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SUBDIRECT PRODUCTS OF CHAINS

BY

PH. DWINGER (CHICAGO, ILLINOIS)

1. Introduction. Let K be a chain and let € be the class of (distrib-
utive) lattices which are subdirect products of copies of K. In particular,
€., n =2, will denote the class of lattices which are subdirect products
of m-element chains. In [1], Anderson and Blair have given necessary
and sufficient conditions for a lattice to belong to ¥x. Using their results,
Balbes and Dwinger [2] have shown that Le %, if and only if L does
not have a non-degenerate Boolean algebra as a direct factor.

In the present paper* we will be concerned more generally with
subdirect products of chains which are not necessarily finite and not
necessarily isomorphic. It seems impossible to generalize the result quoted
above for €, to the class ¥x, where K is a chain of more than 3 elements.
Indeed, the conditions stated in [1] seem to be the best possible ones in
the case K has more than 3 elements.

Our objective in this paper is to exhibit some important classes of
lattices whose members belong to €%, where K is an arbitrary chain.
For example, the free distributive lattice on a set S of generators belongs
to €%, where K is a chain whose cardinality is that of S (see Corollary 6).
More generally, the free product of a set {L,},.s of lattices belongs to ¢,
where |K| = |8| (see Theorem 5). We will, in particularly, focus our at-
tention on the class €, of lattices which are subdirect products of (infinite)
chains without extreme elements. Besides the infinite free products of
distributive lattices, every distributive lattice without maximal or minimal
prime ideals, every homogeneous distributive lattice (homogeneous in
the sense of Section 4) and every non-trivial I-group belong to €. (see
Theorems 8, 10 and 11). We note that if Le ¥, then L has obviously
no relatively complemented elements, but the converse is not true. Indeed,
if Z denotes the chain of integers, then Z x 2 has no relatively comple-
mented elements but Z x2¢ %,, and thus Z x 2¢%,.

* The results of this paper were presented, in part, at the Conference on Uni-
versal Algebras in Oberwolfach in the summer of 1971.



202 PH. DWINGER

We will always, when using the term lattice, mean the lattice to be
distributive. The category in which we work is the category of distributive
lattices and lattice homomorphisms. A prime ideal of a lattice is defined
as usual but, for the sake of convenience, we will consider the lattice
itself also as a prime ideal. A proper prime ideal I is maximal (minimal)
if it is maximal (minimal) in the partially ordered set of proper prime ideals.
The smallest element of a partially ordered set, if it exists, will be denoted
by the symbol 0 and we will use, without danger of confusion, the same
symbol for the smallest element of different partially ordered sets under
consideration. The same applies to the symbol 1 for the largest element.
The symbol » will always denote an integer n > 1 and at the same time
the chain of integers {0,1,...,n—1}. The dual of an ordinal a will be
denoted by a* and the ordinal sum of the chains K and K’' by KOK'.
Finally, » is the chain of positive integers.

We will require the following definition (cf. [1]):

Definition 1. Let L be a lattice and let K be a chain. A chain C
of prime ideals of L (ordered by the set inclusion) is a K-chain if (i) C is
isomorphic to K; (ii) for each ae L, there exists a smallest P(a)e C such
that ae P(a); (iii) for each Pe O, there exists an ae L such that P(a) = P.

Our main tool will be the following theorem which is a slight general-
ization of Theorem 1 in [1] and, therefore, we omit the proof.

THEOREM 2. Let L be a lattice, |L| > 2, and let " be a class of chains.
Then L is a subdirect product of members of X" if and only if, for each a, be L,
a < b, there exists a Ke X and a K-chain of prime ideals in L such that
a and b are in distinct prime ideals.

2. Free products and free lattices. We start this section with Lem-
mas 3 and 4.

LEMMA 3. Suppose L is the free product of a set {L},.s of lattices. Let,
for each se 8, P, denote the partially ordered set of prime ideals of L, to
which is adjoined the void subset of L,, and let P denote the partially ordered
set of prime ideals of L to which i3 adjoined the void subset of L. Then & and

X 2, are isomorphic.
8eS§

Proof. Define

&: P> X2,
8eS

(#(P)), =PN L, for each se§ and Pe2.

Obviously, P < P’ implies @(P) < &(P').
Suppose, conversely, @(P) < P(P’). Let h: L2 and h': L—>2 be
the homomorphisms such that A~'{0} =P and A'~'{0} = P'. If acP,
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then & can be represented by
a=[]A+][][A+...+][]4,_1,

where, for each ¢, ¢ < n, 4; is a non-void finite subset of (J L,.
8¢S

Since k(a) = 0, we have h(I14;) = 0 for i < n, and thus each A, con-
tains an element which is in P and, therefore, by hypotheses, »'(IT4,) = 0
for ¢ < n. It follows that 2’'(a) = 0, and thus ae P’.

Finally, to show that @ is onto, notice that if @< X £,, then there
exists a (unique) Pe 2 such that &(P) = Q. 8¢S

LeMMA 4. Let Ay, Ay,...,A4,_,, n =2, be partially ordered sets each
with a smallest and a largest element. If

A=XA, and zed,xz #0,1,
i<n
then x is contained in a chain 0 Yy, < y; < ... < Yp_, = 1.
Proof. Since # # 0, we may assume that there exists an integer k,
0< k< n-—1, such that x(¢) # 0 if and only if 0 <7 < %.
If k<n-—1, define y, for 0 <j<n—2 by

0 for j < 1,
¥;(1) =12() for j>1i and k>1,
1 for j=2i>k.
If £k =n—1, define y; for 0 <j<n—2 by
, x(@) for 0<i<j+1,
Y;(¢) = ] .
0 for j+1 < 4.

It is easy to see that in either case 0 # ¥, < ¥, ... < ¥,_. < 1 and that,
for k<n-1, y, =« and, for k =n—-1, y,_, = @.

We now state the following theorem:

THEOREM 5. Let L be the free product of a set {L,},.s of lattices, |S| > 2.
If K is a chain of cardinality |S|, then Le €.

Proof. Suppose, first, that 8 is finite; thus L is the free product of
Ly, Lyy..., L, ,, n>2. Let a, be L, a < b, and let Q be a proper prime
ideal of L such that ae @, b¢ Q. Since @ # @, Q # L, it follows from Lem-
mas 3 and 4 that @ is contained in an n-chain Py« P,c...c P, , =1L
. of prime ideals. It follows from Theorem 2 that Le %,,.

Next, suppose that S is infinite. It suffices to show that, for a, be L,
a < b, there exists a homomorphism %: L — K which is onto and such that
h(a) # h(b). a and b are contained in a sublattice L' of L which is generated
by U L,, where 8, is a non-void finite subset of 8. Let g: L'—2 be a homo-
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morphism from L’ onto a 2-element subchain of K such that g(a) # g(b).
Since |K| = |8| and 8 is infinite, g can be extended to a homomorphism
h: L —2 which is the desired homomorphism.

If L is free on a set S of generators, then L is the coproduct of a set
of cardinality |S| of 1-element lattices. Hence Theorem 5 yields the
following corollary:

COROLLARY 6. Let L be free on a set 8, |S| > 2. Then Le €, where
K| = |8].

3. Lattices without maximal (minimal) proper prime ideals. In this
section we consider the class of lattices without maximal (minimal) proper
prime ideals and we show that they are subdirect products of infinite
chains. Precisely, we have the following theorem:

THEOREM 7. Suppose L, |L| > 2, 1s a lattice which has no maximal
(minimal) proper prime ideals. Then L is a subdirect product of (dual) limit
ordinals.

Proof. Suppose L has no maximal proper prime ideals. By Theorem 2,
it suffices to show that if P is a proper prime ideal of L, then P is contained
in a y-chain of prime ideals, where y is a limit ordinal. Let é be an ordinal
such that |6] > |L|. Define, for each a < J, a prime ideal P of L as follows:

Let P, = P. Suppose a is an ordinal such that 0 < a < é and such
that P, has been defined for f < a« and such that 8, < g, < a implies
Py = P, It

U P B :76 L 9
f<a
then () P is a proper prime ideal and we define P, to be a proper prime
B<a .
ideal properly containing | P;, which exists by hypothesis. In the case of
p<a
U P B = L ’
f<a
let P, = L.

It is easy to see that there exists an ordinal, and thus a smallest ordinal
y < 6 such that P, = L. Also, it easily follows that y is a limit ordinal,
and thus
UP,=L and P,#L for a<y.

a<ly
Also, if a,, a, < y, then P, < P, if and only if a, < a,. Consider the

chain C = {P,},.,. We claim that C is a y-chain of prime ideals. Certainly,
C and y are isomorphic. Suppose ae L; then, since

U -P a = L ’

a<y
there is a smallest a, say a, < y, such that ae P, and P, is the smallest
element of C containing a.
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Finally, in order to show that if a < y, there is an ae L such that P,
is the smallest member of C containing a, pick, if a = 0, for a any element
of P,, and, if a >0, pick for a an element of

P, ~ U Py.
B<a

It follows that C is an a-chain containing P = P, as a (first) element.

The case where L has no minimal proper prime ideals follows from
a dual argument.

We state the following theorem without the proof:

THEOREM 8. Suppose L, |L| > 2, i8 a lattice in which every proper prime
1deal is neither maximal nor minimal. Then L is a subdirect product of chains
of the type a*@® B, where a and f are limit ordinals.

Remark. If Le €5, where K is a chain of more than 2 elements, then
it is not necessary that L has no proper prime ideals which are both maximal
and minimal. Feinstein [4] has constructed, for each n > 3, a lattice L
which belongs to %, and which has a proper prime ideal which is both
maximal and minimal. On the other hand, it is also shown in [4] that if
Le¥%,, n>3, and L is finite, then L has no proper prime ideals which
are both minimal and maximal.

4. Homogeneous lattices.

Definition 9. A lattice L is homogeneous if, for each a, be L, there
exists an automorphism of L such that f(a) = b and such that if a < b,
then z < f(«) for each ze L, and if a and b are incomparable, then  and
f(x) are incomparable for each e L.

We note that this notion of homogeneity is a stronger one than that
in the sense of having a transitive group of automorphisms. (Berman [3]
has shown that there are non-distributive lattices which have a transitive
group of automorphisms but which are not homogeneous in the sense of
Definition 9. It is also shown in [3] that a lattice which is homogeneous
in the sense of Definition.9 must be distributive.)

Homogeneous lattices are subdirect products of infinite chains and
we have the following theorem:

THEOREM 10. Let L be homogeneous, |L|>2. Then L i8 a subdirect
product of (infinite) chains without extreme elements.

Proof. Let P be a proper prime ideal of L. Pick ae¢ P and b¢ P such
that a < b. By homogeneity of L, there exists an automorphism f of L
“such that f(a) = b and such that x < f(x) for each ze L. Obviously, f[P]
is a proper prime ideal of L. If x¢ P, then, since 2 < f(x), we have ze f[P].
Also, be f[P] ~ P, whence P < f[P]. Again, f~'[P] is a proper prime ideal
and a¢f~'[P], whence f~'[P] = P. It follows that P is neither maximal
nor minimal and the application of Theorem 8 completes the proof.
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5. The class %_,. In the previous sections we have exhibited several
classes of lattices which are subdirect products of infinite chains, in fact
of infinite chains without extreme elements. In this section we will produce
one more class of lattices of this type and, in addition, we will investigate
the relationship between the various classes discussed in this paper. First,
we introduce the following notation:

% i8 the class of subdirect product of infinite chains without extreme
elements;

¢u is the class of lattices L, |L] > 2, in which every proper prime
ideal is neither maximal nor minimal;

%g is the class of homogeneous lattices L, |L| > 2

%1, is the class of non-trivial I-groups (thus of those lattices L, |L| > 2
which admit a group structure).

'We now have the following theorem:

THEOREM 11.

¢oEbgcbuycboc (V€rc...cCp1cCrc...c €c¥,.

ne=2

Proof. It is obvious that €¢,,; = €, for each n > 2 and that ('] €n

n=2

c €, for each n > 2. Also, @P1le ¥, for each n > 2 but w®P1¢ €., whence
€, < ﬂ Cn (V).
n=2

The inclusion €y < %, follows from Theorem 8. On the other hand,
if L is an infinite free lattice, then L ¢ €y (cf. Theorem 5) but Le €, (see
Corollary 6); thus ¥y = €. Next, it follows from the proof of Theo-
rem 10 that €x < ¥y and, in addition, since, obviously, ZOQe ¥y ~ €
(@ are rationals), we infer that ¥z = €y.

Finally, in order to show that €, = ¢y, let Le €, and suppose a, be L.
The map f: L—L defined by f(z) = boa'oz (o is the group multiplica-
tion) is a (lattice) automorphism and it is easy to see that f satisfies the
conditions of Definition 9. This completes the proof of the theorem.

Remark. The fact that €, < €, can also be derived from the proof
of Holland’s [5] theorem that every l-group is a sub-l-group of automor-
phisms of a chain. It is an open question whether ¢; = ¥5. (P 887)
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