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Wir wihlen eine Folge (t,);.n mib

=] oo
Ztg < co und 22“"10{;#5. < o0,
= g=tk

Dann ist fast tberall
| log#,.,., = 2logn, 4 log3 —logi,

fiir g > &(2) und weiters

logn,,; 1 Iy logd—logt,  logng
Sy Y
Also st die Folwe 279 n, fast Gberall nach obhen beschrinkt.
Da P( > J]'."bo) > 0, folgt aus der Monotonie der Tolge

27%logmn, sofort

. logn, '
P(;EE o > y{na) >0
fiir jedes ¥ > 0. Ahnlich wie W. Vervaat fiir Sylvestersche TReihen [4],
lkann man die Frage gtellen, ob die Werte der Funktion #: R—[1, co [,
fast tberall definiert durch F(®) = lim2~"logn, stetig verteilt sind.
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This paper aimpg at giving some generalizations of basie properties
known for exactly covering systems of arithmetical sequences to general
gystems of arithmetical sequences. Affer proving some general resulbs
concerning covering systems of sets of non-negative integers we introduce
the conecept of (u, m)-covering systems of arithmetical sequences. The
coneept of (x, m)-covering systems involves some notions concerning sys-
tems of arithmetical sequences investigated in the recent past, e.g. cover-
ing systems [1], exactly covering systems [1] and s-covering systems [8].

1. Preliminary resmlts. Let {f,(2)};_, be a sequence of complex
functions defined on a region D of the open complex plane E. Let the
series 2 F.(2) be absolutely convergent tm ze< M, where JM i3 a subset

fu==0
of D having a point of accumulation in the region D. Since this series
is absolutely convergent, all its subseries are also absolutely convergent
for z« M. Let Z be the set of all non-negative integers. Let us suppose
that to every non-empty subset § of Z appearing in our further consider-
ationg there exigts a non-identically va,mﬂhmg meromorphlc function
f(8;#) defined on D with

ey Dfale) =F(8;2) for  ze M.
. nes

In case 8 = @ let uy put f(P;2) = 0 for all zeD. Bince the set M has

g point of accumulation in D and f(§;2) with § # & is not vanishing

on the entive D, then f(§;2) with § s @ is also not vanishing on the

entire M. ‘
Let us modify Definition 2 in § 1.1 of [6] in the following way, Let

81y 84y oo 8, (B = 1) be subsets of the set Z and p a function defined

on the qystem {81, ..., 8;} with values in the set {—1,1}. Let us pub

D'm. il -Dm(Sii ) Sk) = {q"\;EZ: Z.u'txt(ﬂ) = m}

t=1
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for every integer m, where i, is the characteristic function of the set
8, and g, = p(8) for 1 =1,2,..., k.

Thus the set D, consists of such integers which belong “in fact”
to # gets of the gystem {Sy, ..., §;} and therefore D,, N I}, = & whenever
m = n. We immediately get 1, = @ for ’m with |m| > k. In case w4 =1

for all + we have for instance Dy, = % — {J 8, D, =
1=l

k
8y, ...y 8, ave mutually disjoint then D, = 8.
. fenl
In what follows every system {8,,..., 8} of subsets of Z will he
supposed to be given together with funetion g mentioned above. More-

over we restrict our attenfion only fo systems {&,,..., 8} with
' 8; = 8; implies g = uy
for 4,7 =1, ..., k. In the opposite case we can eliminate the sets not
satisfying thiz condition without changing any of 1), s.

LEvma 1. Let {8y, ..., Sy} be a system of sets of non-negative integers.
Then

Zﬂif (852} = Y“‘ mf(Dy,; 2)

Hi u--—is‘

in the sense of equality of meromorphic f@met’io’ﬂs on the region D,

. I
Proof. Let neZ and m(a) = 3 uy(n). Then the series
i=1

Y mmife), zeM

nesd
is also absolutely convergent for the sequence {min)}iy., is bounded.
We get the right-hand side of the required equality by rearrangement
of this series according to the same m(n)'s and the left-hand side by its

gradually rearrangement according to indices which are elements of the-

sets Sy, ..., 8. Thus the required equation holds on M, But then it alzo
holds on the entire region .2, because I hag a poims of accurmulation
in B

The converse of this lemma will also be lmpormm for our further
considerations, but it does not hold in general. In order to provide this
converse 'we must add some conditions concerning the functions f,(z)

LigmMA 2. Let 8, Ty, T _, be subsets of Z for t =1, ..., k and let the
sets T 5, ..., Ty be mutually disjoint. Let the funelions J,(z) satisfy the
Jollowing condition

(2)  if D aufale

ne&

) =0 for _all ze M, then @, =0 for all neZ.

[‘. .
M & and if the sets
tzal

icm

' Leb us remark that the sets D, (f =1, ...,

Covering systems and generaling functions 225
Then the equation
3 i
8i8) = N (T
Duf(B52) = 3 tf(Tis 2
=1 R

Amplies

Tg =D3(81’-..,8k) jﬂT i = —'k,...,k.

Proof. Owing to the previous lemma we have

k ]
me(sw = (D 2)
: 1=1 t=F
and hence
] I )
MyDse) = D (L),
te= Kk f=—k

k) are mutually disjoint. Then
we get the statement of our lemama comparing the coefficients of both
sides after expanding the funetions f(D;; 2), f(T,; 2} inbo series (1) on M.

2. Main results I. Let ni(n) be a function defined on the set of all
integers. Let the function u be defined on the system of residue classes

{3) C g (modwy), t=1,..., k.
Then the system (3) is called to be {u, m)-covering if
(4) Zm n) =m(n)

for every integer n, where y, is the characteristic function of the residue
dass a; (mod ) for £ =1, ..., k. .

For instance, we obtaln the concept of exactly covering system of
arithmetical sequences if the functions px and m reduce to constants w, = 1,
m{n) = 1, [L}-[5]. The {4, 1)-covering system is just the s-covering system
of [8]. The well-known coneept of covering system of congruences is
obtained in eage m(n)> 0, g, = 1 for all » and &

Tt can be eagily verified that the function m{n) must be periodic.
The period of this function will be dencted by n,. If (3} is (g, m)-covering
then =, is a divisor of the lem. [ny, ..., #;] because of

(- [y < l) =m(n)
for every integer .

The system (3) is (g, m)-covering if and only if (4) holds for every
non-negative integer u (even if and only if (4) holds for every integer
5 of any interval of the length [%,,...,#;]). For this reason we may
restrict our attention only to non-negative elements of the classes of (3)
and so to use our preliminary resuits. : '



226 ' 8. Poruhsky

TueorEM 1. Let f(z) be a meromorphic funclion deffmed on @ region
D of the open complex plane. Let M* = {zeD: 0 < |f(2)] < 1}. Let M be
@ subset of M™ having a point of accvmulation in the region D and let f{z)
be one-to-one on M. Then the following statements are equivalent:

A,.  The system (3) is (u, m)-covering.
Is & g1 ”
1S (R) v w(E)f ()

B,. Z wif n& _ Z -

=1 1 '_f (z) je=0 1 _f (;g)

in the sense of equelity of meromorphic functions on X,

Proof. This theorem follows from Lemmas 1 and 2 but we need to
ghow that the Sequence

(5) 1@,
satisties condition (2) on M

In virtue of the uniqueness of the expa:nsioil of a function in the
Lanrent serieg ([7], Chapter ITI) we get

fg(z) f3

(6y if Z%z" =0 in a circular neighbourhoed of the point 0, then
nex
a, = 0 for all neZ.

The set .M has a point of accumulation in the region . Further,
J(2) is meromorphic on .D and it is everywhere defined and one«‘ﬁo -One
on M and therefore (M) has a point of accumulation in f(D). Let C(0)
be a circular neighbourhood of the point 0 containing (M) and at leash
one of the points of accumulation of the set f(M) in f(D). IL () does not
satisfy (2) then we get a contradiction with (6) for this C(0).

Let us introduce the symbol §,, in the following manner

1 if #sn,,
| # lo i tten,,
where 7, is the period of the function m and | is the sign of d1v131b11113y
THEOREM 2, The following statements arve equivelent:
Ay The system (3) is (u, m)-covering.

k . np—1L .
My i 63,'"3 | 2
g,. — GXP 80y | = — ‘ Hexp |~——st
1 Py 1’( ] = 2 mibesp -
i=1 i L 4
nylany .
Jors =1,.,,myandj =0,1,..,,k
k ng—1
| a - (]
D,. w R (=] = 2 Hat—1-B [—
. 1 12[ Bty . :r'(nt - m() o r no

Jor every veZ, where B, (x) is the v-th Bernoulli polynomial.

icm
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Proof. Owing to Lemma 1 the statement A, is equivalent to the fol-
lowing one
i ’ Rg—1
BT' 0 — _that 2 m(i)

dd 1 _ _
=1 P = 1—2,

in the sense of equality of meromorphic functions on E.

Let us denote the right-hand side of B} by H{2). Evidently lim |H (2)|

£

== 0. But then the equivalence between By and O, follows from the The- '
orem of Liouville and the rule

| F(s) _ Fla)

@) Ela)

provided that F(z), G(z) are holomorphic and G(z) has only single roots.

The equivalence of A; and D, follows from Theorem 1 for f(z) = expa,
D = # and from the expansion

% exp
B, (
exp(z 2 al nl’

neZ

Te5,

2] < 2m,

uging the basic properties of a.bsolutel‘y convercrent geries and uniqueness
theorem for meromorphic functions.

The part C, was proved for exactly eovering systems in [5], D, for
exactly covering systems in [3] and for z-covering systems in [&]

3. Main results II. In this section we prove results analogons to.
those of the previous section taking the parity of moduli #n4, ..., 7 of
clagges in (3) into account. Therefore we shall suppose (3) to be ordered
in such a way that

(T) g, Moy ...y Ny are all even and Mg 1, Ngys, ---5 7 2r€ all odd moduli

of residue classes in (3).

TurorEM 3. Let the assumptions of Theovem 1 be satisfied for the
Junetion f(z). Then the following statements are equivalent:

Ay, The system (3) is (u, m)-covering with (7) being satisfied.
-1 g OLL k -1 oy ag 2
B, 2( ud e g 0wl )

2, ﬂ»t
= 1 ft( o L)
itg—1

-y (—1fm@)f ()
& 1= (1"

in the sense of equality of meromorphic fumctions on D,
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The proof is analogous to that of Theorem 1 wusing the sequence

11 _f(z):fz(z): ﬁ”fs(z):

TugoreM 4. The following statements arve equivalent:

A,.

Czu

Da-

The system (3) i {4, m)-covering with (7} being satisfied.

njleny
5 (S 'nﬂ--i 2
= 22 Tem NT (—1)e(t)exp ( ™ bg)
Yy e ’”‘jr
i=0
for § =0,1,...,¢ and
I g .
: —1 28 +1
2 (—1) "1 eXP(( § +1) i wg)
')'bt ﬂj
t=1
nj|(2.5'+ljni
(5 'll.n-ml (2 )
98- 1,0 N3 y s41 "n:?,
= —1 foxn |~
o 3 jorp (22
Jor § =8 ,(g4+1), q+1, g42,...,k and 5 == 1,2,..., 0.
S a £ a
\ I @ -l ‘ .
D g B () + ) (vt 7, ()
i=1 b=l
'IL0-1
P
= 1y 2 [(1 —B,2) _1)5"1(” &, ("_ﬁ) -
i=0 g
: (1) f }
Y. S By e
L 11 e (t) B, 7y

for every reZ, where B,(x), vesp. E,(®) is the r-th Bernoulli,
vesp. Huler polynomiel.

The proof is baged on the ideas of the previous one and the expansion

2 exp x2) >~1 z’

exp @)1 ) &) < m.

,

4. Corollaries. In this section we give some corollaries of the pr evious
results. Some of them generalize known results.
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CorROLLARY 1. Let (3) be a' (u, m)-covering system. Then

k 1 #p—1L
7 - :
1. M5 = Ny,
=T T =
& ng—1
. R t
2. ZM +Z (—“‘ - —)r
=1
a « fig—1
- ("‘"1 t;ua 51 s N1
3. = —1Y
L iy Laed > Y (o),
t==l 1=0
q 3

4. Y o(—1yFioy (

[

) -+ >1 1Y% g

1 twl

np—1

— ; (—1)m(5)- (1-2&1,2;:—;),

(7) being satisfied in the last fwo reluoiions.

Let us put » =10,1in Dy, 5 =u; in O, and » =0 in D, to prove
this corollary.

The first two relations are generalizations of known results for
exactly covering systems and s-covering systems ([1], [2], [8]). In case
na(t) = 0 for all ¢ (i.e. (3) covers the set of the all infegers) we get from
the first relation

i“i>1

Lmd Yy
and the equation holds if and only if (3) i8 (g, 1)}-covering system. In the
opposite cage, ny, > 1 and m(t) = 2 for at least one ¢, so the 1nequa11tv
holds.

Cororrary 2. Let d>1 be a positive imteger with 61d == 0. Let
Ty S My o K My, be all the moduli of the residue classes of (3) which
are divisible by 4 (if any), each of them appearing as many times as MY
times i appears in (3). Then

1. For every ¢ =1, ...,
nt,;“'btj-

r there ewists a § with j =1, j =1,...,r and

2. The system (3) contains of least p distinect ?eszdue elasses modulo
iy, provided that p is the least prime divisor of n, .

2 — Acta Arithmetica XXVL3
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Proof. 1. The proof follows indirectly from C, for s = 1.
2. Let us put j =1¢,s =1 in C;. Then
E
Z 2md
“IL_LEQXP( r a’t) == 0
f”"t i
t=1 7
AL

because of &, = 0. On the other hand n, is maximal and therefore
ny,. Thus

> ¢ X (——:b-at) =0,

ey

-
a1y, |ny only if g =

M§=‘NE

where ¢; denotes the “appearance” of the residue class ¢ (mod 7y in (3).
The number ¢, could be also negative depending on g, but it is always
non-zero due to our assumption in the introduction. I'rom Theorem 1
in [4] we geb that this sum contains at least p addends where p is fhe
least prime divisor of =, , and the proct of eorollary is complete.

Evidently 64 = 0 for each d > 1 in cage of {(u, 1)-covering system.
It %, is the greatest among the moduli %y, %a, ..., ny of the clagses in (3},
then for & == n, we get the known Znam’s genera‘hza.tlon of the result
of Mirgky, Newmann, Davenport and Rado [1] from the second part
of Corollary 2 (see also [5] and [8] for exactly covering systems and
e-covering gystems). Sinee In general n,, of Corollary 2 iz not always the
greatest modulus of classes in (3), Goro]la,ry 2 presents a generalization
of Znam’s result also for exactly covering systems.

Let us remark that the chain of moduli in Corollary 2 is empty for
some {u, m)-eovering systems even for every 4> 1. But the followmg
rewritting of Corollary 2 shows when this is not the case.

CorOTIARY 2. If the pemod g of the system (3) is a proper divisor of
[Ny veey g then

1. There ewists af least one eouple gy Ty with i # 1 of the moduli of
(3) for which n;|n;.

‘ 5. The system (3} contains at leasi two distinet residue . classes with
respect o the same modulus.

The first part of this corollaxy confirms the validity of 1.he famous
conjecture of Schinzel in case n, << [#,,..., %] that in every covering
systera of congruences there 1§ a couple of the moduli, one of whieh is
o divisor of the other. This conjecture is also true if ny = [%y, ..., ]
and n, is simultaneously one of the moduli of (3). Thus, there remains
to solve the case n, = [0y, ..., %] and all the moduli less than u,.

The condition of the second part of Corollary 2° (that is the mentioned
result of Mirsky, Newmang, Davenport and Rade if (3) is exactly covering)

icm
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is the best possible ag the following example of [1] shows

0 (mod2), 0 (mod8), 1(mod4), 5 (modé), 7 (mod 12),
but it is not necessary, e.g.
0 (mod 2), 0{mod3), 1(mod6), 5 (modsé).
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