K for
all n, K being the constant corresponding to T'. Applying now the theorem
of Sz.-Nagy of [10] we conclude that T is similar to a unitary operator,
which is obviously singular.

It is not difficult to show that if T'e¢ ¢?, then elementary measures
u(f, f) may be chosen real. We get then

CoroLLARY 1. If Te %%, then the decomposition T = T,+ T, is an
orthogonal one i.e. T =T ,®T, and T, is unitary.

Let H*™ be the algebra of all analytic bounded functions in D and
identify it in a well-known way with the subalgebra of L®(m). Theorem 3.1
of [6] yields the following proposition:

PRrROPOSITION 2. Let T, be the m-continuous part of the polynomially
bounded operator T with the corresponding constant K. Then there is the
unique represeniation u —>wu(T,) of H™ such that the following conditions
hold true:

(4) u(T,) = T:z for wi(2) =4, i =0,1;
(5) lu(To)il < Klulle for ue HZ,

(6) If u,—u a.e. with respect to m on C, sup |lu,|, < 4 oo, then u,(T,)
—u(T,) weakly.

3. In what follows we refer to [4], [11] for terminology as well for
the basic properties of Hardy spaces in the unit disc. The lemma below
is the first part of Proposition 3.1 ([11], p. 118), proved for completely
non-unitary contractions. The proof applies to m-continuous polynomially
bounded operators.

LEMMA. Suppose that T is a polynomially bounded and m-continuous
operator. If we H™ is an outer function, then u(T) is an invertible operator.
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It Te L(H) is polynomially bounded operator such that «»(I) =0
for some #eA(C), then 4(T,) = 0 and »(T,) = 0. Let v = w;u,, where u;
is the inner factor of » and #, the outer one. Lemma implies that «;(7T,) = 0.
On the other hand 7 is similar to a unitary operator U, such that «(U,) = 0.
Consequently, the spectrum of T, is included in N, = {#¢ C: u(2) = 0}.
Summing up we get the following theorem:

THEOREM 1. Let Te L(H) be a polynomially bounded operator such
that w(T) = 0 for some u = u;u,e A(C). Then u;(T,) = 0 and T, is similar
to a unitary operator and the spectrum of T, is included in N,.

COROLLARY 2. If u in the above theorem is outer, then T = T,. In partic-
ular, if w is a polynomial having all it’s zeros on C, then T = T,.

COROLLARY 3. If u is a polynomial (@ minimal one) such that w(T) = 0,
then the spectrum of T, is in the open unit disc. Then by theorem of G. C. Rota
[81 T, is similar to a contraction. Consequently, T itself is similar to a con-
traction.

The precise description:of the m-singular part 7, in terms of the
whole ideal of all » such that »(T,) = 0 may be given by applying theorems
of Arveson [1] Lemma 3.6.10 and Proposition 3.6.11.

Applying Theorem 1 and Corollary 1, we derive easily the following
theorem:

THEOREM 2. Suppose T €° for some ¢ >0. If u(T) =0 for some
uecA(C), then T is an orthogonal sum T = T,®T,, where T, is unitary with
spectrum in N, and w;(T,) = 0, u; being the inner factor of .

Since every operator in %° is similar to a contraction ([11], Chapter
II, 8) the study of 7', in the above theorem may be reduced to the study
of contractions of class C°. .

Applying Theorem 2 in the case when % is a polynomial (a minimal
one) we get the Furuta—Wadhwa theorem [3], [13]:

If Te %% and u(T) =0, then T = (D2, 1, )®T,, where z, are all zeros
of u which are on C and w,(T,) = 0, where w; is the factor of u including
only, but all zeros of uw which belong to the open unit disc.

4. Let (T4, ..., T,) be a n-tuple of commuting operators and assume
that it is polynomially bounded. Let v —«(T,,...,T,) be the represen-
tation of A (C™) generated by this tuple. Assume now that the set ¢ = C*
is a peak set for 4(C"). It follows from the results of [7] that the repre-
sentation w —w(T,,...,T,) is a direct sum of two representations u —
—u(Lyy .oy Tp)oy v —>u(Tyy...,Ty)on_, such that the first one has a system
of elementary measures with closed carriers included in ¢ and the other
one has a system of elementary measures vanishing off o.

1t is known — see [9], Theorem 6.1.2, that every peak set y of 4 (C")
has the following property:

4 — Annales Polonici Mathematici t. 29. 2.
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If the measure u defined on Borel subsets of C" is orthogonal to A (C"),
then |ul(y) = 0.

Using arguments similar to those used in the proof of Proposition 1
one proves that the following proposition holds true:

ProproSITION 3. Let (Ty,...,T,) be a n-tuple of commuting operators.
Suppose that it is polynomially bounded. If, for some peak set o = C" of
ACY, w(Tyy...,T,) =u(Tyy...,T,), for all ueA(C"), then there is a si-
milarity S (i.e. an one to one linear bounded operator in H with range equal
to H) and a n-tuple of unitary operators (U, ..., U,) such that T; = SU; 8!
for i =1,...,n. If the representation u —u(T,,...,T,) is contractive i.e.
if |u(Tyy ..., Tl < ||ul| for ueA(C"), then T, are themselves unitary.

In what follows we need the following property of some closed ideals
in A(C") — see [9], p. 78:

(7)  Suppose that u A(C") and Reu > 0 in D I f k is a positive integer,
then the closed ideal gemerated by u* consists of all v in A(C") that
vanish on the zero set N, of w (relative to D™).

Suppose now that the zero set N, of w<A4(C") (relative to D_") is
included in C". Then by Theorem 6.1.2 of [9] N, is a peak set of A (C").
We derive now from (7) that the following condition holds true:

(8) Suppose ueA(C") and Rewu = 0 in D". Assume that N, c C". Then
for every positive integer k and every function veA(C") which peaks
on N, there is a sequence uyeA(C™) such that 1 —v = limw*u, uni-
formly on C™. »

We are now able to prove the following theorem:

THEOREM 3. Let u —-u(T,,...,T,) be the representation generated by
the polynomially bounded n-tuple (T,,...,T,) of commuling operators.
Suppose that ueA(C"), Reu >0 in D" and N, < C". Then, if for some
positive integer k holds the equality w(Ty, ..., T,)* = 0, then there ewists
a similarity 8 and a n-tuple (U,, ..., U,) of unitary operators with joint
spectrum included in N,, such that T; = SU,; 87 for i =1,...,n. If the
representation w —u(T,, ..., T,) is contractive, then T; are themselves unitary
and the joint spectrum of (T, ..., T,) is included in N,.

Proof. It follows from‘tﬁe assumptions and from (8) that if v peaks
on N,, then 1—v = limu*u, uniformly on O*. Since (T, ..., T,)* =0

V4
we have wu,(Ty, ..., Tp)u(Ty, ..., T,)* = 0. Hence v(T,, ..., T,) = 1. Let
u(f, g) be an elementary measure of considered representation. It follows
that for every heA(C") and p =1, 2,3,...
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(h(Tu“-’Tn)f,g) =(h(Tu-~°7Tn)"7(T17""Tn)pf?9)
= [hordu(f,9) — [ hau(f, g),
P> N,

We just proved that h(Ty, ..., T,) = h(T,, ..., Ty)y, for all ke A(C").

The assertion follows now from Proposition 3 and well-known
properties of representations of algebras of continuous functions.

COROLLARY 4. Since log|u*|e L'(m,) for ue N (D" (m, = the product
Lebesgue measure on C") — see [9], Theorem 3.3.5, N, of Theorem 3 has
the measure m,, equal to zero. Consequently, the spectral measure of (Uq, ..., U,)
18 singular with respect to m,. '

References

[11 W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), p. 141-224.

[2] T. Ando, On a pair of commutative contractions, Acta Sei. Math. 24 (1963),
p. 88-90.

[3] T. I'uruta, Some theorems on g-unitary dilations, ibidem 33 (1972), p. 1-2, 119-122.

[4] K. Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N. J., 1962.

[5] W. Mlak, Unitary dilations of contraction operalors, Rozprawy Mat. 46 (1965).

[6] — Decompositions and extenstons of operator valued representations of funotion
algebras, Acta Sci. Math. 30 (1969), p. 181-193.
[7] — Decompositions of operator valued represeniations of fumction algebras, Studia

Math. 36 (1970), p. 111-123.
[8]1 G. C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960),
p. 469-472.
[91] W. Rudin, Function theory in polydiscs, New York—Amsterdam 1969.

[10] B. Sz.-Nagy, On wuniformly bounded linear transformations in Hilbert space,
Acta Sci. Math. 11 (1947), p. 152-157.

[11] — and C. Foias, Harmonic analysis of operators on Hilbert space, Budapest-
Amsterdam-London 1970.

(12] F. H. Szafraniec, Decompositions of non-contractive operator valued representa-
tions of Banach algebras, Polon. Acad. Sci. Inst. Mat., Preprint No, 13, May
1971, Warsaw. )

[13] B. L. Wadhwa, Operators satisfying sequential growlh condition, to apper in
Acta Seci. Math.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS
SECTION KRAKOW

Regu par la Rédaction le 26. 10. 1972



