B. D. BOJANOV (Sofia)

BEST QUADRATURE FORMULA FOR A CERTAIN CLASS OF ANALYTIC FUNCTIONS

1. Definitions. Denote by \mathscr{F} the class of all real analytic functions in [-1, 1] which have a bounded by 1 analytic continuation in the unit circle G. Let $\{x_k\}_1^n$ satisfy $-1 < x_1 < \ldots < x_n < 1$.

We shall study the methods of approximation of the integral

$$I(f) = \int_{-1}^{1} f(x) dx, \quad f \in \mathscr{F},$$

using, as information, only the values $f(x_k)$ and $f'(x_k)$ (k = 1, 2, ..., n). An arbitrary method of such a type can be defined by a function S of 2n variables in the following way:

(1)
$$I(f) \approx S(f(x_1), ..., f(x_n), f'(x_1), ..., f'(x_n)).$$

The quantity

$$R(x_1, \ldots, x_n; S) = \sup_{f \in \mathcal{F}} |I(f) - S(f(x_1), \ldots, f'(x_n))|$$

is said to be the error of the method S in the class \mathcal{F} . The purpose of this paper is to construct such a method S_0 for which

$$R(x_1, ..., x_n, S_0) = \inf_{S} R(x_1, ..., x_n; S) = R(x),$$

where inf is extended over all admissible methods of type (1). The method S_0 will be called *best*.

2. Preliminary results. The following is a consequence of a general result due to Smoljak [5] (see also [1]).

LEMMA 1. There exist numbers C_k and D_k (k = 1, 2, ..., n) such that

$$\sup_{f\in\mathscr{F}}\left|I(f)-\sum_{k=1}^n\left(C_kf(x_k)+D_kf'(x_k)\right)\right|=R(\boldsymbol{x}).$$

That means there exists a linear best method of approximation of the integral I(f).

The proof of the lemma produces the next two corollaries.

COROLLARY 1. There exists a function $f(x) \in \mathcal{F}$ such that $f(x_k) = f'(x_k) = 0$ (k = 1, 2, ..., n) for which the best method attains its maximal error in \mathcal{F} . Let us be given a number ε . Write

(2)
$$\psi_k(\varepsilon) = \sup_{f \in \mathcal{F}_1^k - 1} \int_1^1 f(x) dx, \quad \theta_k(\varepsilon) = \sup_{f \in \mathcal{F}_2^k - 1} \int_1^1 f(x) dx.$$

COROLLARY 2. If $\psi'_k(0)$ and $\theta'_k(0)$ exist, then $C_k = \psi'_k(0)$ and $D_k = \theta'_k(0)$. Thus, in order to construct the best quadrature, it is necessary to solve the variational problems (2).

3. Main result. Write, for simplicity,

$$W_k(x) = \frac{x-x_k}{1-xx_k}, \quad \omega_k(x) = \prod_{\substack{i=1\ i\neq k}}^n \frac{x-x_i}{1-xx_i}.$$

LEMMA 2. If $\varphi(x) \in \mathcal{F}_1^k$, then there exists a function $\tilde{\varphi}(x) \in \mathcal{F}$ such that

(3)
$$\varphi(x) = \omega_k^2(x) \frac{A + CW_k(x) + \left(ACW_k(x) + W_k^2(x)\right)\tilde{\varphi}(x)}{1 + ACW_k(x) + \left(CW_k(x) + AW_k^2(x)\right)\tilde{\varphi}(x)},$$

where

$$A = rac{arepsilon}{\omega_k^2(x_k)}, \hspace{0.5cm} C = - \, rac{2arepsilon}{1-A^2} \, rac{\omega_k^{'}(x_k)}{\omega_k^3(x_k) \, W_k^{'}(x_k)} \, .$$

On the other hand, every function $\tilde{\varphi}(x)$ from \mathscr{F} produces $\varphi(x) \in \mathscr{F}_1^k$. Proof. Let $\varphi \in \mathscr{F}_1^k$. Then it can be expressed by $\varphi(x) = \omega_k^2(x) \varphi_0(x)$. Since $|\omega_k^2(x)| = 1$ for |x| = 1, it follows, by the principle of maximum, that $\varphi_0(x) \in \mathscr{F}$. From the conditions $\varphi(x_k) = \varepsilon$ and $\varphi'(x_k) = 0$ we get

$$arphi_{\mathbf{0}}(x_k) = \varepsilon/\omega_k^2(x_k) = A, \qquad 2\omega_k(x_k)\,\omega_k'(x_k)\,arphi_{\mathbf{0}}(x_k) + \omega_k^2(x_k)\,arphi_{\mathbf{0}}'(x_k) = 0.$$

The last equality gives

$$\varphi_0'(x_k) = -2\varepsilon \frac{\omega_k'(x_k)}{\omega_k^3(x_k)} = B.$$

It is seen that the function $\varphi_1(x)$, determined by

$$\frac{\varphi_0(x)-A}{1-A\varphi_0(x)}=W_k(x)\varphi_1(x),$$

belongs to the class \mathscr{F} . Differentiating both sides of (4) and puting $x=x_k$, we find

$$\frac{\varphi_{0}'(x_{k})(1-A\varphi_{0}(x_{k}))}{(1-A\varphi_{0}(x_{k}))^{2}} = W_{k}'(x_{k})\varphi_{1}(x_{k})$$

which gives

$$\varphi_1(x_k) = \frac{B}{1-A^2} \frac{1}{W'_k(x_k)} = C.$$

From (4) we have

(5)
$$\varphi_0(x) = \frac{A + W_k(x)\varphi_1(x)}{1 + AW_k(x)\varphi_1(x)}.$$

By analogous calculations we get

(6)
$$\varphi_{1}(x) = \frac{C + W_{k}(x)\tilde{\varphi}(x)}{1 + CW_{k}(x)\tilde{\varphi}(x)}, \quad \text{where } \tilde{\varphi}(x) \in \mathscr{F}.$$

The presentation (3) follows from (5) and (6).

The reverse statement is obvious.

LEMMA 3. If $g(x) \in \mathcal{F}_2^k$, then there exists a function $\tilde{g}(x) \in \mathcal{F}$ such that

(7)
$$g(x) = \omega_k^2(x)W_k(x)\frac{E+W_k(x)\tilde{g}(x)}{1+EW_k(x)\tilde{g}(x)}$$
, where $E = \frac{\varepsilon}{\omega_k^2(x_k)W_k'(x_k)}$.

On the other hand, every function $\tilde{g}(x)$ from \mathscr{F} produces $g(x) \in \mathscr{F}_2^k$.

The proof is analogous to that of lemma 2.

THEOREM 1. Let the knots $\{x_k\}_1^n$ be fixed in (-1,1). The quadrature formula

where

$$D_k = \int_{-1}^{1} \frac{\omega_k^2(x)}{\omega_k^2(x_k)} \frac{W_k(x)}{W_k'(x)} (1 - W_k^2(x)) dx,$$

$$C_{k} = \int_{-1}^{1} \frac{\omega_{k}^{2}(x)}{\omega_{k}^{2}(x_{k})} \left\{ 1 - W_{k}^{4}(x) - \frac{2\omega_{k}^{'}(x_{k})}{\omega_{k}(x_{k})W_{k}^{'}(x_{k})} W_{k}(x) (1 - W_{k}^{2}(x)) \right\} dx,$$

is best in the class F. The error has the value

$$R(x_1, \ldots, x_n) = \int_{-1}^{1} \left(\prod_{k=1}^{n} \frac{x - x_k}{1 - x x_k} \right)^2 dx.$$

Proof. From the definition of the function $\psi_k(\varepsilon)$ and (3) we have

$$\psi_k(\varepsilon) \ = \sup_{\tilde{\varphi} \in \mathcal{F}} \int_{-1}^1 \omega_k^2(x) \ \frac{A + CW_k(x) + \{ACW_k(x) + W_k^2(x)\}\tilde{\varphi}(x)}{1 + ACW_k(x) + \{CW_k(x) + AW_k^2(x)\}\tilde{\varphi}(x)} \ dx.$$

Define the function h(x) by

$$h(x) = \max_{-1 \leqslant t \leqslant 1} p(x, t),$$

where

$$p(x, t) = \frac{A + CW_k(x) + (ACW_k(x) + W_k^2(x))t}{1 + ACW_k(x) + (CW_k(x) + AW_k^2(x))t}.$$

It is clear that

$$\psi_k(arepsilon) \leqslant \int\limits_{-1}^1 \omega_k^2(x) \, h(x) \, dx \quad ext{ as } \omega_k^2(x) \geqslant 0 ext{ in } [-1, 1].$$

We show that $\omega_k^2(x)h(x)\in \mathcal{F}_1^k$. Let x be fixed in [-1,1]. Since

$$\frac{dp(x,t)}{dt} = \frac{(1-A^2)(1-C^2)W_k^2(x)}{1+ACW_k(x)+(CW_k(x)+AW_k^2(x))t} \geqslant 0,$$

for small ε we conclude that

$$h(x) = \frac{A + CW_k(x) + ACW_k(x) + W_k^2(x)}{1 + ACW_k(x) + CW_k(x) + AW_k^2(x)}.$$

Hence the function $\omega_k^2(x)h(x)$ is of form (3) with $\tilde{\varphi}(x) \equiv 1$. By lemma 2 it follows that $\omega_k^2(x)h(x) \in \mathcal{F}_1^k$. Consequently,

$$\psi_k(\varepsilon) = \int\limits_{-1}^1 \omega_k^2(x) h(x) dx.$$

The function $\psi_k(\varepsilon)$ is differentiable for $\varepsilon = 0$. We have

$$\psi_k'(0) = \int\limits_{-1}^1 \omega_k^2(x) \{A'(0) + C'(0)W_k(x) - W_k^2(x)(C'(0)W_k(x) + A'(0)W_k^2(x))\} dx,$$

where

$$A'(0) = \frac{1}{\omega_k^2(x_k)}, \quad C'(0) = -\frac{2\omega_k'(x_k)}{\omega_k^3(x_k)W_k'(x_k)}.$$

By using corollary 2 we get C_k .

It remains to determine coefficients D_k (k = 1, 2, ..., n). From (1) and (7) we have

$$heta_k(arepsilon) = \sup_{\widetilde{oldsymbol{g}} \in \mathscr{F}} \int\limits_{-1}^1 \omega_k^2(x) W_k(x) \, rac{E + W_k(x) \widetilde{oldsymbol{g}}(x)}{1 + E W_k(x) \widetilde{oldsymbol{g}}(x)} \, dx \, .$$

Define the function v(x) by

$$v(x) = egin{cases} \sup_{-1 \leqslant t \leqslant 1} rac{E + W_k(x) t}{1 + E W_k(x) t} & ext{ for } x_k \leqslant x \leqslant 1\,, \ \inf_{-1 \leqslant t \leqslant 1} rac{E + W_k(x) t}{1 + E W_k(x) t} & ext{ for } -1 \leqslant x \leqslant x_k. \end{cases}$$

As $\omega_k^2(x)W_k(x)$ changes its sign in x_k ,

(9)
$$\theta_k(\varepsilon) \leqslant \int_{-1}^1 \omega_k^2(x) W_k(x) v(x) dx.$$

It can be proved, as in the first part of the theorem, that

$$v(x) = \frac{E + W_k(x)}{1 + EW_k(x)}$$

and the function $\omega_k^2(x)W_k(x)v(x)$ is of type (7) with $\tilde{g} \equiv 1$. Differentiating $\theta_k(\varepsilon)$ and putting $\varepsilon = 0$ we find coefficients D_k .

In order to evaluate the error $R(x_1, ..., x_n)$, we use corollary 1. Thus we obtain

$$R(x_1, \ldots, x_n) = \sup_{\substack{f \in \mathscr{F} \\ f(x_k) = f'(x_k) = 0 \\ k = 1, 2, \ldots, n}} \int_{-1}^{1} f(x) dx.$$

Let $f \in \mathscr{F}$ vanish with its first derivative at the points x_k (k = 1, 2, ..., n). The function

$$f^*(x) = \frac{f(x)}{\left(\prod_{k=1}^n (x-x_k)/(1-xx_k)\right)^2}$$

is analytic in the circle |x| < 1. By the principle of maximum for analytic functions, we obtain

$$\sup_{|x|\leqslant 1}\left|\frac{f(x)}{\prod\limits_{k=1}^n\left((x-x_k)/(1-xx_k)\right)^2}\right|\leqslant \sup_{|x|=1}|f(x)|=1.$$

Hence, for every $|x| \leq 1$, we have

$$|f(x)| \leqslant \left| \prod_{k=1}^n \left(\frac{x - x_k}{1 - x x_k} \right)^2 \right|.$$

It implies

(10)
$$R(x_1, \ldots, x_n) = \int_{-1}^{1} \prod_{k=1}^{n} \left(\frac{x - x_k}{1 - x x_k} \right)^2 dx.$$

The proof of the theorem is complete.

It is natural to try to solve the following problem: Find these knots $\{x_k^*\}_1^n$ for which error (10) is minimal. It is interesting to note that the coefficients D_k in the best quadrature for these extremal knots vanish. Indeed, the conditions

$$\frac{\partial}{\partial x_k^*} R(x_1^*, \ldots, x_n^*) = 0$$

coincide with $D_k(x_1^*, \ldots, x_n^*) = 0$.

The following estimates for the convergence of the optimal quadrature are obtained in [2]:

$$\exp \left[-\left(2\sqrt{2} + rac{1}{\sqrt{2}}
ight)\pi \sqrt{n}
ight] \leqslant R(x_1^*, \ldots, x_n^*) \leqslant \exp \left[-rac{\pi}{\sqrt{2}} \sqrt{n}
ight].$$

The extremal knots $\{x_k^*\}_1^n$ are studied in [3] and [4].

References

- [1] N. S. Bachvalov (Н. С. Бахвалов), Об оптимальности линейных методов приближения операторов на выпуклых классах функций, Ж. вычисл. мат. и мат. физ. 2 (1971), р. 1014-1018.
- [2] В. D. Bojanov (Б. Д. Боянов), Оптимальная скорость интегрирования и вытропия одного класса аналитических функций, Матем. заметки 14 (1973), р. 3 10.
- [3] On an optimal quadrature formula, C. R. Akad. Bulgare Sci. 27 (1974), p. 619-621.
- [4] H. L. Loeb, A note on optimal integration in \mathcal{H}_{∞} , ibidem 27 (1974), p. 615-618.
- [5] S. A. Smoljak (С. А. Смоляк), Об оптимальном восстановлении функций и функционалов от них, Канд. дисс., 1965.

DEPT. OF MATHEMATICS UNIVERSITY OF SOFIA SOFIA 26

Received on 22. 10. 1973

B. D. BOJANOV (Sofia)

NAJLEPSZA KWADRATURA DLA PEWNEJ KLASY FUNKCJI ANALITYCZNYCH

STRESZCZENIE

Oznaczmy przez \mathscr{F} klasę wszystkich analitycznych funkcji rzeczywistych na odcinku [-1,1], dla których istnieje ograniczone przez 1 przedłużenie analityczne w kole jednostkowym. Niech węzły $\{x_k\}_1^n$ spełniają warunek

$$-1 < x_1 < x_2 < \ldots < x_n < 1.$$

W klasie $\mathscr F$ buduje się kwadraturę, najlepszą spośród wszystkich metod całkowania przybliżonego wykorzystujących wartości $f(x_k)$ i $f'(x_k)$, $k=1,2,\ldots,n$.