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1. The aim of this paper is to study lattices with the following
property: the matrix formed by basic points of the lattice corresponds
to a rational automorph of a quadratic form.

Definitions and notations. C, is the nm-dimensional Euclidean
space. Points of C, will be denoted by bold face letters, e.g. x,y, and
treated as matrices with one column, e.g.

L2}

(z, y) denotes the scalar product of x, y.

A = [a,,...,a,] is the matrix whose 7-th column is the point a,.
If A is a matrix, then A% is a transposed matrix. Lattices occurring in
the paper are contained in C, unless explicitly stated. A lattice K is com-
plete if its basis consists of n» points. In such a case, d(K) is the determinant
of K. A lattice is called rational or imtegral if its points are rational or
integral, respectively. For a and b integral, the symbol (@, b) = 1 means
that numbers a,, ..., a,, b, where a,’s are coordinates of a, are relatively
prime. If K is a rational lattice, the least positive integer d such that
the lattice dK is integral, where dK is the set of points da with a¢ K,
is called the demominator of K. Analogously define the denominator of
a rational matrix. If d is the denominator of K, then x/de K is called
a gemeric point of K when (®, d) = 1. Every rational lattice has a generic
point. Indeed, if

a =[]
i=1

is the denominator of a lattice K, then there exists a point x;/de¢ K such
that (x;, p;) = 1. Otherwise, the lattice (d/p;) K would be integral. It
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follows that
1
E(Pz o DT+ P P3Pyt Dy e Pp T)

is a generic point of K.

f(x) denotes an integral quadratic form in n variables, and f(x, y)
the corresponding bilinear form.

Z denotes the lattice of integral points of C,. If a matrix A has n
columns, then AZ denotes the lattice consisting of points Az, where z¢ Z.
If a matrix A is orthogonal (e.g. if it is an automorph of the quadratic

form )’ a7), then the lattice AZ is called orthonormal. It is simply a com-
i=1

plete lattice with an orthonormal basis.

Z denotes the set of rational integers. If A <« M, [M:4] denotes
the index of A in M.

The following theorem holds:

THEOREM 1. Let 1 < n < 3. A rational lattice is orthonormal if and
only if it is of the form M + Zx, where x is a rational point, (®,x)e Z,
M ={ueZ\|(u,x)e Z}.

LeMMA 1. Assume that the discriminant of a quadratic form f is square-
free and let x, be a rational point with f(x,)e Z. Let M = {ueZ | f(u, ®,) e Z}.
The lattice M + Zx, has the discriminant 1 and, for any two points of this
lattice, the value of the bilinear form f is integral.

Proof. If u+tx, and v+ sxeye M + Zx,, then
flu+tx,, v+ sxy) = f(u, v)+tf(x,, v)+ 8f(u, x,) + t8f(20) e Z,
because of the definition of M. Clearly,
(1) M+ Zxy: M) =d,

where d is the least common denominator of the coordinates of x,.
By Lemma 9 in Chapter III in [1], [Z: M] < d. Hence, by (1),

(2) (M + Zxe) < 1.
Apply to f the linear transformation

x*r =ya+...4y,a, = Ay,

Y
A =[a17-“7an]7 y=1: ’
_Yn

where
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and the points a,,...,a, form a basis of M+ Zx,. Then

f@) =f@, @) =Y via, Dya) = D fla;, a)y.y;, = g(y).
i=1 i=1 =1

In virtue of the final part of the lemma already proved, coefficients
of the quadratic form ¢ are integral. Put d(M + Zx,) = |[det A| = a/b,
a, b positive integers, and (a, b) = 1. Hence

det g = (det A)* det f = atdet f/b*c Z, b%|det f.

b =1, since det f is squarefree. Thus d(M + Zx,) = a > 1. Hence,
by (2), d(M + Zz,) = 1.

LEMMA 2. Let 1 < n < 7 and let & be a rational point such that (¢, x)e Z.
Then the lattice M + Zx, where M = {ueZ|(u, ®)e Z}, 18 orthonormal.

Proof. We have
(3) M+ Zx = BZ for some rational matrix B.

The quadratic form (B¢&, BE) is positive-definite. Its discriminant
equals 1, since the form is obtained from (#, #) by the substitution » = B¢
and |det B| =1 by Lemma 1. Coefficients of the form are integral, since
the value of the bilinear form (B¢, Bp) is integral for any integral &, g
by Lemma 1. By the well-known Hermite Theorem, there exists a uni-
modular matrix A such that (BAz, BAz) = (2, z). It follows that the
matrix BA is orthogonal. We have Z = AZ since A is unimodular. Hence
and by (3), we obtain M+ Zx = BZ = BAZ.

Proof of Theorem 1. In view of Lemma 2, it is enough to prove
the necessity of the condition.

Let  be a generic point of an orthonormal lattice K. It suffices to
show that, for every point @ of K, there exists an integral point u and
an integer ¢ such that @ = w4 tx. Indeed, the scalar product (x, x)e Z,
ue K, and (u, ®)e Z, since K is orthonormal. Thus K < M + Zx. Since
by Lemma 1 the determinants of both lattices are equal 1, K = M + Zx.

1. n = 1. It suffices to take ¢t = 0 and u = a.

2. m = 2. Let
x/|d] '
T = y #,Y,d¢ Z, (z,y,d) =1,
yld,
d being the denominator of K, and let

(a/d

a = , where a,be Z.
 b/d

Since the scalar products (x, ®), (@, ®)e Z, we have

(4) 2+y* =0 (mod d°), ar+by =0 (mod d?).



72 , J. WOJICIK

Since (z,y,d) =1, we get
(5) (@,d) = (y,d) =1.
Let ¢ be a solution of the congruence
(6) a =tr (mod d).

It follows, by (4) and (5), that tx?+ by = 0 (mod d), by = ty? (mod d),
and b =ty (mod d). Hence, by (6), :

a = [a/d] = [u—l—t(w/d)] = u-+txr, where u = [u]’ U, ve Z.
b/d v+t(y/d) v
3. n = 3. Let

x/d
x=|yld}, z,Y,2,de Z, (,y,2,d) =1,
z/d
d being the denominator of K. We have
ald
a=1\|b/dl, a,b,ceZ.
cl/d
Since the scalar products (x, ®), (a, x), (&, @) Z, we have

+y*+2* =0 (mod &%),

(7) az+by+cz = 0 (mod d?),
a2+ b*+ ¢ =0 (mod d?).
Let
(8) p’lld, »> 0, p prime.
Since (z, ¥, 2,d) =1, we can assume that
(9) pfe.
Let t(p) be a solution of the congruence
(10) a =t(p)x (mod p*).

It follows, by (7), that

t(p)a®+ by + ¢z =0 (mod p*), (p)a*+b*+c* =0 (mod pz”‘).

Hence, by the first congruence of (7), we gét a system of congruences
by+cz =t(p)A (mod p*), b+ =t*(p)4 (mod p*),

where A = y? 22
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Multiplying the last congruence by 22, taking cz =t(p) A — by (mod p*),
and using the fact that p{ A, we get, by (7) and (9), after some trans-
formations,

(11) (b—t(p)y)* =0 (mod p”), b =i(p)y (mod p’).
Analogously,

(12) ¢ =t(p)z (mod p*).
From (10) we get

(13) a =t(p)x (mod p").

Put ¢ = t(p) (mod p’) for each p satisfying (8). It follows, by (13),
(11) and (12), that a = tx (mod d), b = ty (mod d), and ¢ = {z (mod d).
We have

a/d w-+t(xz/d) u
a=|bld| =|v+it(y/d)] =u+te, where u =|v}, u,v,weZ.
cld w+t(z/d) w

The proof of Theorem 1 is complete.

Theorem 1 implies easily the following

COROLLARY 1. Let 1 < n<3. For every rational point x such that
(22, ) e Z, there exists exactly one orthonormal lattice for which & is a generic
point.

Proof. One such lattice is M + Zx, where M = {ueZ|(u,x)eZ}.
On the other hand, an orthonormal lattice for which & is a generic point
must be of this form, since for & in Theorem 1 one can take any generic
point of the lattice, as 18 clear from the proof of this theorem. An appli-
cation of Lemmas 1 and 2 to some diophantine equations is given in
Section 3.

2. Let K be an arbitrary lattice, and K, its sublattice consisting of
all integral points of K. The factor group of K modulo K, will be called,
briefly, the factor group of K, and the corresponding cosets — the cosets
of K. We call K cyclic if its factor group is cyclic (see Jones [2]). The
lattice M + Zx, where M = {ueZ | f(u, ®)e Z}, f(x)e Z, and @ is rational,
will be called cyclic induced by the quadratic form f. '

It is clear from Lemma 1 and Lemma 4 below that this lattice K
has the following properties:

(1) @& is a generic point of K;

(1)) K is eyeclic;

(iii) the value of the bilinear form for any two points of K is integral
and contains every rational lattice with the same properties.

Lemma 2 asserts that if » < 7, then every cyclic lattice induced by
the sum of » squares is orthonormal, and Theorem 1 says that if n < 3,
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then orthonormal lattices coincide with cyclic lattices induced by

n
7= 3
i=1

A connection of cyclic lattices induced by a form f with rational
automorphs of f is the main object of this section. Namely, we establish
the following two theorems:

THEOREM 2. Let A,, ..., A,, be rational matrices such that the product
A,... A, is defined. Assume the denominators of mairices A; (1 < i< m)
are relatively prime in pairs. If lattices A;Z (1 < i< m) are cyclic, then
the lattice A, ... A,,Z is also cyclic.

THEOREM 3. Let 8§ = U,... U,, be the factorization of a rational
automorph S of a form f into rational reflexions. If the demominators of
reflexions U; (1 < i << m) are relatively prime in pairs, then the lattice SZ
18 cyclic, and if, besides, the discriminant of f is squarefree, the lattice is
cyclic induced by f.

Theorem 3 is in a sense a converse to Lemma 2 for a general form f.
Proofs of Theorems 2 and 3 will be preceded by some lemmas.

LeEMMA 3. Let K be an arbitrary lattice. If there exists a point y such
that @ = v+ 8y for every ae K and suitable integrals v and s, then K is
cyclic.

Proof. For a< K, denote by {a} the coset of a. We have

(14) a =v+sy, ©v,s integral.

Let s, be the least positive integer for which there exists a point
xe K such that :
(15) X = Vy+8,Y, v, integral.

The expression s/s, must be integral. Otherwise, we should have
$=¢q8o+7, 0<r<8y, q,7¢Z, a—qx = v—qv,+1ye K, contrary to the
definition of 8,. By (14) and (15) we get @ = u + tx, where u = v —(8/8,)0,,
t = s/s, integral, e K, ue K. It follows that {a} = t{x}.

LEMMA 4. Let K be a cyclic rational lattice and x a generic point of t.
For every ae K, there exists an integral point u and an integer t such that
a = u+tr.

Proof. It is enough to show that the coset {x} generates the factor
group of K. Let d be the denominator of K. The d cosets t{x}, where
0 < t< d, are distinct. There are no other cosets, since, for every aec K,
the point de is integral and K is cyeclic.

LEMMA 5. Assume that the discriminant of a quadratic form f is square-
Jree. If a rational complete lattice K is cyclic, its determinant equals 1, and
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if the value of the bilinear form f for any two points of K is integral, then
the lattice K is cyclic induced by f.

Proof. Let {x#} be a generator of the factor group of K. Let L =
M + Zx, where M = {ueZ|f(u, x)e Z}. According to the definition of ,
we have, for an arbitrary a¢ K, @ = u -+ tx, where u and ¢ integral, ue K.
Hence f(u,®)e Z and K < L. Since xe K, ® is rational, and f(x)e Z,
we have, by Lemma 1, d(K) = d(L) = 1. This gives K = L.

LEMMA 6. Assume that the discriminant of f is squarefree and let S be
a rational automorph of f. If the lattice 8Z is cyclic, then it is cyclic included
by f.

Proof. It is well known that the lattice 8Z has the discriminant 1
and the value of the bilinear form f for any two of its points is integral.
Lemma 6 follows now from Lemma 5.

LeMMA 7. Let A be a rational matriz. If the lattice AZ is cyclic, then
the lattice ATZ is also cyclic.

Proof. Let
A = [an ey an]7
where '
a,- == u1+t,‘m

z,/d K2
T = o ow=) i, wy, @, d, e Z.
Tpld Uim

AT= [b17 '~-7bm]7

with

Let

where
b, =v,+uxy,

t/d Uyi
Yy = ; ) v; = | ; 1A<<i<m).
tn/d Uy

Fora = a,b,+...+a,b,,,a,c Z, we get @ = v + 8y, wherev = a,v,+
+...4+a,v, and s =a,2,+...+a,z, are integral. The assertion of
Lemma 7 follows now from Lemma 3.

LeMMA 8. Let A and B be rational matrices for which the product BA
48 defined. Let d, and d, be the denominators of lattices AZ and BTZ, re-
spectively, and x/d, and y/d, their respective gemeric points. Assume that
(2, y), dyy dg) = 1. If the lattices AZ and BTZ are cyclic, then the lattice
BAZ vs also cyclic.

with
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Proof. Let p be a prime satisfying the condition

(16) Pldids, > 0.
Let

(17) _ BT = [b,,...,b,].
By Lemma 4,

(18) b; = v;+8;(y/dy) = (d0;+5;9)/ds,  ©;, 8; integral.
Put '

yl/‘?ldz
Yy = : ’
Yn/Grds
where y; are integers satisfying the condition

dy(v;, %) +5,(Y, ®) (mod p*) i pf(y, &) or ptd,,
(19) ¥ =

8; (mod p”) if pl(y,x) and pld,,
for each p satisfying (16). Let

a’l/.dldz

a=BAz=Bb=l }, 2eZ, b =Az, a;e Z.

a,ld,d,
It follows, by (17), that
(20) a;/d,d, = (b;, b).

By Lemma 4, b = u-+t(x/d,) = (d,u+1tx)/d,, ue Z,tc Z. Hence,
by (18) and (20), we get

(21) a; = (dyv;+ 3y, du+ tx)
= d,dy(v;, u)+8;d.(y, u) +t[dy(v;, x) +8,(y, x)].

'
\

Put
t+d,(y, w)(y,®)"" (mod p’) if pi(y, ),
(22) s =1t (mod p") it pl(y,x), ptds,,
d,(y, w)+t(y, x) (mod p’) if p|(y, ), pl|ds,

for each p satisfying (16). For each p in question we have

(23) p’ld, for ptdy,;  p’ld, for p|(y, x), pld,.

Indeed, by the assumption, the condition p|(y, ®), p|d,, implies ptd,.
We get, by (19), (22), (23) and (21), for each p satisfying (16),
a; = 8y; (mod p’), whence a; = sy; (mod d,d,), a;/d,d, = v;+ sy;/d,dy, v;¢ Z.
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Taking
Uy
v = Sy
'vn

we get @ = v sy, where veZ, se¢Z. By Lemma 3, the lattice BAZ is
cyclic.

Proof of Theorem 2. We proceed by induction on m. For m = 1,
the theorem is obvious. Assume its validity form —1,m > 1. Let 4,, ..., 4,,
satisfy the assumptions of Theorem 2. By the inductive assumption, the
lattice BZ = A, ... A, Z is cyclic. By Lemma 7, the lattice ATZ is also
cyclic. Since the denominators of lattices ATZ and BZ are relatively
prime, we infer, by Lemma 8, that the lattice 4,BZ is cyeclic.

Proofof Theorem 3. It is enough to prove that a lattice UZ, where U
denotes a rational reflexion of f, is cyclic. Indeed, in such a case, by Theo-
rem 2, a lattice SZ is cyclic, and if the discriminant of f is squarefree,
in virtue of Lemma 6, it is cyclic induced by f. Put

4
U=U({) = I“"ttTA/f(t) = [@y,y ..., @], t = y A = [a'ji]y
tn
where f(t) # 0, ;¢ Z, a,;;¢ Z, and I is the identity matrix (see [6], p. 11
and p. 123). We have a; = v;+ s;y, where

0

t/f(t) ;

Yy = : and ©v; =|1
tu/f () :

0

with 1 appearing at ¢-th place, and s; = t,a,;+... +1,a,,.

For @ = b,a,+...+b,a,, b;c Z, we get @ = v + sy, where v = b, v, +
+...+b,v,¢Z, and 8 = b,8,+...+b,8,¢Z. By Lemma 3, the lattice UZ
is ecyclic.

For an orthogonal matrix S, the matrix 87 = 8! is also orthogonal,
hence, by Lemmas 7 and 6, we get

COROLLARY 2. If S is8 a rational orthogonal matriz and the lattice SZ
18 cyclic induced by the form

N

f = w‘ﬁ’

il
—

then the lattice STZ = 87'Z is also cyclic induced by f.

Remark 1. The assumption of Lemma 8 that ((,y), d,,d,) =1
does not depend upon the choice of generic points. Indeed, if =/d, and
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y/d, are also generic points of lattices AZ and BTZ, respectively, then,

by Lemma 4, & = ud,+tx and y = vd,+sy, u,veZ, s,teZ. Since

(dy,t) = (dy, 8) =1, we have
(@, ), dy, do) = (ts(x, Y), dyds) = (T, Y), drdy) = 1.

Remark 2. If the assumption of Theorem 3 is not satisfied, then

the lattice SZ need not to be cyclic.

Example. Let f(x) = o} +; + o3 + 7,

&,
5 - wz ) S ==
A
w'i
where
B 1
7
4
7
U]_ == 4
7
4
| 7
1
0
U2 =
0
0
t, =

I

DD

1 4 4
7 7 7
4 1 4
7 7 7
4 4 4
7 7 7
4 4 1
7 7 7
4 4 47]
7 7 7
5 2 2
7 7 7
2 5 2
7 7 7
2 2 b
7 7 7
0 0 0]
3 6 2
7 7 7
6 2 3
7 7 7
2 3 6
7 7 7]
and t, =

S

= Ul U29

Sl Sl e

|

= U(tl) ’

U(t,),
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Lattices U,Z and U,Z have the common denominator 7. The point

- 17

SIS T RN F PR

|

|

is a generic point of the lattice SZ. This lattice is not cyclic. For otherwise,
since it contains the point

I
q]uT

S N R Y

we would have, by Lemma 4, @ = u+tx, ue Z, te Z. But the calculation
of the first two coordinates gives —4 = Tu,—1% are 1 = Tu,—4t, u,u,eZ,
which is impossible.

3. We now give the promised applications to' diophantine equations.

THEOREM 4. Let 3 < n < 7. For every positive integer m, there exist
coprime positive inlegers x,, ..., x, such that m* = o +... + a2 except for
the following cases:

n=3 m=0 (mod 2), m =1, 5;
"n=.4,mEO(mod 4), m =1, 3;
n=5,m=1, 2, 3;
n=6m=1, 2, 4;
n=17,m=1,.2, 3.

This theorem can be deduced from the theorem of Gauss on sums
of three squares and from the formula of Jacobi for the number of de-
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compositions into sum of four squares. For » = 3, the theorem follows
easily from Corollary 1 of [3] (see also [4]). However, the proof given
here does not use these results and, moreover, it gives a method of con-
struction of the required decomposition of m2.

LEMMA 9. Let 2<n<T7. Let p be a prime and let u,, ..., u, and
@y, ..., @, be integers such that u;> 0, pfa;,

(_

where (a[p) is the symbol of Legendre,

s

Il
nN

p*iailp) =1  for p>2,

K

— ) p*ia} =1 (mod 8) for p =2.

=2

Let a positive integer v satisfy the inequality

max (y]-, ord, [(j bjei " ai)z + bfe Zn:pi’#iaf-] o .“z')l,
: i=2

i=2

(24) Y > max )
2<j<n, 0<E<p"

where
bje + Zb?ﬁ =p™, b #0, by =0, by = E&pia; (mod p*).
=2

Then p* is the sum of n squares of coprime positive integers.

Proof. The assumption together with the well-known properties of
quadratic congruences implies the solvability of the congruence

n
(25) 2*+ 3 p*ia} =0 (mod p¥).
1=2
Put
z[p’
ph2a,[p’
xr = .
pira,[p’

Congruence (25) means that (x, x)e Z. Hence, in virtue of Lemma 2,
the lattice M+ Zx, where M = {ueZ|(u,x)eZ}, has an orthonormal
basis. Let one of its elements be given by

(p"u+tx)[p”
| (p"u,+tp*2 ay)/p’

’

(26) :
(p"u, +tp*ra,)/p
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where u, u;,teZ, 0 <t < p’, and, besides,

(27) ua:—{—Zu,-p"iai = 0 (mod p).
i=2
We have
(28) (Put )+ D (9 u;+iptia) = p*.
1=2

We prove that none of the terms occurring on the left-hand side
of (28) can vanish. Let, e.g., p"u+txr = 0. Hence, by (26) and ptz, we
have t = 0 (mod p’), t = 0. After substitution into (28), we get

n
u+ Z'uf =1.
i

Ifu=41 u;=0,j=2,...,n, then substituting into (27) we get
42 =0 (mod p’), which is impossible.

If vu=0, uj=+1, u=... =u;_, =%, =... =u, =0, then,
analogously, we have 4-p“a; = 0 (mod p”), which is impossible, since
Y > MaX (Ugy ovey fhp):

Thus we have
(29) p'u—+tr #0.

Assume now that
(30) p’u;+tp¥ia; =0  for a certain j.

Hence, by (26), p" %|t, t = &Ep" ", 0 < &< p*. After substitution
into (28) we have

(31) (p*iu+ Ew)2 + Z (p“iu; + Ep*i ai)2 _ pz”f.
=2
Put
(32) bJ§ = p”]u+ é'w’ bjfi — p#jui‘{" 5p,uiai.
Hence

u = (bj;— &x)[p",  w; = (bjs;— EPMiay) [p*.
Substituting into (27), we have

n

(bje— E@)w+ ) (bjes— Ep*ia;) p*ia; = 0 (mod p*+*i)
=2
or

biew =& (””“F Zn: Pz”"af') + j bjeip*ia; = 0 (mod p**H).

6 — Colloquium Mathematicum XXX.1
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By the assumption 2» > » - pu;, we have, in virtue of (25),

bjsx + j bjesp*ia; = 0 (mod p’*H)
=2
or
je@? = (2"1 bieipyiai)z (mod p"*4).
T=2
On the other hand, in virtue of (25),

n
2 . 2 2 2
bjga? = —bj; ZP “ia; (mod p’**i).
=2
Hence

(33) 0< 4; = (Z bjsip""ai)z-i-bfe Zl’z”“? = 0 (mod p"**),
t=2 =2

since b;; # 0 by (29) and (32). In virtue of (30) and (32), b;; = 0 and
by = épia; (mod p*). By (31),

n
2 2 24,
b+ D) b = p™.
i=2

By (33), for some j, & we infer that » < ord, 4, — u;, contrary to
the assumption.

We have shown that the lattice M 4+ Zx has an orthonormal basis
with non-zero coordinates. Let this basis consist of the points

ay/p’

Bni| D"

Since the denominator of the lattice is p’, we have p?t a;; for some z, g
Hence p* = aj;+.. +an,, (@yjy ooy Opg) =1, ay; 0, Kk =1,...,n. The
proof of the lemma js complete.

LEMMA 10. Let 2<n < 7. If an odd prime p divides the sum of n
squares of positive integers non-divisible by p, then, for every positive integer v,
p* is the sum of n squares of coprime positive integers.

Proof. Let plai+...+a, pfa;, + =1,...,n. The numbers a;,
u; =0 (2 <j<<m) satisfy the assumptions of Lemma. 9. The assertion
of Lemma 10 follows, since the right-hand side of (24) equals 0.

LEMMA 11. Let p be an odd prime, and k an integer non-divisible by p.
Then there exist imiegers x,y such that pfxy, pla*+y2+k, except for the
cases p =5, k = +1 (mod 5), and p =3, k = —1 (mod 3).
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Proof. Let W be the number of quadratic residues in the sequence
(34) 0’+k, 1°+E&, ..., (p—1P+k

if p=1 (mod 4), and the number of quadratic non-residues if

p = —1 (mod 4). We have to prove that W > 1.
Let R or N be the number of residues or non-residues modulo p,

respectively, in sequence (34). It is well known that

p—1-

25—
=0
Hence
p;3 for (_—p_k) _1, 1’2;1 for (_7'“) =1,
R = N =
p—1 for (——k) = —1, _p_—tl for (—_—k) = —1.
P 2 P

Thus W= (p—3)/2>1 for p > 5.

If p=5 k= +2 (mod 5), then W =R =2>1, and if p =3,
k =1 (mod 3), then W = N = 2 > 1. The proof is complete.

LEMMA 12. Theorem 4 holds for m = p", where p i8 a prime, and v
18 a positive integer.

Proof. Case 1. p>2,p #5forn =3, p #3 for n =4, 5, 7.

In virtue of Lemma 11, each of the following congruences is solvable

in integers z and y non-divisible by p:
for p #5, 2,
@ +y*+1 =0 (mod p);
for p > 3,
B+ +2 =2 +9y*+124+1* =0 (mod p),

?+y'+3 =2"+9°+1°+1°+1° = 0 (mod p),
By +27 =2 +92+12 412+ 32+ 42 = 0 (mod p),
+y+8 =a’+y*+1°4+1°+1+1°+2° = 0 (mod p).

Moreover, 1 4+124+124+124+1*+1* = 0 (mod 3).

The above-given congruences show that p divides the sum of =
squares of positive integers non-divisible by p. In virtue of Lemma 10,
p* is the sum of »n squares of coprime positive integers.

Case2.v>2;p =5,n=3;p=3,n=4.v>3;p=2,3;n=5,T.
»>6; p =2, n=86.
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Put
s =0, s =ay =a3 =1 forn =3, p =5, v> 2;
po=ps =0, ay =03 =0, =p, =1 forn=4,p =3, v>2;
”2=‘u3=0"‘u4=”5=a,2=as=a4=a5=1
for n =5, p =3, »> 3;
Po=ps =y =0,8y =03 =0a, =a; =pu; =1
for n =5, p =2, »> 3;
”2=‘u3=”4=0’ Iu5=a'2=a3=a4=a5=a6=1’ ”6=2
for n =6, p =2, »> 6;
Po =l =g =ps = s =0, 0 =3 =y =05 = @ = a; = p; =1
for n =7, p =3, »> 3;
‘u,2=lu3=l[,4=0, #5=”6=‘u,7=a2=a3=a4=a5=a6=a7=1
for n =7, p =2, v> 3.

As one can eagily see, numbers a;, u;, p and » satisfy the assumptions
of Lemma 9. In virtue of that lemma, p* is the sum of » squares of coprime
positive integers.

Case 3. v=1,p=2,n=4.v=2;p=5n=3;p=3 n=4.
v=2,3;p=2,3;n=05,7.v=3,4,5,6; p=2,n=6.
The following equalities complete the proof of the lemmas:
22 = 12412412 +1% 5* =122 415+ 16% 3* = 274+2°4+ 3%+ 83,
24 — 12+12+12+22+32’ 26 =12+12+12+52+62,
3* =124+ 2%+ 224 6%+ 6%,
3¢ =12 4+274+12°4+16%+18% 2* = 12412+ 12412+ 22 422 4 2%
20 =1241% 4124224224224+ 7% 3* = 12412417+ 17 4+ 22 +- 32 4- 8%,
3¢ =124+12 412412412 +182+20% 2° =124+ 1* 412432442467
28 = 1°+1°+1°+3°+10°+12% 2'° =1°+1°4+3*+4°+ 6% 4317,
2% = 124 3%+ 5% 410+ 31% + 60°.
LEMMA 13. Let 3<n< 1T, p be a prime, and v a positive integer.

Assume p>2 forn =3;v =1 for p =2, n = 4. Then p* is the sum of
n squares of coprime integers.

Proof. This is an immediate consequence of Lemma 12 and of the
equalities 52 = 3%+42, 3% = 124+2242% 2° = 1°41*+1%41°% and 2* = 1*+
+12+12 422 432 i

LEMMA 14. Let 2 < n < 7, p be a prime, and v, d positive integers, pt d.
Assume that p* is the sum of n squares of coprime positive integers and d
18 the sum of n squares of coprime integers. Then p* d* is the sum of n squares
of coprime positive integers.
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Proof. Let
(33) P” =yi+...4+9, $>0,i=1,...,m, (Y1,-..,¥s) = 1.
Put
Y1/p’
y=\| : |.
YulP

Equality (35) means that (y,y) = 1eZ. In virtue of Lemma 2,
the lattice M+ Zy, where M = {ueZ|(u,y)eZ}, has an orthonormal
basis. Let this basis consist of the points

a;[p’ o
(36) : , aeZ, 1,5 =1,...,n.
am'/.pv
Let
(37) & =x+...+ah, (®y,...,2,) =1.

Since the denominator of the lattice M + Zy is p’, we can assume
without loss of generality that p{ a,,. We can also assume p{ z,. Further,
permuting, if necessary, the numbers a,; (j = 1, ..., » —1) (this corresponds
to a permutation of points (36)) and also the numbers #; (j = 1, ..., n —1)
and changing the sign of z,, we can achieve that

(38) 1%+ + 01,2, £ 0 (mod p).

Indeed, if p > 2, then at least one of the numbers a,,z, +...+ a,,2,,
0y,%,+...—a,,x, is non-divisible by p, since their difference 2a,,z, is
non-divisible by p.

If p = 2, then d is odd. It implies that at least one of the numbers
x; is even, since otherwise, by (37), 1 = d* = n (mod 8), contrary to the
assumption.

We assume without loss of generality that the numbers z,,...,,

and ay,,...,a, are even, and &,.,,..., %, and @ ,,,,...,a,, are odd,
where

(39) 0<s<n,0<r<m, n—s odd, n—r even, r+2<n, r #8.

Put
! . ’ .
z; = for j#£1,8+1, a; = a,; for j #2,r4+1,
, 2, for s> r, , Gqg for s>,
T, = - @y =
%y, for s<r, a,., fors<r,
g Xy, for s>r, o i e for s> r,
s+1 — 1,r+1 —
x, for s < r, ’ @y for s<r.
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We have, in virtue of (39),

Za,,w = Z a;0; =n—8 =1 (mod 2) for s > r,
j=8+1
n
’ ’ allwz‘f‘al r+1w1+a12 +l+ 2 a11$j fOI‘ r>s8 = 1,
O30 =
j=1 jaér+l

Q11 Lo 1t By e 1Pat Oy g1 T+ Ay + 2 a;;x; for r>s>1.
j=3
j#s+1,r+1

Moreover, for r > s > 1, we have

Zai,w} = Z ay4; =n—r—1 =1 (mod 2).
j=1 J=r42
Since basis (36) is orthonormal, we have, by (37),
n
p¥a = p? Zw = Z(Zauw) = Zzz.
t=1 j=1 =1

In virtue of (38),

(40) pt2.

Hence we have (z,,...,2,) = 1; for, otherwise, |det(a;)| = p™ and

n
2; =2ai,a;j =0 (mod ¢q) for q #p,¢=1,...,n,
j=1
would imply #; = 0 (mod g), contrary to (37). A ‘
It remains to show that z; #0 (¢ =1, ..., n). Suppose that 2; =0
for a certain 4. Since points (36) belong to the lattice M 4 Zy, we have
Qi = u,-jp"+tjy,-, Wiy tjGZ. Hence

zi—Zaﬂm =P Zujw —i—y,thm = 0.

j=1 J=1
In virtue of (40), p1 Zt,wj. This implies that y, = 0 (mod p°). Since
J=1

y; > 0, we have y, > p°. Hence yi+...+ 42 > p*, contrary to (35).
Proof of Theorem 4. If m does not satisfy the assumptions of the
theorem, it can be verified that m?2 is not-the sum of » squares of coprime
positive integers. Assume that m satisfies the assumptions of the theorem.
We proceed by induction with respect to the number w(m) of distinct
prime factors of m. Clearly, w(m) > 0.
The validity of the theorem for w(m) = 1 follows from Lemma 12.
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Let w(m) =2, m = p’¢*, p, ¢ — primes. Assume, first, that at least
one of the powers p*, ¢**, say p*, is the sum of n squares of coprime
positive integers. Since m satisfies the assumptions of the theorem, we
have ¢ > 2 for n = 3, and ¢ = 1 for ¢ = 2, n = 4. In virtue of Lemma 13,
¢** is the sum of » squares of coprime integers. In virtue of Lemma 14,
m? is the sum of n squares of coprime positive integers. Assume now that
none of the numbers p*, ¢* is the sum of n squares of coprime positive
integers. Since m satisfies the assumption of the theorem, we infer from
Lemma 12 that m = 6, n = 5, 7. The equalities 6% = 124+1%*43%43%44?
and 6> = 124+124-22+22+32+4% complete the proof for w(m) = 2.

Assume that the theorem holds for w(m) =k>2 and let w(m)
= k+1> 3. It is easy to see that there exist a prime p and a positive
integer » satisfying the assumptions of Lemma 12 and such that m = p’d,
pfd. In virtue of Lemma 12, p* is the sum of » squares of coprime posi-
tive integers. Since w(d) = k > 2 and m satisfies the assumptions of the
theorem, the number d also satisfies them. By the inductive assumption,
@* is the sum of n squares of coprime positive integers. In virtue of
Lemma 14, m? is the sum of n squares of coprime positive integers.

We have also

THEOREM 5. Let n > 5. For every positive 'in'teger m, there are coprime
positive integers ©,, ..., , such that m* = o} +... + 22 except for the case
where m? belongs to the sequence 1,2,3,...,n—1, n+1, n+2, n+4, n 45,
n+17 n+10, n+413.

Remark 3. This theorem is an easy consequence of Theorem 9
of G. Pall and Theorem 8 given in [4], p. 378-379, and of arguments
used in the proofs of these theorems. Those arguments, however, are
based ultimately on the Gauss theorem on sum of three squares.

We say that a positive integer me S, if it is the sum of » squares of
positive integers, and me S, if it is the sum of n coprime positive integers.

LEMMA 15. Let n> 8. If me S,_, and m > n+13, then me S,.
Proof. It is enough to prove that there holds at least one of the
following decompositions:
P+ A, where #> 3, Ae S, _,
(41) m = {2-3*4 B, where BeS,_,,
4:224+C, where CeS,_,.
Indeed, by Theorem 4, we have ¢S, 2-3* =2-1244-2%¢ §;,
4-22 = 7-1*4-3%¢ 8§, and in any case meS,.
If none of decompositions (41) holds, then m = a-1*4b-2%4¢-3?,
a+b+ec=n—4,0<a, 0<b<3, 0<<c< 1. Hence
m=a+4b+9¢ =n—44+3b+8c<n—4+9+8 =n+13,

contrary to the assumption.
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LEMMA 16. Let n > 5. If m®> n+13, then m?c S,,.

Proof. We proceed by induction on n.

For n =5, 6, 7, the lemma follows from Theorem 4.

For » = 8, we have m? > 21, m > 4. If m is odd, then, by Theorem 4,
m?eS,, If m = 2m,, then m?> = 4m?¢ S,. Thus, in any case, m?e 8,. In
virtue of Lemma 15, m2e S;.

Now assume that the lemma holds for n —4, where » > 9. By the
assumption, m2 > n—4-13. By the inductive assumption, m2e S,_,. By
Lemma 15, m2e S,.

Proof of Theorem 5. In virtue of Lemma 16, it is enough to prove
the theorem for m? < » 413, but in that case very elementary arguments
of Pall do apply (cf. [4], p. 378-379).
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