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BEST QUADRATURE FORMULA
FOR A CERTAIN CLASS OF ANALYTIC FUNCTIONS

1. Definitions. Denote by % the class of all real analytic functions
in [—1, 1] which have a bounded by 1 analytic continuation in the unit
circle @. Let {x,}] satisfy —1<ao<...<w,<1.

We shall study the methods of approximation of the integral

I(f) = [fl@)ds, f[eZ,

using, as information, only the values f(w,) and f'(x;) (k =1,2,..., n).
An arbitrary method of such a type can be defined by a function 8 of 2n
variables in the following way:

(1) I(f) m~ S(F(@)5 +ees f(@n)y @)y ooy [ (@)
The quantity
R("”l’ ceey s S) = Su};g(f)_s(f(wl)7 "‘7f,(wn))'

is said to be the error of the method 8 in the class #. The purpose of
this paper is to construct such a method 8, for which

R(xyy ..., @,y So) =ig.fR(xl, cory Zp; S) = R(x),

where inf is extended over all admissible methods of type (1). The

S
method 8, will be called best.
2. Preliminary results. The following is a consequence of a general
result due to Smoljak [5] (see also [1]).
LEMMA 1. There exist numbers Oy, and D, (k =1,2,...,n) such that

n

sup [L(f)— ) (Cuf (@) + Duf ' (2))| = B(@).

JeF k=1

That means there exists a linear best method of approximation of the
integral I(f).
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The proof of the lemma produces the next two corollaries.

COROLLARY 1. There exists a function f(x)e F such that f(z,) = f'(x,)
=0(k =1, 2,...,n)for which the best method attains its maximal error in F.

Let us be given a number ¢. Write

grf E.{fe“'a;: f(@) =¢, f(w) =0,4 #Ek, flz) =0 (i =1,2,...,n)},
Fh={feF: fl@) =0 (i =1,2,...,m), (@) = ¢, f(z) =0, i £k},

1 1
(2) yi(e) =sup [ f(@)dw, 6,(c) =sup [ f(v)ds.
feFk 1 feFE -1
COROLLARY 2. If ;. (0) and 0,(0) exist, then C), = w;(0) and D, = 6,(0).
Thus, in order to construct the best quadrature, it is necessary to
solve the variational problems (2).

3. Main result. Write, for simplicity,

x—,
Wi(x) = Eppt wp(x) =
— LXy,

x—x;

11—z,
i=1
i#k

LEMMA 2. If ¢(x)e F¥, then there exists a function ¢ (x)e F such that
A+ OW,(x) + (AOW, (%) + Wi (@) p(x)

(3) ¢ (%) = wp(w) 1+ ACW(#)+ (OW,(w) + AWy (z)) @ (@)
where
e 2¢ w;c(wk)
A=—-, C= - 2 . )
wi(wk) 1— A4 w]?; (wk) Wk(a:k)

On the other hand, every function ¢(x) from F prdduces @(w)e F¥.
Proof. Let pe #%. Then it can be expressed by ¢(x) = wi(x)p, ().

Since |wi(x)] =1 for || =1, it follows, by the principle of maximum,

that ¢,(r)e #. From the conditions ¢(x,) = ¢ and ¢'(z,) =0 we get
Pol@y) = elwf(@y) = A,  204(@y) (@) po (1) + i (%) @y (€4) = 0.
The last equality gives

oy (%) _

AN

‘P; (@) = —2¢

It is seen that the function ¢,(x), determined by

Pol(x) — A

4 _ro\%) =
@ 1—Agy(x)

= Wi (2)9.(2),
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belongs to the class #. Differentiating both sides of (4) and puting » = z,,
we find
o () (1—Ag, ("”k))

(1—A<p (%))2 = W;c(wk)%(mk)
0 J

which gives
B 1
¢1(wk) - 1—A.2 W;c(mk) -

From (4) we have

A+ Wy (@) (a)
1+ AW, (2)g(2)

By analogous calculations we get

C + Wy (2)p (w)
14 OW,(2)p (@)’

(5) o () =

(6) p1(x) = where ¢ (2)e F.

The presentation (3) follows from (5) and (6).
The reverse statement is obvious.

LeEMMA 3. If g(x)e F%, then there exists a function g(x)e F such that
E +W,(x)g(x) &

a where E = - .
1+EW, (2)g9(x) ’ wi(xk)wk(wk)

(7) g(2) = wi (@)W ()

On the other hand, every function g(x) from F produces g(x)e FE.
The proof is analogous to that of lemma 2.

THEOREM 1. Let the knots {x;}] be fized in (—1,1). The quadrature
formula

1 n
(8) [f@)de ~ D {Cif (@) + Dif ' (@)}
-1 k=1

D, — f “i (@) W"(m; (1 —W2(2))de,

[ @@ . 2, () ,

18 best in the class %. The error has the value

1 n

Rz, ..., 0,) = f( b % )de.

1—2ax
21 k=1 k
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Proof. From the definition of the function y,(¢) and (3) we have

L A+ COW, (@) + {ACW,(2) + Wi(2)} (o)
fwk(w)

¥i(e) = sup 1+ ACW, () + {OW,(2) + AW} (2)} ¢ (2)

Define the function h(z) by
h(z) = max p(z,?),

—1<i<1
where

A+ OW,(2) +(ACW, (2) + Wi (@)t
1+ ACW,(#) +(CW,(x) + AWi(2))t ™

p(“’) t) =
It is clear that
1
vi(e) < [oh(@)h(z)de  as wi(®) >0 in [—1,1].
-1

We show that wl(x)h(x)e F%. Let x be fixed in [ —1,1]. Since

dp(xz,t) (1—-4%)(1—0") Wi()
at 1+ ACW(2)+(CW(x)+ AW (2))t

>0,

for small ¢ we conclude that
A+ COW,(x) + ACW, (x) + Wi ()
1+ ACW, (x)+OW,(x) + AW:i(z)

Hence the function w(z)h(z) is of form (3) with ¢ (z) = 1. By lemma 2
it follows that wi(x)h(z)e #*.Consequently,

h(z) =

y(e) = [oh(@)h(z)ds.
The function y,(e) is differentiable for ¢ = 0. We have
¥e(0) = fwi(w){A'(OHC"(O)Wk(w)—W?c(w)(C'(O)Wk(w)+A'(0)W§(w))}dw,

where
2 w;c (@)
wi(wb) W;c(wk)

¢'0) = —

By using corollary 2 we get C,.

It remains to determine coefficients D, (k¥ =1,2,...,n). From (1)
and (7) we have

1

0 _ 2 (W =
e(e) = 2p _-1{ W) T T @i @)
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Define the function v(z) by

E+4+W,(x)t

sup —————  for . <o <1
—1<tP;1 14+ EW,(2)t * ’
v(x) =
1
inf B+ Wel@) for —1<z<a,.
—1<i<t 1+ EW (o)t

As wj(x)W,(x) changes its sign in ,

1

(9) Ou(e) < [ wp(@) Wy ()0 (@) da.

It can be proved, as in the first part of the theorem, that.

_ B+Wi@
2(#) \— 1+ EW,(2)

and the function o} (z)W,(x)v(z) is of type (7) with g = 1. Differentiating
0,(¢) and putting ¢ = 0 we find coefficients D,.

In order to evaluate the error E(z,,...,x,), we use corollary 1.
Thus we obtain

1
Bz, ..., 2,) = Sfl;_p ff(w)dw.
Ko =f(@=0
k=1,2,...,n

Let fe¢ & vanish with its first derivative at the points @, (k = 1,2, ..., n).
The function

f(@)
(k1_7 (@—a)/(L —wwk))

o) =

is analytic in the circle jz| < 1. By the principle of maximum for analytic
functions, we obtain
x
sup | —; /@) < sup [f(x)] = 1.
ST (@ —a) (L= | F7
k=1

Hence, for every |z| <1, we have

n

[z

k=1

If(@)] <
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It implies

(10) R@,,...,» f”(lm :;"k) dz.

-1 k=1

The proof of the theorem is complete.

It is natural to try to solve the following problem: Find these knots
{3} for which error (10) is minimal. It is interesting to note that the
coefficients D, in the best quadrature for these extremal knots vanish.
Indeed, the conditions

d
%{R(wr’ ...,a);) =0

coincide with D,(z}, ..., ;) = 0.
The following estimates for the convergence of the optimal quadra-
ture are obtained in [2]:

exp -—(21@—1—#) n|< R, ..., o8) < exp — = vul.
V2 Ve
The extremal knots {x;}? are studied in [3] and [4].
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B. D. BOJANOV (Sofia)

NAJLEPSZA KWADRATURA
DLA PEWNE] KLASY FUNKCJI ANALITYCZNYCH

STRESZCZENIE

Oznaczmy przez % klase wszystkich analitycznych funkcji rzeczywistych na
odcinku [—1, 1], dla ktérych istnieje ograniczone przez 1 przediuzenie analityczne
w kole jednostkowym. Niech wezly {wxx}7 spelniaja warunek :

—l< << o< ap< 1.

W klasie & buduje si¢ kwadrature, najlepsza spodréd wszvstkich metod catko-
wania przyblizonego wykorzystujacych wartoéei f(xx) i f'(#x), ¥ = 1,2, ..., n.



