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PRESERVING SOME PROPERTIES OF LARGE CARDINALS
UNDER MILD COHEN EXTENSIONS

BY

C. JAKUBOWICZ (WROCEAW)

In this paper we prove three theorems on preserving some large
cardinals (weakly compact cardinals, Ramsey cardinals and Rowbottom
cardinals) under mild Cohen extensions.

THEOREM 1. If I is a countable model of ZFC, x is a weakly compact
cardinal in M, |€| < x, and ¥ is €-generic over M, then » is weakly compact
in M[Y].

THEOREM 2. If M is a countable model of ZFC, x is a Ramsey cardinal
in M, |€| < x, and G is G-generic over M, then x is a Ramsey cardinal
n IM[F]. _

THEOREM 3. If I is a countable model of ZFC, x is a Rowbottom cardinal
in M, and € satisfies cce, then = is a Rowbottom cardinal in IM[Z].

Related problems were considered by Levy and Solovay [4], Jen-
sen [3], Prikry [8], Paris [7] and McAloon [6]. We shall use the unrami-
fied forcing of Shoenfield (for details and notation see [11]).

Let P(a) be a property of cardinals expressible in ZFC, and let x
be a cardinal such that P(x) holds in a model It of ZFC and the notion
of forcing € is a set of power less than x. We say that P is preserved
under mild Cohen extension if P(x) holds in the Cohen extension. In the
proofs of Theorems 2 and 3 we shall use the Boolean forcing of Mathias
(for details see [5]).

Silver has proved in [12] that a cardinal x is weakly compact iff the
condition » — (x)2 is satisfied, i.e., iff

VA c [»PEX < %, |X| =xa([X]2< Av[X]? < [x]2—A).

Proof of Theorem 1. Let A = [%]? in P[¥], and let a be a name
for A (Kg(a) = A). We write

d, = {{a, B} [xF:p |~ <a, B)" ca}.
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Notice that if pe ¢4, then
d, s A< U d,.
o<p

It is enough to show that there is a p such that pe ¢ and

HX c %A |X]| = %A [XP < d,
or
HX c xA | X| = xA[X]2 < [#]2— U d,.

a<p
Let

D ={p: HXe PP (x)A |X| = xA [X]? € d,vHX e PT(x)A | X|
=xA[X]2 s [#]2— U d,}.

a<p
We shall prove that 2 is ¥-dense (Vpe €lqge 2, q < p).

Let pe €.
(i) If there is XeP™(x), |X| = %, and

[XP < [#1P— U d,

a<p
we can take p = gq.

(ii) If (i) is not satisfied, then |{ge ¢4, ¢ < p}| < » and there is a func-
tion g in M such that g is 1-1 and g: {ge ¥: ¢ < p} >1— {0} for some
A< .

But M |=x (%)} so M |=x—> (%)%, (see [12]), i.e.,

(1) VA< x Vf: [P —>A8X < xA | X] = xA [f*[ X = 1.
Let f be a function defined in the following way:

g(q) if ¢<p is a least condition (in some order)

f{a, 8}) = such that {a, f}ed,,
0 if there is no such gq.

f: [*1*—4, fe M and from (1) we have HX < x, | X| = »|f*[X]}]| = 1.
Thus there is a # 0 such that f*[X]* = {a} and we have a ¢ <p such
that [X]* < d,, for if a = 0, then

[XP < [xF— U d,.

a<p
Since ¢ is ¢-generic and 2 is ¢-dense, there are pe 2N¥% and X < »
such that |X| =x and [XPP< 4 or [X]<c [#]—A.
We say that x» is a Ramsey cardinal iff » — (x)<“, where x» — (»
means that (see [12])

Vf: [#]7°>2, HXcx, |X|=x»xVn|f+*[X]" =1.

)<m
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We replace a notion of forcing by a Boolean algebra B, and construct
vB and #P (for details see [5]).
If ¢ is €-generic over I, we define an ultrafilter # on B as follows:

F = {beB: Upe 9[0F < b]} and p|— ¢ itf OF < |jp|P.

Finally, we have ¥B/# ~ M[¥].

Proof of Theorem 2. Let f be a function in M[¥] with f: [x]<° -2
and let 4 = f~!({1}) be a subset of [»]<® in M[¥]. There is a function
f in ¥B which is the name for f, and f: [x]<*— B, f/# = f. Let us set
f. =f| [#]". Since || =A< x, |B] =2* and » is a Ramsey cardinal,
x is strongly inaccessible and 2* < x». Therefore, we can treat B as a subset

of .
Let us consider the structure

X=06B,f,<,u,n,..., b>ch, new*
Since x — (#)<“, we infer from Theorem 2.9 of [2] that there is X < x,

|X| = x, such that, for any formula ¢(v,,...,v,) and & = (2, ..., Zp),

Y = (Y1, +--, Yn), @, Y [XT* are increasing sequences in the natural ordering
of x,

X =@ iff Xl=9¢()

(such a set X we call a set of indiscernibles).
Now we define the formula

By (@yy ey @) = [Fu( @1y o-ey @) = b]

as follows: if X |== @, , (%) for some Ze [X]", then X |= @,,(y) for every

ye (X"
Hence f*[X]" = b and f*[X]" = 1. Note that
. 0 if flo)¢#,
f(®) = f|#(») —{1 it {(@)es,

and, for T e [XT]", we have

“(";717 ---a*’i’n)GA” = f(wn very @) = b.
So
I[XT" = Av [X]" < [»]"—A]

=[] lwe A+ J] lo¢ Al =b+(—b) =1

T X" ZX "

which completes the proof.
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» is a Rowbottom cardinal if
Vi: [#]°° >4, A< % » TX c #A |X| = 2A |f*[X]<° = 0.

A cardinal number x is a Rowbottom cardinal if and only if every
two-cardinal structure of type (x», w) has an elementary substructure
of type (%, w) (see [9]).

Proof of Theorem 3. Let f: [x]<*—>A4 and fe M[¥] (fe ¥B|F).
Every function from [#]<° to A in M[¥] can be described in ¥ as follows:

Let f, = f| [#]" There is a function f, in ¥® which is a name for f,
such that

If, is a function mapping [x]" into A|| = 1.

Let o = ||f,(@) = £ for &< A. Then
a%na%t, =0 for £ #& and Za—f = 1.

&<

Since B satisfies cce, {a%: £ < i} is countable and can be indexed
by natural numbers (of course, D a;, = 1).

keo

Let us define a formula @, as follows:
D, (3, &, 0) iff |fa(@) = & = a.
Note that, for each Te [«]", we have a countable sequence of pairs
{&%s O k=01 SUcCh that

If,(@) = £ =af #£0, where £ < A.

Since |[#]"| = %, we have
- -
|&%: @e[x]"  kew|<x and |af: Te[x]", ke ow| < x,
- -

and we can treat £ and aj as elements of x.
Now we define

g (@, k) = aZ,
2w, k) = &,  where & < A.

Cleatly, ¢, (%, g2(#, k), g*(=, k)) holds.
Consider the structure

X =%, 4, @5, 97, g;l’ 0,1,2,...0000-

Since x is a Rowbottom cardinal, there is an elementary substructure
N of X,
A=<4,A0A4,0,,97,92,0,1,2,.. 5ncas
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such that |A| = %, |ANA| = w (see [9]). Because U is an elementary sub-
structure of X, we have, for each Ze (47,

X =oa(@, g2 (@, k), gt (@, k) iff A =g, (7 6, k), g}, k),

which means that, for each Te 47, ||fn(_:_f;) = g;‘(,f};’ , k)| = 91(55’ k). Hence
Ifa (@) = &l = of, & < AnA. Since

Za§=1,

we have, for each Ze [AT",

Fo@eindl = D Ifa@ =él> D o =1.
Sednd keo

Thus
It (AT < And] = [] Ifa@)edind| =1

ze[A]R
and

Ifs[4]°® < And]| = Y If*[AT" < And]| = 1.

new

Since ¥B|F ~ M[¥], we have M[¥] [=f*[4]°° < AinA. In W,
|4| = x», and B satisfies cec, so also, in M[¥4], |4]| = » and |ANA| = .

COROLLARY. Con(ZFC - there is a regular Rowbottom cardinal) =
= Con(ZFC + 2°-is a Rowbotltom cardinal).
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