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Table 3 !
d 4 B { A d l h ¢ A 1
' |
11 3 2 0 1 1386 5 4 1 2 !
11 5 2 1 2 136 7 4 1 2
19 11 1 1 3 . 143 7 10 1 3
20 8 2 0 1 164 3 8 3 3
35 3 2 1 2 164 5 8 1 2
47 3 5 2 2 227 3 5 1 2
51 8 2 3 2 239 3 15 0 [§]
56 3 4 1 2 244 11 4] 1 2
84 5 4i 0 1 248 3 8 0 1
104 ] B 1 2 260 3 3 1 2
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1. Iniroduction. A sequence {z,> of real numbers iz called uniformly
distributed mod L if its discrepancy
(1.1) Dy = sup |N7TTA(N,a, f)—(f—a)|—0.
[ Ea2ef-E-}
Here A (N, o, f) is the number of indices n< N with a<{z,) <p. (As

-ugnal, {¢} denotes the fractional part of &.) Let {n,, k¥ = 1> be a lacunary

sequence of integers, i.e. a sequence of integers satisfying
{1.2) itz g>1 (B=1,2,..).
Tt is well known (8ee [87]) that the sequence (n,x) is uniformly distributed

mod 1 for almost all 2. A much sharper regult is due to Erdos and Koksma
r3]. They proved that for almost all @

(1.3) NDy(@) < (Nlog* Nloglog Naw (W)

where o{N) is any monotone sequence increasing to co. In 1854 Erdés
and Gaal improved (1.3) to

(L4) NDylz) < N*(loglog Ny e,

tor any &> 0, but their result wag never published. (Bee [1], p. 56.) As
a matbor of fact most workers in the field expected even a law of the
iterated logarithm to hold which would replace the exponent 5/2--¢
in (1.4) by } which is best possible. The purpose of this paper is to prove
this conjecture, often referred to as the Erdos-Gaal con]ecture More
precisely, we shall prove the following theorem.

THEOREM 1 For almast all @

ND,
(1.5) 3217 < Limsup D) <
¥ow VNloglogN



242 ' W. Philipp

wheve
C < 166 664 (g7 —1)1

The lower bound in Theorem 1 (i.e. the left inequality in (1.5)) ig
well known ginee the publication of the paper by Erdos and Gaal [2].
Tor the reader’s convenience I shall give a proof at the end of Section 3.

Concerning the constant ¢ I have the following

CONYBCLURE.

] .
(1.6) ¢ < 2suplimsup " [ 3 {1,(n) 1))’ ds
I Neoo 0 EEN
where the supremum is extended over all intervals I = [a, 8),0 =X a < 1,
1y is the indicatior of I, extended with period 1 and |I| denotes the length
of 1.

The value of the constant ig suggested by [10], corollary 4.2.2 Where
an even stronger result was proved for the specinl case ny = 2% This
result states that the lim sup in (1.5) actunally equals a.e. the square root
of the constant on the right-hand side of (1.6). Moreover, I gave trivial
bounds on that consfant.

For the case ny =2% (I, < I, < ... integer) the upper bhound in
Theorem 1 i8 due to L. and 3. Gaal [8]. They did not write down an
explicit bound. on (} In [10] I gave a different proof of this result and
showed thab <

The proof of the upper bound in Theorem 1 is different from the
ones given in [5] and [10]. It uses methods developed by Erdés and Gaal
[2] and by Takahaghi [12].

A well known theorem of Erdds and Turdn [4] states that for any
positive integer m

2 ganihity)

(1.7) Dy <m ™+ > (h¥)~

L Prasions NV

Here Dy denotes the discrepancy of the sequence (z,> ag defined in (L1.1).
Moreover, by the main result in the paper of Erdés and Gaal [2]

621’:‘1'11 Joix

(1.8) : limsup =Yoo =1 ae,

N0 I/N uloglog N

for any lacunary sequeneeé <{n;> (not necessarily integer). (The result

that the limes saperior does not exceed 1 is due to Salem and Zivgmund
[11]). In mamny discussions on the subject it was suggested that a combi-
nation of (1.7) and (1.8) might yield a proof of the upper bound in The-

orem 1. But since Erdés is a coauthor of both reswity it is mfe to Agsume

that this idea cannot be made to work.
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Ag an immediate consequence of Theorem 1 and Keksma’s inequality
(3.10) below we obtain

THROREM 2. Let f() be a funclion of bounded variation on [0, 1] with

1
(1.9) Flo+1) =fl@) and [ fl@)de = 0.

Then for any lacunary sequence {myy of integers

| 2 flono)
limsup e €1 @
Nosco I/NleglogN

where the constant implied by < depends on f and, perhaps, on g.

For funetions feLipa (0 < o < 1) satisfying (1.9) Theorem 2 iz due
to Takahashi [12]. It is quite likely that a modified version of Theorem
2 holds for sums '

(1.10) 2, ()

kN

(see problem 1 bhelow). For a cerfain subclass of lacunary sequences
theorems of this type have been announced by Gaposhkin ([6], {7]).
It seemns that the details have not yet been pumblished.

Ag a matter of fact Theorem 1 and Koksma’s inequality yield a result
gtronger than Theorem 2 and, except for the value of the constant, equiv-
alent to Theorem 1.

TEROREM 8. Let F be the class of functions of veriation on [0, 1] noi
exeeeding V and satisfying (1.9). Then for any lacunary sequence {n,> of integers

Vi sup| 3 f(m)
Visvoelimpup 2558 . < VO ae
/ = N—»oop VNleglog ¥

where o bound for C is given in Theorem 1.

Many interesting questions and problems remain. T sha,ll state a few.
1) Give a detailed proof that

r 2 a’]af op, m”
limsup 45— <1 a6
N VAL loglog Ay

whera
ay = o(A% loglog.d ).

-l 1/2
Ay = Z a’n) —- 00,
kN
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2} Investigate to what extent Theorems 1 and 3
be generalized to sequences of integers =, with

and problem 1 can

Mg [Py 2= 1 4ck™  for some ¢> 0 and 0 < a<< }

{The paper by Takahashi [13] might give some clues to this problem.)

3) Whieh of the theorems remain valid if the condifion that w, is
an integer is dropped (see (1.8)).

2. Imequalities for lacumary series. We shall consider only oven
functions f. Without loss of generality we assume that |[fl, <1 and

1
0 < @ < 1. Throughout this chapter |f| demotes ||fll, = ([f*(2)d»)"* and
0

A denotes Lebesgne measure. The following insquality is fundamental
for the proof of Theorem ‘1.

ProposITIiON. Let M =0, N =1 be integers and let R=1, > 0.
Suppose that f(x) satisfies (1.9) and |f||> N~ and has varigtion Varf< 2.
Then as N-—»co

MEN

Mo: | S fnw)| > (14-26) 0, RIS (Wloglog N )~}

=M1
< exp(—(1+9) |f| " Eloglog ¥) + B~ N ="
where .

¢, =% —|-2(q1"° 1)~

Here and throughout Chapters 2 and 3 the constant implied by
< ouly depends, perhaps, on ¢ and 8. Hence it is enough to prove the
proposition for M = 0 only since the sequence {ny. .,k =1,2,...> is
lacunary with the same factor g. Moreover, it suffices to prove the Prop-
osition without the absolute value bars on the left-hand side of the
expression in the curly brackets since —f also satisfies the hypotheses
of the proposition.

We expand fiz) in a Fourier series with partial sums

Jole 2 ;608 27jm.

I=5d45n
‘Obviously,
(2.1) 6 =0, o¢<jt (1<j<n),
Put

- oale) =@ —f o),
p(x) = wla;m,n) = 2 6; 608 2mjx,

ML <

Z 'rp('nkw).

RN

Dy (x) = Dy(2; m, n) =

icm
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LeMMa 1. [Pyl < Nlog(n/m)-m=!
Proof. By the definition of @,

1

(2.2) [Pyl = f(z P ajc@szwgnkfv) dz

0 kSN m<i<n

= Z E C{ GJ’ {’I.ﬂtk s j%l} )
IlsN mgi,jon

< > N

kSN mel,j<n

< D dfimg, jm)

kSN m<i,j<n
\ 7 . .
€« dad > fin,in.
ESN mi<n ISN,m<jon

Here {4, v} denotes the Kronecker symbol. But for fixed & and % with
m < ¢ << # the number of solutions of the equation

(6; +¢}) {"‘:”gu Jng}

(2.3) _ Ly, =gny, ISN,m<ji<n

does not exceed a constant times log(njm). Indeed, let I, be the smallest
index [ so that n, is a selution of (2.3) and let 7, be the Iargest index with

that property. Then

ity =famy, ML < <n

and by (1.2)
- g '”’12/'77'11 = J1[fa < mim.
Hence
L—1; <log(n/m).

- Consequently, the inner sum in (2.2) is bounded by that quantity and
thus by (2.1)

1Py < Nlog(n/m) Ecﬁ <€ Nlog(n/m)m™
C izm :
- Ligmma 2. For any positive integer T

1
f(z ‘PT(”M))Z dw < NT-L.

o kel

Proof. Let k, be the smallest integer with T' < 2%, We apply Lemma
1 with m =T, n =2% and m =2% n =2 (h = hy, hy+1, ...} and
obtain

D R LR B DNTUEE S

Nljz T-—lla z—v}h NltzT—ljﬂ
= ( +ﬁ§u ) < -]

3 — Acta Arlthmetiea XX'VI3
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Now let H be any integer with

(2.4) g% > 3HS.

Following Talkahashi [12] we put

‘ 6 ) Him-1)

(2.5) gl@) = 3 goos2njs  and  U,(z) = g{(n,m).
. i=1 © Tee=fme1

We observe that by (2.1) .

Z Gt
170
and. :
(2.6) 9l < VarS -+ [ flie < 3.
LEaa 3. Let » > 0 he with «HY® < 1. Then for any positive integer P
1 Pl .
Jexplx > Usm (@)} d < exp (§(1+ 8) Oyt I HP)
i} m=0
and

1 r
fexp {x Z Ugm_l(m)} i << exp (3 (1 + 8) Oy w*|f| HP)

where (' 45 defined in the proposition. ‘

‘ This is a modification of [12], Lemma 1. Its proof can be easily
modeled after {12]. The only difference of any significance is that we

employ the inequality

L Lte+4(1L+8)2*  for

_ l2| g <
instead of the one used in [12]. We then obtain

1 P-1 1 p-1 ‘
Jesple 3 Upn(@do < [ [T (142U (o) + 3221+ 8) Ul () da.
) = 0 =0

Txcept for the factor 1 4- & the integral on the right-hand side is estimated
in [12], pp. 102-103. In [12] relation (2.8) a factor 2 must be added.
We algo observe that the congtamt B, in Takahaghi’s paper [12] does
not exceed C,1f]. Taking the factor 1--¢ into account we obtain the
firgt inequality in Lemmsa 3. The second one can be proved in the same
way. ® :

We now can prove the propogition. Again we uge ideas of Takahaghi
1121 Let N = N, he given. Put H = [N, If N, is sufficiently large
then (2.4) is satisfied. With this choice of H we define the functions g(x)
and U, (x) by (2.5). For any @ > 0 we have

(2.7) Moz 3 fma) 2 (1+28)0) < A(4a) +A(4o)
’ k€N .

icm
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where
. .
4y ={a: D glmo) > (1+8)@Q}, 4, = fo: > gl = 3Q)
Py EEN
and
(2.8) T : [Nm]s‘
We put ’

@ = 2C,||fI"* B(Nloglog N)""
and apply the inequality
. L
(2.9)  A{o: h(@) > (1+8)Q} < exp(—(1+ 8)@x)- [ exp (wh(w))do
1]
with '

Moy = Y glmas)  and o« = (|fI"" N loglog N)¥".

kSN

To estimate the integral in (2.9) we define the integer P by
(2.10) CH(P+1)< N < H(2P+3).

Then by (2.6), (2.10) and the hypothesis on |

2P N
#| D gma)— 3 Upia)] < l9(m,@)| < 6H = o(1).
kv M= k=H{2P+1_)

Hence
1 1 2P
[explsh(@)}do < [explx ' Un(@)do < exp((1-+8)C,xif)¥)
a -0 m=q0 )

by Cauchy’s inequality, Lemma 3 and (2.10) since xH®*? = o(i). Thug
by (2.9) : :

(2.11) A(41) < exp{—(1+8)C.R|f|~"loglog ).
Next, by Lemma 2 and (2.8)
(2.12) Ad,) € Q™ €« RN,

The proposition follows now from (2.7), (2.11) and (2.12).

3. Proof of Theorem 1. It is possible to prove a general theorem
in probability theory where the hypothesis is just about the conclusion
of the proposition of Section 2 and then to derive Theorem 1 from it.
This procedure is then similar to the one followed in [97 (see in particular -
Satz 1) and [10] (in particular Theorem 1.3.1 and Chapter 4) and has
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" a wide Tange of applications. But for the sake of simplicity I shall give

a more direct proot of Theorem 1 using a method of Erdds and Gaal [2].
Let n, > 0 and let N = Ny(n, d) be given. Iub

(3.1} H = [logN/logd]+1.

Any 0< e <1 can be written in dyadic expansion

amZZ"'jaj, g =0,1.
_ j=1
Obviously,
I | _
22‘5'5,@ ag_E2”"sﬂ-+2"‘H.
fe=l - . F=1
Put

' h+1
m<22*"aj}, 1<h< H,

i=1

i
@h("”) = ou(®, o) = 1{29—9

: s o=
og(®) =og(e, a) =1 {Z 277 << 22‘fsj+2‘ﬂ} .
i=1 7=1

Herel {¢ < # < §} denotes the indicator of the interval [a, 3) extended
with period 1. Then

H~1 -1

(3.2) S a@<iP0<o<a< ) o) +ox.

h—=1 h=1

For fizxed & there are only 2" different functions g, and there are only
2% different functions oy as o varies between 0 and 1. We denote these
functions by o (1<j<2" and off (1<j<2¥). Moreover, these
functions have the same structure. Congequently, it makes sense to define
3.3) 9’("})ml9%‘)’ 1g;;:g2“ :}f 1<h<H,

1o, 1=j<g2% it h=H.

For integer 1< j <2 1<<hs H, N1, M=0 we write

BN 1 .
(3.4) FOLN G0 =| DT foff (me)— [ off (0)ds)].
fo= M 41 0

Imyara 4. Define v by 2" << N < 2", Then there are mwgm s, with
0 < my < 2"t (1 <1< n) such that

F(O, 3,4, ) S F(0, 2%, )+ >

Ini<n

2" +m,2% 2770, 4, ) -1,

icm
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This is & slight modifieation of [5], Lemms 3.10. Wé put

(3.5) ¢ (N) = 2(1+26)0,(Nloglog N)**
and define the sets’

Gn, j, ) = {w: F(0,2%,, h) = 27" (2},
= {w: P2 +m2', 2§, h) > 2—?&/82(1»%—3)15?5(2%)},

=U-U6Gmjn, H=U U U U

hecH ol el j<a? fnslan maan—l

H(n,j, hyl,m)
H{n, j, b, 1, m).
Levms 5. There 4s am my = u,(n, 8) such that

MU (G, 0 Hy) <.

nz=ng

Proof. We observe that by (3.1)
(36) N7 <2t~ [ofP<o i<t 1<h< E).
[1]

We apply the proposmlon with M =0, ¥ = - 9™ and B =1. Of course,
the functions <p ) are not even. But any function «(®) with peried 1,

Varo < 2 and f a(2)dz = 0 can be written in the form «(z) = a, (0) 4 ay (@),

‘where a, (@ = 1 2) have the same properties as a, a; is even and ay
is odd. (Sunply pub oy (%) = }{a(z) +al— m)) ) Sinee the proposition also
holds for odd functions satisfying the remaining hypotheses we conclude
that the application of the proposition to ¢f?— [¢ff) is legitimate if we
replace ¢; by 20;. The factor 2 hag been taken care of in {3.5). Hence
by (3.6)

2{@(n, 4, 1)) < exp(—(1+ 8)2Mlogn) -+ N34
and so by (3.1) ‘
(3.7) LA €T

if ¥ iy sufficiently large. A similar application of the proposition with
M = ‘7“%—?)3‘71 N =921 gnd B = R, = gtr—b yields

A{H(n, §, B, 1, m)) < exp(—(1+0)2M Rlogn) -+ 23— -8
Hence o
(3.8) AHY €n

The lemma follows now from (3.7) and (3.8). =
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We now can finish the proof of Theorem 1. Let ¢ < o << 1 be arbi-
trary. By (3.1)-(3.3), Lemmas 4 and B for N> N, (recall that the
indicator 1 {0 < o <C ¢} was extended with period 1)

lz 1{0 < myw < @} — _Na! < le @ (o, ) thp‘” 2..11N
kN =l e N
= 2 {F( 2%y 4, Y+ S-‘ P2 m2 1,j, )} DN
heil %n(?gn
< Yo M1 3 gl oy
J‘%‘; { %nszilguz }
< (V) (24 1)~ (1 + 2 U(1 — 26y 1) 4. gy
< (1-+45) {83 4332 (g —1)~%) (¥ loglog )"

for all o except, perhaps, & set of measure less than 4, no matter how
o was chosen. Hence for those #

|2 1{a< my < ﬁ}—N(ﬁ—d)l
<N

< (1+406) (166 + 664 (g —1)~Y) (N loglog N)'2.

We divide by (N¥loglog N)¥?, take the supremum over all 0 < a < <1,
take the limes superior, put é = 0 and then % = 0, all in that order.
This proves the upper bound.

The lower bound is an immediate consequence of (1.8) and the fol-
lowing inequality

(3.9) . \2 PR

k<N

< V32 NDy

valid for any sequence (w;> with discrepancy D,,. This follows easily from
Koksma's inequality (see [8])

L .

(3.10) | Fl@) N [ fl@)de] < V() ¥ Dy
- sV ]

which holds for any sequence (x> with discrepancy Dy and for any

funetion [ with period 1 and variation V(f). We apply (8.10) with f(#)

= ging and f(z) = cosx and obtain {3.9).

Acknowledgement. T am grateful to Professors Mrdios and Gaal for
diseussiong on thelr unpublished result (1.4) and to Professor . Nie-
derreiter and to the referee for their coruments on my manuaseript.

Notie added later. Recently Niederreiter proved that the sonstant
V32 in (3.9) can be improved to 4. Consequently the left side in {1.5) can
‘be improved to 1/4 and the left side in Theorem 3 to V8.

icm
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