PRESERVING SOME PROPERTIES OF LARGE CARDINALS UNDER MILD COHEN EXTENSIONS \mathbf{BY} ## C. JAKUBOWICZ (WROCŁAW) In this paper we prove three theorems on preserving some large cardinals (weakly compact cardinals, Ramsey cardinals and Rowbottom cardinals) under mild Cohen extensions. THEOREM 1. If \mathfrak{M} is a countable model of ZFC, \varkappa is a weakly compact cardinal in \mathfrak{M} , $|\mathscr{C}| < \varkappa$, and \mathscr{G} is \mathscr{C} -generic over \mathfrak{M} , then \varkappa is weakly compact in $\mathfrak{M}[\mathscr{G}]$. THEOREM 2. If \mathfrak{M} is a countable model of ZFC, \varkappa is a Ramsey cardinal in \mathfrak{M} , $|\mathscr{C}| < \varkappa$, and \mathscr{G} is \mathscr{C} -generic over \mathfrak{M} , then \varkappa is a Ramsey cardinal in $\mathfrak{M}[\mathscr{G}]$. THEOREM 3. If \mathfrak{M} is a countable model of ZFC, κ is a Rowbottom cardinal in \mathfrak{M} , and \mathscr{C} satisfies ecc, then κ is a Rowbottom cardinal in $\mathfrak{M}[\mathscr{G}]$. Related problems were considered by Levy and Solovay [4], Jensen [3], Prikry [8], Paris [7] and McAloon [6]. We shall use the unramified forcing of Shoenfield (for details and notation see [11]). Let $P(\alpha)$ be a property of cardinals expressible in ZFC, and let \varkappa be a cardinal such that $P(\varkappa)$ holds in a model \mathfrak{M} of ZFC and the notion of forcing \mathscr{C} is a set of power less than \varkappa . We say that P is preserved under mild Cohen extension if $P(\varkappa)$ holds in the Cohen extension. In the proofs of Theorems 2 and 3 we shall use the Boolean forcing of Mathias (for details see [5]). Silver has proved in [12] that a cardinal \varkappa is weakly compact iff the condition $\varkappa \to (\varkappa)^2$ is satisfied, i.e., iff $$abla A \subset [\kappa]^2 \exists X \subset \kappa, \quad |X| = \kappa \wedge ([X]^2 \subseteq A \vee [X]^2 \subseteq [\kappa]^2 - A).$$ Proof of Theorem 1. Let $A \subseteq [\varkappa]^2$ in $\mathfrak{M}[\mathscr{G}]$, and let a be a name for A $(K_{\mathscr{G}}(a) = A)$. We write $$d_p = \{\{\alpha, \beta\} \in [\varkappa]^2 : p \parallel - \langle \hat{a}, \hat{\beta} \rangle \hat{\epsilon} \mid \alpha\}.$$ Notice that if $p \in \mathcal{G}$, then $$d_p \subseteq A \subseteq \bigcup_{q \leqslant p} d_q.$$ It is enough to show that there is a p such that $p \in \mathcal{G}$ and $$\exists X \subset \varkappa \wedge |X| = \varkappa \wedge [X]^2 \subseteq d_n$$ or $$\exists X \subset \varkappa \wedge |X| \, = \varkappa \wedge [X]^2 \subseteq [\varkappa]^2 - \bigcup_{q \leqslant p} \ d_q.$$ Let $$\begin{split} \mathscr{D} &= \{p \colon \exists X \epsilon \, P^{\mathfrak{M}}(\varkappa) \wedge |X| \, = \, \varkappa \wedge \, [X]^2 \subseteq d_p \vee \exists X \epsilon \, P^{\mathfrak{M}}(\varkappa) \wedge |X| \\ &= \, \varkappa \wedge \, [X]^2 \subseteq [\varkappa]^2 - \bigcup_{q \leqslant p} \, d_q \} \,. \end{split}$$ We shall prove that \mathscr{D} is \mathscr{C} -dense $(\nabla p \in \mathscr{C} \exists q \in \mathscr{D}, q \leq p)$. Let $p \in \mathscr{C}$. (i) If there is $X \in P^{\mathfrak{M}}(\varkappa)$, $|X| = \varkappa$, and $$[X]^2 \subseteq [\varkappa]^2 - \bigcup_{q \leqslant p} d_q,$$ we can take p = q. (ii) If (i) is not satisfied, then $|\{q \in \mathcal{G}, q \leqslant p\}| < \varkappa$ and there is a function g in \mathfrak{M} such that g is 1-1 and g: $\{q \in \mathcal{C}: q \leqslant p\} \to \lambda - \{0\}$ for some $\lambda < \varkappa$. But $\mathfrak{M} \models \varkappa \to (\varkappa)^2$, so $\mathfrak{M} \models \varkappa \to (\varkappa)^2_{<\varkappa}$ (see [12]), i.e., (1) $$\forall \lambda < \varkappa \ \forall f \colon [\varkappa]^2 \to \lambda \exists X \subset \varkappa \wedge |X| = \varkappa \wedge |f^*[X]^2| = 1.$$ Let f be a function defined in the following way: $$f(\{\alpha,\beta\}) = \left\{ \begin{array}{ll} g(q) & \text{if } q \leqslant p \text{ is a least condition (in some order)} \\ & \text{such that } \{\alpha,\beta\} \in d_q, \\ 0 & \text{if there is no such } q. \end{array} \right.$$ $f: [\varkappa]^2 - \lambda, f \in \mathfrak{M} \text{ and from (1) we have } \mathfrak{I} X \subset \varkappa, |X| = \varkappa |f^*[X]^2| = 1.$ Thus there is $\alpha \neq 0$ such that $f^*[X]^2 = \{a\}$ and we have a $q \leq p$ such that $[X]^2 \subseteq d_q$, for if $\alpha = 0$, then $$[X]^2 \subseteq [\varkappa]^2 - \bigcup_{q \leqslant p} d_q.$$ Since \mathscr{G} is \mathscr{C} -generic and \mathscr{D} is \mathscr{C} -dense, there are $p \in \mathscr{D} \cap \mathscr{G}$ and $X \subseteq \varkappa$ such that $|X| = \varkappa$ and $[X]^2 \subseteq A$ or $[X] \subseteq [\varkappa]^2 - A$. We say that \varkappa is a Ramsey cardinal iff $\varkappa \to (\varkappa)^{<\omega}$, where $\varkappa \to (\varkappa)^{<\omega}$ means that (see [12]) $$\nabla f \colon [\kappa]^{<\omega} \to 2, \quad \exists X \subseteq \kappa, \quad |X| = \kappa \nabla n |f * [X]^n| = 1.$$ We replace a notion of forcing by a Boolean algebra B, and construct \mathcal{V}^B and \mathcal{L}^B (for details see [5]). If \mathscr{G} is \mathscr{C} -generic over \mathfrak{M} , we define an ultrafilter \mathscr{F} on B as follows: $$\mathscr{F} = \{b \in B \colon \exists p \in \mathscr{G}[O_p^B \leqslant b]\} \text{ and } p \| -\varphi \text{ iff } O_p^B \leqslant \|\varphi\|^B.$$ Finally, we have $\mathscr{V}^{B}/\mathscr{F} \cong \mathfrak{M}[\mathscr{G}].$ Proof of Theorem 2. Let f be a function in $\mathfrak{M}[\mathscr{G}]$ with $f: [\varkappa]^{<\omega} \to 2$ and let $A = f^{-1}(\{1\})$ be a subset of $[\varkappa]^{<\omega}$ in $\mathfrak{M}[\mathscr{G}]$. There is a function \check{f} in \mathscr{V}^{B} which is the name for f, and $\check{f}: [\varkappa]^{<\omega} \to B$, $\check{f}/\mathscr{F} = f$. Let us set $f_n = f \mid [\varkappa]^n$. Since $|\mathscr{C}| = \lambda < \varkappa$, $|B| = 2^{\lambda}$ and \varkappa is a Ramsey cardinal, \varkappa is strongly inaccessible and $2^{\lambda} < \varkappa$. Therefore, we can treat B as a subset of \varkappa . Let us consider the structure $$\mathfrak{X} = \langle \varkappa, \boldsymbol{B}, f_{\boldsymbol{n}}, \leqslant, \cdot, \cdot, \cdot, \cdot, b \rangle_{b \in \boldsymbol{B}, \ \boldsymbol{n} \in \boldsymbol{\omega}}.$$ Since $\varkappa \to (\varkappa)^{<\omega}$, we infer from Theorem 2.9 of [2] that there is $X \subset \varkappa$, $|X| = \varkappa$, such that, for any formula $\varphi(v_1, \ldots, v_n)$ and $\overrightarrow{x} = (x_1, \ldots, x_n)$, $\overrightarrow{y} = (y_1, \ldots, y_n)$, \overrightarrow{x} , $\overrightarrow{y} \in [X]^n$ are increasing sequences in the natural ordering of \varkappa , $$\mathfrak{X} \models \varphi(\vec{x}) \quad \text{iff} \quad \mathfrak{X} \models \varphi(\vec{y})$$ (such a set \mathfrak{X} we call a set of indiscernibles). Now we define the formula $$\Phi_{b,n}(x_1,\ldots,x_n) = [\tilde{f}_n(x_1,\ldots,x_n) = b]$$ as follows: if $\mathfrak{X} \models \Phi_{b,n}(\vec{x})$ for some $\vec{x} \in [X]^n$, then $\mathfrak{X} \models \Phi_{b,n}(\vec{y})$ for every $\vec{y} \in [X]^n$. Hence $\check{f}*[X]^n = b$ and $f*[X]^n = 1$. Note that $$f(x) = \check{f}/\mathscr{F}(x) = egin{cases} 0 & ext{if } \check{f}(x) \notin \mathscr{F}, \ 1 & ext{if } \check{f}(x) \in \mathscr{F}, \end{cases}$$ and, for $\vec{x} \in [X]^n$, we have $$\|(\check{x}_1,\ldots,\check{x}_n)\in A\|=\check{f}(x_1,\ldots,x_n)=b.$$ So $$||[X]^n \subset A \vee [X]^n \subset [\varkappa]^n - A||$$ $$= \prod_{\overset{\rightarrow}{x \in [X]^n}} \|\vec{x} \in A\| + \prod_{\overset{\rightarrow}{x \in [X]^n}} \|\vec{x} \notin A\| = b + (-b) = 1$$ which completes the proof. x is a Rowbottom cardinal if $$\nabla f \colon [\kappa]^{<\omega} \to \lambda, \, \lambda < \kappa \Rightarrow \exists X \subset \kappa \wedge |X| = \kappa \wedge |f^*[X]|^{<\omega} = \omega.$$ A cardinal number \varkappa is a Rowbottom cardinal if and only if every two-cardinal structure of type (\varkappa, ω) has an elementary substructure of type (\varkappa, ω) (see [9]). Proof of Theorem 3. Let $f: [\varkappa]^{<\omega} \to \lambda$ and $f \in \mathfrak{M}[\mathscr{G}]$ $(f \in \mathscr{V}^{\mathbf{B}}/\mathscr{F})$. Every function from $[\varkappa]^{<\omega}$ to λ in $\mathfrak{M}[\mathscr{G}]$ can be described in $\mathscr{V}^{\mathbf{B}}$ as follows: Let $f_n = f | [x]^n$. There is a function \tilde{f}_n in \mathscr{V}^B which is a name for f_n such that $||f_n|$ is a function mapping $[\varkappa]^n$ into $\lambda||=1$. Since **B** satisfies ccc, $\{a_{\xi}^{\overrightarrow{x}}: \xi < \lambda\}$ is countable and can be indexed by natural numbers (of course, $\sum_{k \in n} a_k = 1$). Let us define a formula Φ_n as follows: $$\Phi_n(\vec{x}, \xi, a)$$ iff $||f_n(\vec{x}) = \xi|| = a$. Note that, for each $\vec{x} \in [x]^n$, we have a countable sequence of pairs $\langle \xi_k^{\vec{x}}, a_k^{\vec{x}} \rangle_{k=0.1}$ such that $$\|\widetilde{f}_n(\overset{ ightarrow}{x})=\overset{ ightarrow}{arepsilon_k^x}\|=\overset{ ightarrow}{a_k^x} eq 0\,, \quad ext{where } \overset{ ightarrow}{arepsilon_k^x}<\lambda.$$ Since $|[\kappa]^n| = \kappa$, we have $$|\vec{\xi_k^x}: \vec{x} \in [\varkappa]^n, k \in \omega| \leqslant \varkappa \quad \text{and} \quad |\vec{a_k^x}: \vec{x} \in [\varkappa]^n, k \in \omega| \leqslant \varkappa,$$ and we can treat $\xi_k^{\overrightarrow{x}}$ and $a_k^{\overrightarrow{x}}$ as elements of \varkappa . Now we define $$g_1^n(\vec{x}, k) = a_k^{\vec{x}},$$ $g_2^n(\vec{x}, k) = \xi_k^{\vec{x}},$ where $\xi_k^{\vec{x}} < \lambda.$ Clearly, $\varphi_n(\vec{x}, g_2^n(\vec{x}, k), g_1^n(\vec{x}, k))$ holds. Consider the structure $$\mathfrak{X} = \langle \kappa, \lambda, \varphi_n, g_1^n, g_2^n, 0, 1, 2, \ldots \rangle_{n \in \omega}.$$ Since \varkappa is a Rowbottom cardinal, there is an elementary substructure $\mathfrak A$ of $\mathfrak X$, $$\mathfrak{A} = \langle A, \lambda \cap A, \varphi_n, g_1^n, g_2^n, 0, 1, 2, \ldots \rangle_{n \in \omega},$$ such that $|A| = \kappa$, $|\lambda \cap A| = \omega$ (see [9]). Because \mathfrak{A} is an elementary substructure of \mathfrak{X} , we have, for each $\vec{x} \in [A]^n$, $$\mathfrak{X} \models \varphi_n(\vec{x}, g_2^n(\vec{x}, k), g_1^n(\vec{x}, k)) \quad \text{iff} \quad \mathfrak{A} \models \varphi_n(\vec{x}, g_2^n(\vec{x}, k), g_1^n(\vec{x}, k)),$$ which means that, for each $\vec{x} \in [A]^n$, $\|\tilde{f}_n(\vec{x}) = g_2^n(\vec{x}, k)\| = g_1(\vec{x}, k)$. Hence $\|\tilde{f}_n(\vec{x}) = \vec{\xi_k}\| = \vec{a_k}, \quad \vec{\xi_k} < \lambda \cap A$. Since $$\sum_{k \in \omega} a_k^{\overrightarrow{x}} = 1,$$ we have, for each $\vec{x} \in [A]^n$, $$\| ilde{f}_n(ec{x})\,\epsilon\; \check{\lambda}\cap \check{A}\,\|\, = \sum_{\check{\xi}\in\check{\lambda}\cap A}\| ilde{f}_n(ec{x})\, = \check{\xi}\,\|\geqslant \sum_{k\in\omega}a_k^{ec{x}} = \mathbf{1}.$$ Thus $$\|\tilde{f}_n * [A]^n \subseteq \check{\lambda} \cap \check{A} \| = \prod_{x \in [A]^n} \|\tilde{f}_n(\vec{x}) \in \check{\lambda} \cap \check{A} \| = 1$$ and $$\|\tilde{f}*[A]^{<\omega}\subseteq \check{\lambda}\cap \check{A}\| = \sum_{n\in\omega} \|\tilde{f}_n*[A]^n\subseteq \check{\lambda}\cap \check{A}\| = 1.$$ Since $\mathscr{V}^{B}/\mathscr{F} \cong \mathfrak{M}[\mathscr{G}]$, we have $\mathfrak{M}[\mathscr{G}] \models f*[A]^{<\omega} \subseteq \lambda \cap A$. In \mathfrak{M} , $|A| = \varkappa$, and B satisfies ecc, so also, in $\mathfrak{M}[\mathscr{G}]$, $|A| = \varkappa$ and $|\lambda \cap A| = \omega$. Corollary. Con(ZFC + there is a regular Rowbottom cardinal) \Rightarrow \Rightarrow Con(ZFC + 2^{ω} is a Rowbottom cardinal). ## REFERENCES - [1] P. Erdös, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Mathematica Academiae Scientiarum Hungaricae 16 (1965), p. 427-489. - [2] T. Jech, ω_1 can be measurable, Israel Journal of Mathematics 6 (1965), p. 363-367. - [3] R. B. Jensen, Measurable cardinals and GCH, Proceedings of the Summer Institute in Set Theory UCLA, 1967 (typescript). - [4] A. Levy and R. M. Solovay, Measurable cardinals and the continuum hypothesis, Israel Journal of Mathematics 5 (1967), p. 234-238. - [5] A. R. D. Mathias, On the generalisation of Ramsey's theorem, Doctoral dissertation (manuscript). - [6] K. W. McAloon, Some applications of Cohen's method, Annals of Mathematical Logic 2 (1972), p. 449-467. - [7] J. Paris, Boolean extensions and large cardinals, University Manchester Doctoral Dissertation, 1969 (manuscript). - [8] K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Mathematicae 68 (1970). - [9] F. Rowbottom, Some strong axioms of infinity incompatible with axiom of constructibility, Annals of Mathematical Logic 3 (1971), p. 1-44. - [10] J. Shoenfield, Lectures on measurable cardinals, Logic Colloquium 69, North Holland, Manchester 1971, p. 19-49. - [11] Unramified forcing (manuscript). - [12] J. H. Silver, Some applications of model theory in set theory, Annals of Mathematical Logic 3 (1971), p. 45-110. Reçu par la Rédaction le 10. 7. 1972