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On the distribution of values of additive functions™
by

B. V. IeviN gnd N. M. Timoreev (Viadimir) |

In 1939 P. Brdds and A. Wintner [2] found the necessary and suf-
ficient conditions for the existence of a limit distribution of additive
functions centred about ) with normalization 1, and proved the following :

TrmoreEM A. The necessary and sufficient condition for

1
+ 1)
AN
o(n)<we
in all points of continuity of F(x), is that the series

g {m)li* llg ()l

— and Yy =,

P P P P
where

J -1  for u= —1,

]l =4 u for 1< u<<1,

'll Jor  wx>1, " . g
are convergent.

In 1871, working independently, Elliott and Ryavee [1], Delange,
and the authors of this work [5], proved the following:

Txwomum B, The necessary and sufficient condition for

1

Sall 1—-F ()
N ,é:, !

ainy-d sz
Ay arbitrary, is that there exists o real b such that

Z lg(p) —blogpi®
»

n

* 'l‘]w brief gummmary was ]mbllshed in Vemexs marem. Hayr 28 (1973), No. 1
{169}, pp. 243-244.
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In [5] it i8 proved that in the case of existence of & limit distribution
of {g(n) — Ay}/By, normalization By should have either a finite or an in-
finite limit. The case of finite limit can be finally solved applying the
above-mentioned result obtained by Elliott, Ryavee, Delange, and the
authors of the present work, and the case By—-cc hag nob yet been definitely
examined. In [5] the cage Ay = 0 and By “regulariy” increasing slower
than any positive power of log N, is congidered, In particular, the necessary
and sufficient conditions were found for the existence of a limit distribution
for g(n)/By if Byu/By->1 uniformly in w in any closed subinterval of
(0,11, 8o that By = L(log ), where L{u) i slowly oscillating.

In the present work the necessary and sufficient conditions have
been found for the existence of a limit distribution of g(n)/By in the
case where By “regularly” changing, increases mof quicker than some
- power of log N. More precisely, Byu/By—e(u) uniformly in « in any
closed subinterval of (0, 1]. The last condition implies that By = log™ N x
x L(log N}, where L(u) is a slowly oscillating function. It is interesting
to note that these conditions are analogous to those of Erdds and Wintner,
and they become identical if we put By = 1. _

It a limit distribution of (g(n)—AN)/BN existy then, as shown in
Corollary of Theorem 1‘, there exists a constant m such that

Ay & max (|4y], |Byl) < log" .

In particular, if a limit distribotion of g(x)/By exists, then By =
= 0 (log™X). Thus for “regularly” changing and “rapidly” increasing
normalization, the question of the existence of a limit distribution of
 g(m)/Byis fully solved in this work. Exactly the same results are obtained
for the quantities {g{n) — Ay)/By, assummg that 4, = blog N 4 A% and
Afu— Ay = p(u) By +0(By).
It should be noted that the case of q]owlv osclﬂa.tmg By and the
ease By =log™N-L(logN) (for m > 0}, are different. In the first case,
if there exigty the limit distribution, 1;11en

S8 oo,

o)
Ze"”’\ 082 log,
PN p
which meang that g(p) = o(B,) for “fl,lmovr all” p < N, or, in probability
terminology, that each component P)[ By I8 asymptotieally negligible.
- In the second case,

NEN
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where z(£), generally speaking, is not identically egual to 1, which means
that g(p)/By are not asymptotieally negligible. To illngtrate this case
one can take as an example the additive function g, (n) = } log”p"%
with m 1, m > 0. . 5%

J. P. Kubilins called our attention to the fact that the problex of
finding the limit distribution of (g,, (1) — 4 y)/By was posed by P. Erdos.
From Theorem 4 (see also Lemma 4, § 5) it follows that g,,(s)/log™ N has
o limit distribution with a characteristic function eqnal to

@ N
1 jiea isu'

. 1.
1 f & ( f @ —1
z — BX T} S ————
2wl o 2 I mn
1A Y

e”"zdu) dz.

Note that g, (p) flog™ N are not asymptotically negligible, since for m > 0
we have

103’ ﬂ v

1
a Iog;v _——
logl\ . 1k
loo‘N D - | durol) #1+o(l).

pEN 0

In § 5 a class of additive functions such that for (g(n) —Ay)/By the
limit distribution does not exist for any 4, and By, hay been singled
cut. For this, it is sufficient that

2,

p(_A

2

g(p)
log" N

= Q(1)

1
V4

_ for any m > 0.

Throughout this work, By is a sequence of real numbers B, = B,
all estimates containing £, unless otherwise stated, are uniform in & in
an arbitrary interval of the form |&| < € where O is an arbitrary constant,
¢ (%) is an additive function, symbols Ok and o, denote that the constants
represented by them depend on K, and

1 i u>0,
(u} = .
0 if ws0.

In the following, without any loss of genevality, we will assume
that By > 0, in the case where the limit law for {g(n) —4y)/By is sym-
metric. In fact let {¥*} and {¥~} be two sequences on which By+ > 0
and By- << 0, respectively.

Putting

1

. 1
I () = w 1 and @x(u)= = 2 1,
<N

nag N
Jin)—Apr - oy —
By [Z7%)

Bl
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we obtain _ '
1 -
Far{u) = Byr(r)  and  Fy-(u) =1— Dy (—u)-- 5l 2‘/ 1.
nenN—
alm)—Ay—

Hence (g{n) —4y)/By and (g(n)—.dy)/|Byl have or do not have gym-
metric limit distributions gimultaneously.

1. Rapidly increasing mermalizations. Since an additive funetion is
defined by its values on the powers of prime numbers, and sinee, in the
question of existence of limit distribution, powers of primes greater than 1
do not play any part, one expects that the existence of a limit distribution
should, “on average”, be followed by limitations on the valnes of an
additive function in primes. To establish this we apply.a gimple method
analogous to the classical method of finding the asymptotic values for

2 logp/p.

nEn

LmywA 1. Let (g{n)— Ay} By have a limit distribution with the charae-
teristic funclion 7:(5) and let BW /By be umformly bomzded W, U st 1, then

4 A
1 wfP%logp | By R ip g
{1 o BN —SL (¢ 20 0T EY — o(6)6 N fo0(1),
log ¥ £ P By
Proof. Since '
aet 1 2 24y
oif)= = Do PN = (&) +o(1),
N .
then
1 e a3y ¥
53 2 e BN logn = (v(&)e P By +o 1))logN+O( _Tlogﬁ)
n<V . SN 7
=7(&e BN log N +o(log N).
On the other hand, using the ad_dltlwtv of logn, we obtain
1 “535(’7]) 15@*} logp* - 1 Ol ”)
e ¢ “Nlogn = e - 3
N‘H:SZJ\: L ’ p;’:, P N/jﬂ 'né’Wp
(n,2)=1
s N S
""'_:J : fpa (.N]p ) ( ,Nm 'w(N,’p )
e ‘ A o
_ SNhviean (B SS5E o 0 loge?
P By “Zi p°
pEN ‘ nEEN
) az=l

wE(P-) ) i ilﬂ:?.
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In passing from 7y, (§) to v(#) the boundedness of By, /By and the
existence of limit distribution have been used. By equating the above
equalities we complete the prootf of the. lemma.

Lemma 1 is particularly useful when B./B, tends to ¢ or 1, anci
plays an important part especially in proving the impossibility of existence
of a limit distribution with rapidly increasing normalizations.

‘ TaroREM 1. {g{n) —AN)/BN does not have a proper limit dislribution
Sfor any Ay if By is such that lim Bye/By = 0 wniformly in a in any closed
subinterval of (0, 1). i

Proof. Let (g(n)—Ay}/By have a limit distribution. For flxed

M= 2 we have :

Ay
Z ea(p) Jogp (5 BE%) P\l ;‘NJH
IOgN froer » N
0(11) 1 ANjp
!& __:}__ g ng ( N +0_M-(1))‘+“

logN Awljﬂfgj;—g:{'rl—l i

1 . logp
ol 3 )

pgleM

_ 1 26@5%% logp ems
log ¥ =, P

Since M > 2 i§ arbitrary, then from (1)

. 0() Atp
@) loglN 2 o %ﬁf w
n=N _
We will show that (2) contradicts the assumption of the existence of
a proper limit distribution. If A, /B, = 0(1), then
Aya Aye  Bye
By By« By

( 1 Z logp)
IOgN N'l'_ll'-M‘{'_’,fJagi\T b

A

#¥ 40 (%) -0 (1)

A

7(&)e BV to(1).

-0, for N-oo,

uniformly in the above interval. Hence, proceeding in the same wa.y
ag for the derlv&tlon of (2), we obtain

w22 Jopp e
- [ BN m——e = T 5 é BN 0
(3) .10gN2;V » (£)i | “o(1).

If, however, d,/By # 0(1), then we choose such a sequence XN, that

‘ 5 Ll increasing monotonouwsly, tends to infinity, and for all N <<V
Ny
.Al\ Bn, .
the inequality N 20 ~ holds. Putting £ = 5 in (2),
: BN Ny Ay
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we obtain
1 in? ,1 log P
(4) 3 loer
log Ny p%: . P

ginee 7{0) = 1 and
_A. o A a BN B @ B P _A. a ANZ

51.”‘}”0(1)}

Ny Ny ! Ny N7 Ny
—= . P, e . — — {

nniformly in « in the above interval. We will show that the left-hand
sides of (3) and (4) tend to 1 for any & In fach, pulting y = 1—1/M,

by (2) we have
(o)

2 002) i 2oL k)
Ly Y N, ¥ logp +O(L)
log W, log A
g e P og N} e P \M
< ¥
. M
48 1
e 0[] boult) i Gy = By,

ye N1+0( )+oM() it Oy = Ay,

Hence in the first case,

iton]

e
lOgN 1+0M(1)+0(-M~),

which. contradicts (3) if there exists the proper limit distribution (z(£)
% ¢"%). Tn the second case we obtain

1 in}:@-logp ' 1
E Ny PR S
log ¥V, ¢ ! r 1+OM(1)+O(M)’

PNy
which contradicts (4).
Remark 1. Immproper limit digtribution can exist only in the case
when. 4 /By has a mib; for 4, = 0 limit distribution is centred about 0.
Remark 2. If A/By is bounded and if ¥, is a subsequence of the
sequence of positive integers, then (g(n)— Nz) [By, does not have the

_proper limit distribution if By /BN—>0 uniformly in ¢ in any closed

subinterval of (0, 1).

Analogous considerations permit us, in the case of exizstence of a
limit distribution of {g(n)—Ay)/By, to find limitations not only on B,
but also on the behaviour of 4, = max(|By|, |45

icm
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TurorEM 1. If on any subsequence of the sequence of positive inlegers
lim dyef/dy, = 0 uniformly in o in any closed subinterval of (0, 1), then

NP0

(g(n) — A x} By does not have the proper limit distribution with By and AA;.
Proof. Replacing & in (1) by & -By/dsy, we obtain

_ 5 010} .
L (P )

IOgN l‘J-—\‘;

ot Axpp
Ty AN

By\ iy
= T(E —‘)e A +o(1).
A
Since By/dy, dy/dy ave Dounded and Aye/dy,->0, then applying the
same considerations as used in the proof o:E (2 ), we have

A,
y(J:) Ny

1 & NZ log_fp _BNI & AN;
—_ ], -
log N, Z ¢ P T”(“’E ANI) ¢ ol

DNy

In the analogous situation.in the proof of Theorem 1

1 W 55&@10
: ) o “Nzigﬂ — 140(1)

log N; <
B<Ny

was obtained, which contradicts the last formula if the limit distribution
is proper. '

COROLLARY, If (g(n)—AN) |By has the proper limit distribution there
ewists a constant m such that

| Ay =max(|4dyl, |Byl) < log™N.
Proot. Let '

and o(N) be unbounded. Now let ns choose the sequence XN; s0 that
o (N0, o(N) =g o(NY) for N < N;. Then for w1

A (log N Q(\I)
Ay - (log N,y

< w59

for N,—cc uniformly in % in any closed subinterval of (0, 1). Therefore,
due to the above theorem, the limit distribution with sunch Ay does not
exist for any additive function. Since (g(n) —Ay)/By has a proper linit
digtribation, o(N) is bounded.

2. The necessary conditions. As seen from formula (3), the existence
of a limit distribution of g(»)/By in the case of Byu/By tending to 0,
implies that the limit disfribution exists for g(p)/By with the weight .
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logp/p. It Lecomes evident that in the more general case when Byu/By I '
—@(u), the existence of a limit distribution of g(n)/B, implies that the
limit distribution exists for g(p)/By with the same weight. However,
in the case p(u) # 0, 1 more complieated considerations than in the last
section are required.
TuroreM 2. If there epists a limit distribution, proper or improper,
for g(n) By and if Bye/By— (o) uniformly in o in any closed subinterval
of (0, + co), then there exist @ number & and non-decreasing bounded functions
Li(_u), t=0,1,2 ..., Li(d o) =lmL(u) such that, in all poinis of

eontinusty of I(u), oo
. g{p) | 1
(®) P ‘ = Ly(u),
: PN N2
g(py<iul
1
(6) gp) | L,
DN 'BN .p
and for 1 =1,2,3,..,
! log®
@ GEE D Ty .
. 108 Pyl »
) o{0)<uB
Proof. Suppose that
o -L-ELZ”,(—M- 1
Ty = D)0 Vo
=1
where
1 .
8 ml—f—lOgN "}*m‘, |t|\<_.K1(N) =O(10gNi),
By partial summation we obtain
o : o H BN“
1 e85 (") du o du
P =o [ 5 S ERE gy [ o ST o),
R ngw nag N -
where g = 1+f.€t. Since .
1K . . oo

. BNM d‘ll’; _ 1 BNu d'uf ) 1
Sl gE - ole) ma [onle ) =o(z)

we get

. X
1 Byu\ du 1
log N re) __ 1/! 7:ZW(E By ) g;;; —I-O(f) Hox()-

Taking into congideration Byu/By—@(w) uniformly in u in the interval
[1/H, K, (&)~ 7(£), and the boundedness of @(u) (see Introduction),

by By~ oo,
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we find
.BN'LL
Tt 5'—8- == T(f(p(ﬂ)) +o(l).
By
Congequently
F(s) _ f NE 1
K
from which, since K is arbitrary, we obtain
F(s) dut
Toa ¥ = 7 {Ep (u)) = “o(l).

Using {(s)~1/{s—1) < I, Wh_eré K, >0 is

a constant,

we have, for our s, for |2

Iis) =zf r(f(p(%))-ti—:% 40(1)
a 12800

£(s)
umformly in ¢. On the other hand, by the multlphcamwty of ¢ FA?, and

76) _ R R p——
o _(1+o(1))exp(§e N 1)5 g

Thus

[ee]

—1— Wv"m log(zf 7 (Ep () fﬁ: +0(1)).

o .

o)
(®) Z (655 — 1)

Gontmuaduon of the proof consists of obtaining an estimate for the
sum of coefficients of the Dirichlet series on the left-hand side of (8).
For this, its behaviour as a function of 2z should be analysed first. The

-reqmred information, in a small neighbourhood of & = 0, can be directly

derwed from (8). For |2 < Kl, d = 1jK, and oy = 1-+1/log ¥, we have
;o 000

Z (6 BY —1)p~¥(p T —1)

~ | 42 logp el 1 1)

= N 1] = 0 ol

0( e U—=107) * >
FNT NICpN

Therefore, for |2 < Ky,

T
® e Fv —L)p
» ’

(2}

&
i e 15 T
k¥ _ E (31 By

»

—1)p™* ¥+ 0 (log K;).
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From (8), for t+ = ¢ we have

L;& . ’ 2 i
\ﬁ‘ BN qypTN =10g(f T(fqo(%b))%e +0(1))-

- Yo

e P du : . . .
Since p(£) = ) r(gfq:('z,s})—eﬁ-is the function continuous in & and (0) =1,
0

there exists &, > 0 such that |¢ (&) 1/2 for |&] < &,. Hence for |&] <
uniformly in £,

E(l{}!)
(10) Dl P¥ —1)p°N = 0(1).

)

Trom (9) and (10) it follows the existence of £, > 0 independent of K,,
such that

1:5.9'_(£) 2
(11) Dle Py —1)p TV

o

= O(log K)

uniformly in £ for |&] < &, and |2| < K,. Therefore, for-|&| < &, the first
component in the argument of logarithm is % 0 for arbitrary =, hence

i) i E
. 1)1’3 log ¥ __

(12) D e 7y

Clz, &) +o(1)

Eo, where

Clz, &) = log (zf ©(¢p(w) du)

[

uniformly in 2 and & for |2 < K, and |£ <

i3 the function continuous in £ and =z

Thus we have proved that there exists a neighbourhood of the point
© & =0 in which, for the series (8), the equation (12) is valid. Fér this
goal it appeared to be sufficient to get the estrmate (10). Tn the following,
(10) and therefore (12} will be found, from other considerations, uniformly
in & in the domain |&| < {, C arbitrary.

Tet the estimate (12) hold uniformly in £ for |3} < a. Multlplymg (12)

1 ¢ . o .
by o and integrating in ¢ from — K %o K, we obtain
2 .

2T
1A o
aee 1 ¢ s, @i - 2082
{18} I = — f —_ (e B ~1)p~ -1 lugNdz
2 hm F <
C1+TK
1 &
= | 0z, )3+ 0g1).
1-iK :
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On the other hand

LA AAC

' 1 & o il S E
T=gy | 7 267 - T
_ S ik — .
_ 1K :
3 (615%%) 1)pit TR 4 NG
) ~Lp = [ e vol V2 ,
Ld g 2w z Liyp J |2}
—iK TR

where summations Y, Z‘q,z are taken respectively for p < NVE®

oy ; =
me. s o N i Lnd P 7—1+1n/1&’ and for NI— 1/|K<p<_Nl+1an
Binee

LR . ) _
i ha P 10§)g\£§)) _‘(_Zm - ( log¥ ) ‘1 it p<< N,
1 & Ep™~ilog(N/p)l] |0 i p> N,
then
14K ;
1 e x el Y
I == —- J _6__2 (6 By ““1)2) ! log;\fdz_Jr_
218 J B 1
1-1K
T ) loo K
T —1)1)—1-%0( ‘:/g__ )
NUR cpew e

uniformly in § in the interval [£] < a. The first integral on the rlght -hand
side is equal to

1445 1353(1’3]

1 & - 1
R e N —1ypl
2md f z dzzl (e N
1-—d
Tk ) 2 |
A i T dz|
-0 f . ¢ PN —1)(p O —T)p! )
o 3 I |

BN fe-~-._' - | G _1)p-1
2. solx| 3¢

o) 1042 0(29)

N (o By L 1yp=i| = | e By —1pmv— Y (e By _1)pey —
A‘fl( P L}T' p;:r
LEQQL)
- (6 BN ~-1)p M p!"N 1)~

. e 8
D e

NI e

= O(log K)
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(in the proof, (12) with ¢ = 0 was used), it iy also equal to

g 22 log K\,
. ]j"‘r . -1 .
21 (e ®n —1)p +0( 7 )
Hence '
42 log K
1= 3 —np ko [RE)
= VI
- uniformly in & for 1&] = a. By this and by (13),
€0
)= D (e B —1)p
pEN
14iK 5
1 & 1og_fr)
- o de+ 0 2) o (1),
= HfK —G(e, £)de+ ( ) +ox()

Applying Cauchy’s criterion we find that the sequence of continuous
functions yy (&) converges uniformly in & for |£] < a. So that for 1< a,
4 422

Y (e BY —1)pt = w(g) +o(L).

(14} yx(€) =

PN

So far the last equ:ility has been proved for |£] < &,. On the other hand

. e e 1 — 4 & |u) glp) |21
1 A = e e e e, [
I T ; U | 5T
' ﬂ'(:ﬁg;f:f.ub’w
L\ g l”t
+ i€ ==

fromi which, in the usual way (e.g. [3], XVII, § 1), we can prove that

glp) |21 glp) |l 1
ZP? and 2 —

By B,
DEN ¥ |P

By
are bounded, and therefore (10), (12) and (14) hold uniformly in ¢ in
any interval |£] < ¢. From (14) and (15) follow (e.g. [3], XVIIL, §1) (5)
and (6). Condition (7) can be derived from the known relationship (14)
between characteristic functions and. distribution funetions by partial
summation.

nEN

3. The sufficient conditions. Tt turns out that the assumptions of
Theorem 2 are also sufficient for the existence of a limit distribution of
g(#)/By. The proof of this fact (Lemma 3) is largely based upon a minor
generalization of one of the results of [5], in which the Haldsz method
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[4] i3 used essentially. If in advance we assume that Byu/By— @ (1), then
the sufficient conditions can be easily obtained from Lemma 3, and they

appear to be less complicated (due to the lack of the condition (7).

In order net to place limitations upon the generality of the choice
of By, we will prove the following:

Lemma 2. Let ©(§) # 1 be a characteristic function and let Dy be a
sequence such that D /Dy is uniformly bounded in u for 0. u <1 (Dy> 0
if T() = v(—§)),

DN'IL
(16) r(f~5~~) = (&, )+ 0(1)

N
uwiformly in & ond u for | < 0, 0 < a << u << 1, where w(£, 1) is continuous
in u, then there exists the function @(u) for which :

DNU
Dy

— (1)

uniformly in w in any closed subinterval of (0, 1]. Nole that either (i) = 0
or gl(u) =0 for 0 <<u< 1. :

Proof. Suppose that there exists » such that Dyu/Dy does not have
& limit, then

D, e Dy
lim =25 o Py (1) << @o (1) = Hm ot ial
Nooe N N-sco Ly

From (16) v{&p,(u)] = v(£py{w)). Since the equalibty holds for all &,

| RN [ welw) q)
o) = Z0)) et st = ({22
for any integer ¢ 0. Thig does not hold for ¢,{w)jp,(n) # —1 since

(&) s 1. But if @q(u)je.(v) = —1, then (&) = z(—-§£), in which case
Dy > 0, and hence 0 < ¢, (u) << py(u), which contradicts the assumption

© that (%) /p.(u) = —1. Therefore Dyu/Dy—@(w) for all 0 u<<1,

We will prove that e(u) =0 or that is not equal to 0 for
0 << w=1. Assume that there exist points at which ¢{u) = 0. Let

o fu
Uy = BUP @, then fov u, << w < 1, p(u) = 0, and for u < u,, @u) = qn(—J-uI)
et !
7 S s e
=p (Tlm) pluy) =0, i w<w, < wu, and @(u) =0 (the multiplicative
‘1
feature of g(u) for 0 <Cu << 1 is a result of its definition). Thus
=0 i w<u, '
p(w) )
#0 if

On the other hand Dy/Dyu = Ljp{u)+e(1) if pfu) 0.

U< << 1,
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Next, taking such a v that wu,<<u,9<1, L<o<1juy, u<<u,,
we obtain
_-D_N-ul.'l’ I)Nbﬂl.’!? _DN'U

Pl +o(l) = —p2= = =

D(Nv)lju

1
= () m-l-o(l) = 0(1),
ie. g{u,-®) =0, which confradicts the choice of u,. Therefore either
plu) =0 for u<<1 or gp(u) %0 for 0 << u <1,

We will show that Dyu/Dy—@(u) uniformly in « for 0 < a < % < 1.
Assume that Dyu/Dy does not tend uniformly to p(w) in this interval;
then such e, and sequences N; and w;, where 0 << a<Cu, <1, can be
found that

n¥

(17) ,>« &€y .

D
’ — ¢ (aty)

‘D-ZV

and:  t;—,, HI/JDNFH} (because of the houndedness of DNu/DN

By this and by (16),
T(£-b) = v{&-@(ug),
but due to {17), b = @(4,).

Repeating the considerations nsed above, we obtain a contradiction
with z(¢) = 1.

Lmnmia 3. Let fin; N, &) be o function multiplicative in n satisfying
the conditions '

Ifin; X, &) <1

and
1-—TRef(p; N
(18) Z : flp; "E)'=0(1);
_ ' BEN 10.
then ' '
Ly
(19) Na A’_Jf(% N, &
N
144K z f N E
. '
e [ 5 TT [ (1 DT e
. 1—7 K DN pe Tog NV =l E logN

1
+0 (3;5———) +ox(L)

wniformly o for 0 <<a<Cu <L for all a> 0 and K= 1.
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Proof. We define the multiplicative funetion f,(n; N, &) by

p < NV
P = Nlp'u.

fe" N, 8 f

w0y N, = .
Ful0"y N, &) 1 "

The generating Dirichlet series for f,(n; N, & will be denoted by F(s)

with & = o+t f(n; N, &) being multiplicative, F(s) ecan be written

in the form

(20) sy =[] (1+ A ) [T (1”_,)

peNI r=1 p>N1®

(1+ }ﬁf = )><

D 5

flp; N, &)
XBXP[ Z —_—"15;;‘"5' 2 —+H, (8},
% 3V [ et

where H,(s) is um’:ﬁornﬂy bounded.
We will now analyse the behaviour of F(s) in the domain Kflog ¥
< [t < K. We have

#(s) ( D= Ref(p; N; &)p )
’ <€ ex .
flay) P W PN
PN )
By (18) and by inequality N

1—Ref(p; N, &p" =1—Rep “+Re(p~—flp; N, £)p~*)

>1—Rep *—(1—Ref(p; N, &)—
—2V1—Ref(p; N, & V1-—Rep~®
we find
1—R N,
{£1) ———';F(SH £ exp[ \_1 1 R.:;p ‘ ef 1:; f)
) (GN) 1}€Arl[iﬁ nEN p
~11— Ref(p, N, & V 1—Rep™®
—f~z§/ ) = D= o
PN : p N
1 1 1 Llogity [ 1
| ——- — —Reé——r - € ==
@l‘p[ 2 2 (zr"N p“w*‘)] <"t VE
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uniformly in ¢ and « in A/log¥ < [} < K, 0 < a<{u < 1. By applying
Perron’s formula and {20), we obtain for e u < 1,

(22) m—Zf(% N, 8 Vfu(w N,
n=g N n{N
1K =
1 & | - flp"; N, &)
LT (—)( S,
AT penilit pehlogN oy pre“m'ﬁ"
K el
RSN, I ._4_,,__11 nda
ol ol [ nal),
where
J = J,ud,,

K — K
J1 ={t IOBUN\}t>_O_ﬁ} and JE :{t: _IOgZNQtQW}
The remaining part of the proof of the lemma will he devoted to
deriving an estimate of the integral on . Tt will be proved that this
integral is O(1/KY™). To estimate the integral on J it iz sufficient
to estimate it on J, since the estimation on J, can be obtained by repeating
the same considerations.
‘We will rewrite F£(s) in the form
2" N,
P(s) = (1 + Vf o -f))

rm:l

NEACE NN
21 = (9 By(s)
(::,bi?)al '

and we will integrate the estimated integral by parts

log?n

e
Fisids = — - it —
+ (s)ds P JfFE(GN"I""' )d J Py
1

. K oA
= L Floyti f it
2% (GNHlogN)J et YOI
1

. . IG{-IZ,N'
toe [ B [ -
7y i
g(s) and its differentials being uniformly bounded in ¢, 1nt0gr&tmb geveral
times by parts we obtain :

1 Ns~1 iu
omi P
71

§lon+ 1) du

Nm ’
i g (o 4 ) cludt
O

l(]lgg.r.

Nz'u ’ )
e gloybiwydn = 0 — T ).
O o Wk silog &)

E
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From the last two equations, applying (21), we find

1 el |ds[ 1
23 . = L(8)] - o —— ).
@) gy [Trew o S o)
By application of Holder’s inequality we get
-t s . i 12 1/12 7 12/11 11/12
ey [P s [ ) ) ([ ldtl) .,
J § Wi<logly Jy §

Toe begin with we- will estimate the second integral of (24). Due to (21)
we have

- F 12/11
O
7
R 2 +oo
: [y (s) 252 2 L, (5) P28
= Fu 1122 dt f 2
\Knoﬁ\gigxl ={8)l _i |52 + Kz o Is]za"zz di
1z A 23/22 ya £ 23/22

B TR RS [

VK A | VE

oo [f—-m|<gI/2

( log A7\
V5]
VE

—+oo
1.
2322 L
[y (8} dt Z !|""?f_-| e )

max (
— o< Mmoo

|E—ml<<1/2

log NV yliz2
< ( iy ) max (f | By (8 = m )| 23022 dt)

]/K — 00 oo J&f2

Sfln; N, &) being multiplicative, F,(s) can be represented in the form

; -
(26) Py(s) = exp [ > M + ),

=3
where H,(s) is bounded uniformly in £, £ and ¥. On account of (26) we have '

23 O, p,Nf)

(Zy(s -+ i) = exp [44 i pEtEm

=+ ———H2(8‘+'&m)]

jre=%)
The funection
Julp; N, E)P‘”’L]

is a Dirichlet series with coefficients

) [ ratws ¥, yp=m,

Pin

Am) = Ay(n

2 — Acta Arithmetlca XXVI.4
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where i,(n) are coefficients of the Dirichlet series . ' The proof of this last assertion i is, in fact, contamed in [4] (see Lemma 1).
2 ;i \7 . The application of this lemma to our purposes, will be preeeded by a few
exp 14 ‘._. IS remarks. From equahty {26) 1t follows that :
2w meaning pln, and p*HHa. On the other hand, applying (26) to ,(s), (28) §) = — JM
we obtain ( ) g logp -+ Hy(s),
oot 097 7 1| _ 23 N7 1 ‘_:”J_JSHH where HZ’(§) is bounded uniformly in ¥, & and i.
((,2(5)) ( % %_g) exp it 3% s L 44 a{8} ), We will estimate the nmmber M of points t; for which
1, %)= - ) - IF; w
where H,(s) is bounded uniformly in ¢ and . Furthermore, since _ !“ﬁ'-(ﬂw-i-’ﬁk) > p——
L _f( L-jl(n))-e—ﬁf(wﬂﬂdeo, where w = A{oy - 1), it~ = n(oy 1), [4] < logX,
§ ZLd ws : 2B
# b et 9 = *l_w
= < )
by Parseval’s equality, we find W' Yoy —1
oo Let
LT dt ' ;
f By(s +im) P . ¥, :
J Is| : ‘ gr = eXp “arg”_FT‘(U'N‘E“'nk) s
2
+ 00 : :
_ _f exp[ 2 fulp; W, E ] exp [_;_g Hy(s - im)]l _If_]t; then on the basig of (28) and the analogous equality for %(s),_we have
) V f"’"
< f dt<f ‘Zﬂ, ‘ ~26Nud% G‘N—l = Zek 7, (UN—}"?’](: Q]c[ F}Z; 10g,’l9 +H, (-5‘]
~—00 n<e“ 1 g
. 0gp 7 Or
N g2 3, i < 2 ! pEiy +C1’:1M
< f (J}_J Ay (m ) N du < f [ (8) P — TS , =
& nett .
Hence, with the help of known estimates for [(s), we obtain <ol +i/ Z logp 229" 912 ltfap .
oy +ill—
di
f lez S+ﬁm)|23/22 < (lOgN)”ﬂZ X . é—l ' ’
[8]* = o M+ [Mm (ox) +M*° max — (o —Mt)]
| o’le ¢ (o —Nl<log?N | {
Applying (24) and {25), we get . YE
ds | it [ AT\ V12 < 4 M l—l/ .
fm, |-]—~i<( 7, (8) ldtl) ( i ) : ' (ow =1~ mloy—1)?
. [#l=tog?v | T 2 VE Since w = A (o —1)Y4,
This relation and equality (23) show that to complete this pxoof it is 1wl <]/ 4 22
sufficient to obtain the estimate o ox—1 (oxy—1)2 + 7(oy—1)2 )
N 12 ' - -
(27) % )| |at = 0gog ). From the last inequality, we obtain
2 -

|¢Lglogzz§r w2 <16 M+ 8 M g = 16.M + L M,
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it we choose B = 8. Therefore M < 32/w?. Henece, in the same way as
in [4], it follows that the measure of the set of those 7, for which

F’

“_“Fi(GN +it)| >

2

(It < log®N)

O'N“"l

does not exceed. -?%(UN—l). Now, by exact repetition of the simple
w

congiderations of [4] (see pp. 392-393) with ¢ = 12, we obtain (27).
TuroREM 3 (V). If there emist the non-decreasing bounded funections Ln{u),
1=0,1,2,..., and o constant d, satisfying the conditions of Theorem 2
én all points of comtinuity of Ly(u), with the possible ewception of w = 0,
then there ewists the limit distribution of g(n)/By.
Besides Lg{4-00) 50, v{&) 5% 1 and

1Byl #f  2(§) =2(—=4),

w = By in the opposite case,

then there ewists a funbtion. p{u) bounded in O<<u<1l such that

Dy Dy p{u) uniformly in w in any closed subinterval of (0, --oo0).
Proof. From (b) it follows that :

2 00

2 (1—Ree 2N

DEN
gince 1 — cos £a < (£24 1) - {ia|2 Applying Lemma 3 to the function f(n; N, £)
5 28
—¢ BN we obtain

)p~h =0(1),

gt 1\ iR
) = Do
nsN
. | )
1 M L = o 1
~am | [ 1+Z mr)d"“’”*“’ ) o
1-1K .’FSN”’“’ pe lOB.N r=1 1ogN

As By—+oo we have
)
Ilu (1 — ~-) (1 + 2 ) (14 o(1))exp [ﬁgu(;e%i_’ B 1)1)—-«3]’

(1) Theorem will he true, if the conditions at Ly{u) W’.lll e fulfilled only
for 1 = 0,1.
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due to which

144K
1 N of 28 logp
(29) =8 =E),—T_CQT ‘( ?ex_p[ Z (e By __ —1)pte logN]dz_[_
11K peyli
' 1
+0 (W) +og(1).
We will now prove that
' ‘ o e 0w _o o
(80)  fule, HE DI —1)pleT N — iz, )+ o(1).
Py .
Due to (7)
aer 1 s 2LB) log'p
nld) o e P 1) = = (@),
: PN
from which '
_T: 1 2w e — )
oter &) = D1 I g ST
PEN I=1 )
400 Ly
_ et — 1 —dE| ]ull < {g(p) P 1 gip 1
- _£ [iat]? ‘-}-" H 53,;1\: H
g(p)(uBN )
N (—2) 1 (—2) |
+; — n(s)+;m~—u7(n,1v(s)~—n(5))
T ik . = 7
g —1 —if Jju] . T (—=2
- [ M g i 3w+ oxtty

—p0 i=1

uniformly in # for jz| < K. Above we used (6), (7) and the following con-
giderations.
Let M > 2K > 2z, then

oo

25

g

Kl
7 [T w () =7 (&) +. 2 —

T I=M+1

I_\_Jﬁ

"71 ol )—n(f))[ <

-~
[

LM

< sup lrar(E) — w(E)IE + (3™
1§ :

The last expresgion can be made <g(e>0 ambitrary). To do so it is necessary
that M is sufficiently large and that & tends to infinity. From (29) and
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~ {30), for 4 = 1 we hawve

1- 1B .

- |
[ Sexires, E)MZ‘FO(W)+OK(1)-

1—iK

1
(31) w(é) = 5~

Hence, K being arbitrary, applying Cauchy’s criterion we find
Thlé) = 7{&) +o(1),

i.e. g(m)/By has the limit distribution.
We will first show that if the conditions of the theorem are satisfied,
then Dyu/Dy is bounded uniformly in « for 0 < u < 1. Note that

D l]BN| i w(—§) =1(4),
N = . A ‘
| By in the opposite case.

We will agsume the opposite. Then the sequences Ny, and Uy < 1 can be
found such that N%-»oc and DN}:k/,DNh—mo for K-so0. Since Ly(d o)

= Hm Ly(u), for any &(N)->co we have

w—too
= 6 f N
—_— .
BN P or N-—oo,
|U(P)I?“(N)BN )
from which
i g(p) [P 1
DENG, P
glpy \*1 g(p) P 1
< 2 (T) ra 2 D7
;ﬂﬁ.Nk N;:Ja PNy, ka b
lto)l< !'DN}é_k-DNkI “’“’)];‘/'“DWN%DNM
Dy Y 2 1 1 .
ol X 5 T e
NUR PNy, Ny P eny, P
)< 1B py ! m(;n]|>|.DNk'|
N,
= 15 (Do +00) +0(1)) +0(1) =o(1)..

ik
On the other hand, from (5) and by Ly(oo) 5 0,

2 |52

. p<:Nuk

N“?a

1
—p~*~ (+c>o)—|—o) ¢> 0.
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Since w; < 1, the last two inequalities ave contradictory. Let 0 < a
< < 1. Using formula (29), after having carried out in it the following

(this last is permitted since Byu/B, is

B
replacements, N->N¥, &2

By
bounded), and K-»Ku,

1+iK'u. lo
B 1 " gm _, logp
e = — —B N _1 'ulogN] |
TN“(E By ) P f, Xp[y(e )2~ de+
1-iKu BN

1
+0 (K1/4a)+OK(1)

You il o) ’
1 f £ue 9(33) g
-— exp[y(e —1)p~te I“EN]dz+
2ri Hy—1E ﬁsz\’
1
+O ( .K-]'MB) + OK(l)
1 Yu4-iR o
=5z exX]p (f z, £) )dz+ 0 K”“ +ox(1)-
1ju—iK

On the basis of Uauchy’s criterion, there exists the function (£, u)
continuons in « such that

B
(31) w(& N”) = (&, w)+o(1)

By
uniformly in % for 0 << e < u < 1. From the above-proved formula (31'})
and the boundedness of Byu/By, we obtain

Reealling the definition of Dy, we have

r(é-%‘i) — p(&, w)+o(l).
N .
Applying Lemma 2 we find that there exists » function ¢(u) such that
Dyu/D > p(u) uniformly in « for 0 << e <4< 1. Since by the above
the existence of the limit distribuiyon has been proved, and v(&) =1
due to the assumpbion of the theorem, on basiy of Theorem 1 @(u) %0
for 0 < %< 1. Therefore on basis of Temma 2 ¢{u) £ 0 for 0 << u-< 1.
Hence for « = 1,

Dy 1

Dy (1w
uniformly in » for 0 << a<<1/u <1, from which the second part of the
“theorem follows.

+o(1)
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4. The mecessary and sufficient conditions. In this section By—-o0
iz not assurmed. The followmg is a straightforward generalization of the
Erdés—Wintner theorem.

THEOREM 4. Let Byu/By—>g(u) uniformly in any cosed subinterval
of (0, 4 00). Then the following twe assumptions are equivalent:

(1) g(n)/By has o Umit distribution.

{ii) There exist Ly(u) and d = const such that

g(p)
K
(6) > ’ o o)
pN
: glm)suly
amd
1
(6) P
il By | o

i all points of continuity of Lo(u), with the possible emception of % =0,
- and By has either finite or mfamte limit.

Proof. We will show that (i) implies (ii). Indeed, if By—+oo then,
on basgis of Theorem 2, conditions (5) and (6) are satisfied. From [5],
Theorem. 4, it follows that By has either finite or infinite limit. If the
limit is ﬁmte then, due to the theorem on the convergence of types 6],
it can be assumed that By =1 and that (ii) follows from the Brdss—Wintner
theorem. We will now assume that condition (ii) is satisfied. From (5)
and (6) we find

28 g T g gy
(o B 1) & = f deﬂ(u)+¢§d+o(1).
e o [l

Since B vl By p(n), by partial summation we establigh the analogue
of (7} for corresponding characteristic functions. And finally, using the
relationship between characteristic and distribution funetions, we establish
(T}. I By — oo, then to finish the proof we use the first part of Theorem 3.
If however, BN tends to a finite limit then we apply the Erdos—Wintner
theorem.

The proof of Theorem 5 is a little more comphc@icd as for the proof
of the sufficiency nothing is presumed about the behaviour of B vl B
Furthermore, in Theorem 5 the necessary and sufficient condltmns for
the existence of non-irivial limit digtribution are given. Theorem 5 can
also be considered as a generalization of the Brdos—Wintner theorem,

even though, due to its generality, its conditions appear more complicated..

THBOREM 5. For the emistence of o proper limit distribution of g{n)/By
Sfor N,L,/BN—>-qa(u) (uniformly in w in any closed subinterval of (0, - oo})
it i necessory amd sufficient that By has either finite or infinite limit, and
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that there exist the bounded non-decreasing Junctions Ly(u), 1 =10,1,2, ...,(%)
and o constent d, sabisfying the assumplions of Theorem 2, moreover
0 = Ly — o0) < Ly( + o0}, and if In{u) = &(u), then

B ? log

PN B h BN p

for any a.
Proof of necessﬂ:y

Remark. It is sufficient to consider the case By—soo for N—soo
ag, if the limit distribution exists, B, has either finite or infinite limit
(see [5], Theorem 4) and the case of finite limit resolves itself into the
Erdbs~Wintner theorem. The necessity of conditions (6)~(7) follows from
Theorem 2. The necessity of L,(+ o) > 0 can be proved in the following
Wway.

If 7Ly(+o0) =0, then taking into consideration the inequality
1—cogfa < (§24-1) [lall2 we obtain

g(p)

log e
BN
logIN 2 (e D= = }

PN
g(p)\ log'p
log‘N i/ ( T ) P

(33)

z ]/ 1%0859(19) —
&L — 2
~ log!N ¢ ﬁé’; E/pg}:r P
- 23
<< 2 1 — 0.

From which,
{0 for u<xo0,

1 for wu>0,
and 7;(£) =0 for I =1, 2, 3, ... Therefore, from (30) and (31)

1 LK

Ty(8) = - f %e‘“dzw(

: )
+ox(1).
/48
2ri | ) M

1
) +og(1) = €40 (K”"B

Ag K is arbitrary, 7(£) = &%, which contradicts the existence of proper-
Hmit distribution.. -

(%) Bee footnote on page 852.
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Let now Lj(w) 5 B(uw). We will show that then g{(u) = 1. In faet
let p(u) =1. Then by Lemma 1

1 v 2 5’““) v logp.
e

(34) Tog ¥ =1-+0(1).

NN
Transition from (1) to (34) is realized by the scheme used for the proof
of {2). On the other hand, since L,(u) 5t H(u),

1 S* 150'(:0) logp

ngN A{E)+o0(1},

DV

where A(&) == 1. Therefore @{uw) 5% 1. From the boundedness (for u < 1)
and the multiplicativity of p{w), we have @(u) < 1. Hence there exists

at least one point §< 1 at which @(8) = y < 1. Then due to the multi-

plicativity, @ (u) < y’" for &™¥ < w < O™ Assuming that (32) is not satistied
we obtain
15 0(19) leo

= o{1).

1 logp
logN P

PN

© On the other hand, by Lemma 1,

) . BN/p L ENin g
P AR SRR
logN =l ) By T
Nilp a .
- lN 615( 3 By +) ( ‘-B;Wﬁ)i{_)g_g_ (§)+O(l)
log PN v/ P
From the last two equalities, we get
logp
N'fp ol(l
35) g 2 £ 5 R = o,
where f( ) = Rev(E)e ™. TLet &. be a point at which f(£) has the

smaltest value in the interval |£] < 1. Thus such &, > 0 can be found
that for |&] < &, F(&) —f(&) = e> 0. It p lies ingide the interval (N"(™+D
N, o(m) = 1)( 1 ém), then for |£]y™ < &, and for sufficiently large ¥,

f(fl N"’)——f(&)}wo.

N

If, however, p lies outside this interval, then according to choice of &

f(sl ’?g;) (&) > 0.
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Hence .
1 T B lo
o) = gy 2 (6 22) — fle)) 22
tog DEN By » .
& log p ( 1 1
= — > 0.
7L . AMm+tI
logN ol Ve, < yolm) P =29 1-4

Since contradiction has been obtained, the necessity of condition {32)
is proved. :

Proof of sufficiency. If By tends to a finite limit, the suffleleney
of the conditions follows from the Erdés—Wintner theorem If, however,
By~»oo, the existence of a limit distribution follows from Theorem 3.
Wewill show that its non-triviality is a result of the conditions of Theorem 4.

We will carry out the proof by contradiction. Lt 7{&) = &% We
will prove that then, either

Lo(+os) =0 for  Lyu) = Bu )‘33‘(1 Sl
o ¥ w<o,
or

1
log ¥ <

logp
P

(36) a-+ —0

g(p) BN/}J !
_a‘
'BN 'EN

for L,(u) # B(u). Let, in fact, L,(u) = F(u). Passing on to characteristic
functions for real parts, we obtain ‘

1 g(p)) logp
1-- RACN Jt ¥ i
Tog ¥ p;( cos & B, ) P o(1)

Therefore, for (> 1

4

o) iy
Z(eEBN 1) loip '10;11\7

PN

2l ( g(p) ) logp i/ logp
£ — — CO8 E — — =0,
log ¥ ]/ PN r :p%:’ P

7, 5 (E)] =

Hence, by (30) and (31), for (&) 5_ 0,1=1,2,3,..., we have
HIE +o0 e 4
oo L iexp( J i L clLo(quéEd) &x +
I J o ow [[oslf?
11K . —oo .
1
+0 e +ox(1).
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Since K is arbifrary, ,
teo it -
. g — 1 —3& |lu .
3150! = exp ( f M““WEM dLo (u) -+ @Ed) .
)

From the well-known theorem ([6], p. 314) Ly(+ o) = 6, d = a. Let

now L, () 5t B(u), then Ly(+o0) 5 0 {(see (33)). If Ly(+ o) 5 0, then

B /By is uniformly bounded for 0 <u <1, as shown in the proof of
Theorem 3, and by Lemma 1,

0(13] 1
f( “Ey o) logp = 1+0(1)
logN
or
2 “,(a(m) wa)__l) 12%
logN = P
TR g . . . 2
¢ —1—igful 1 Y ’ 9(p) _, Bup 1 logp
= a - @ - b
| el ? log ¥ @v By "By »
a2 Bxin _asu
By By .
3 v !7(13)_ ta Byw || logp -0 '
log¥ & | By By P '

Applying the theorem from 18] (§ 1, XVII), we obtain (36). To finish
the proof of Theorem 5 it only remaing to show that B e/ By~ p{10)
uniformly in % in any closed subinterval of (0, 4-co). If x(f) (—§&),
then it follows from Lemma 2. If, however, =(£) = z(~— &), there also
exigts the limit distribution for g(n)/[By|. Hence all the conditions of
Theorem 5 are satisfied for |Byl, and so it is natural in the case 7(£)
= 7(— &) to assume, from the outset, that By is positive, in which case
B uBy—p(u), as seen from Lemma 2.

Minor alteration to all the foregone leads to the following theorem,
the proof of which will be omitted.

THROREM § (*). For the existence of proper imit distribution of
N

~with Ay = blog N+ 4%, where (A%, —A%)|By—v(u) and B, [By—>p(u)
whiformly in w in any closed submtewal of (0, --o0), 4t is necesswy and
sufficient that By has either a fimite or an mfmwe Vimit, that

g{n)—Ay
B

~—blo
Ay =dlogN+By D L)Bm—gg ‘ + 0By +0(By),
BN N

() Bee footnote on page 352.
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and that there exist the bounded non-deereasing functions Ty(w),! = 0,1, 2,
..y Salisfying the conditions

Ly( £ e0) = Hm Ly(u),

U—7-co
N’ g(p)—blogyp |* '
— Lig(u)
:u%\’ ll By o
o(p)—blogp<uBy
1 logtp
log‘N E ~Ly(u), I=1,2, 2

N
g(B)—blogpuBy
0 = Lyf —o0) << Ly(+o0) and if Li(uw) == B(u), then for any a,

g(p) By e Ay — A —a
/

Q(logN)

2 logp
r

5. Examples, To illustrate the results obbained in this work we
will give a few examples.

L. The first group of examples shows that for the normalizations
studied in the present work, limit distributions can exist for some
funetions. In all hitherto known examples, normalizations B, = L{log N),
where L(#) is slowly varying in the Karamata sense. They have here the
form BY = log® ¥ L(log N}, where g > 0 and L(x} is slowly varying in the
EKaramata sense.

Lmvwa 4. Let g,{n) be an additive functwn such that g,(p) = log®p x
xL(logp) where o> 0,0 %=1 and L(u) is a monolonously increasing
Sfunction, slowly varying in the Karamata sense. Then g,(n)log?N L(logN)
has o proper lLimit distribution.

Proof. Since L(u) slowly varies in the Karamata sense, there
exigts £(N)—oco such that

L(logp)
" L(logN)

uniformly in p for N <p< N. From which, taking into account
L{logp)/L(logN) < 1, we obtain
2 " logp ¢ L(logp)
= logN L(log V)

(logm )e L(losm)
log NV, L{lng’\f

_ . logp )mi) ] Y (]ogp )29i
—O( Z (logN P " .>_J log ¥ -p“>

iy DEN
nsn ) logp<(u(itom) 0 log v

N0,

=1+4+e(l), for

2
P
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0 it w0,

1

—u? i 0]
Lo(u) = { 2g " = d

1

_— if w>1

20

B(e)

p(N

and

. z 0 i u<0,

al Co, :

e 0' Wi 0w,
IOU'_N p—<—1\'; ) i
1 if a1,

syt
Therefore conditions (5)—(7) are satisfied, hence g,(»)/BY has a limit -
distribution. It only remains to prove that it i3 proper. Since L, (%) ;~é Eu),
it must be shown that for any &,
o >f‘1‘
log & ;EEJV
Bearing in mind the definitions of g,(p) and B, we have
1 logp \* . logp
o= sy S5 - 2
o logN_%N. log ¥ log ¥
For any a, the function w(u) uugmf«a(l——u)e—a is continuous and

(1) =1—a. Hence,if a £ 1 there exists e(a) < Lsuchthat {y (w)| > (1 —a)/2
for e(m) < <u<l, Therefore

* logp

g@(p) +a BE’??’)IP .

= Q(1).

N =

2 lo B
logp

o(1).

(1—a)® AN logp {1 — a)*
¥ 10log ¥ p ° 20log N

2 log V- (1 —e(a)) > 0.
wel<psn

For a =1, (1/2) = 2(1/2)*—1, and using the multiplicity of the point
% = 1/2, we obtain an analogous estimate from which, and from Theorem 5,
the lemnma, follows. In particular, if L(u) =1 we obtain a solution of
the Erdds problem mentioned in Introduction.

II. Tt can algo be exactly proved that with normalization log? ¥, o> 0,
there exists a proper distribution for any addifive function, satisfying
the :Eollowmg conditions.
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(i) g{p) =log*p, ¢ > 0 il pe U,, where U, is a set of prime numbers
guch thatb

Z—wmwb'logm, 0 =1,
n<r
peUl
(it} Z_g“(f) — 0, for @—soco.
= log?z .

2Ty

‘We will consider in detail only one particular case. Take the additive
funetion

logp it p =1 (mod4),
gi{p) = :

0 it p =3 (mod4).
Then g(n)/log N has a proper limit distribution. In fact,

Z g@) Pt Z (_logp _)g
=i log N || p Pl lqu P
glp)siaulog ¥V p<NY,p=1 (mod 4)
0 if w<o,

—=Lg(u) =4{ w2 if O0<u<xl,
2 i w1,

In the same way we can prove (6) and (7). Hence from the theorem
we find that g(#) /log N has the proper limit distribution, since for arbitrary

1 21
1 2 g(p) +a(1— ogzﬂ)_a ogp
log ¥ = log ¥ log & P
1 logp 210g10 logp “logp
=log1\7 z%:, l(l—w) log &V P logN 2 logN P
p=sl (mod 4)
= 0Q(1).

IIT. Corvollary of Theoremn 1" shows that 4y and By with
which the limit distribution can exist, cannot increase quicker than
any power of log N. It is on this, that the third group of examples of
additive funetions for which do not ezist proper Nmit distributions for
arbitrarily chosen By and A4,, is based. In particular, functions equal
for prime numbers to exp(log®logp), « > 1, belong to this group.

Lemma 5. Let g(n) be on additive function such thot

2 E

AV N Y
pEN

Tog™ N

P
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for amy positive m. Then {g(m)— Ay) /By does not have the proper limit
distribution.

Proof. We will assume that there exist A, and B, such that
{g(n) — Ay} /By has a proper limit distzibution. Then as a result of Theorem
1" we have

Ay = max(|dy], |Byl) < log™

Therefore g(n)/log"+ N, where m, > m, has the limit distribution. Applying
Theorem 2, we find that there exists a funetion Lg(u), Ly( 4= o0) = lim Ly(u)
such that o Moo

gip) 1

Tog™w | p ™)

e
PN,
ppIsulog™iIN

in all points of continuity of L,(%). From this, for m, > m, we have

[ 2 l
P P
PN N

_9(p)
log™ N

?

which contradicts the condition of the lemma.
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The cyclotomic numbers of order eleven*
C
Proie A. LeoNarD (Tempe, Ariz.) and
KENNETHE 8. WILLIAMS {Vancouver, Canada)

L. Introduction. Let ¢ be an integer greater than 1 and let » be a
prime =1 (mod e}, say, p =¢ef +1. Let g be a primitive root (mod p).
The number of solutlons {(8,%) with 0<s, tFf—1 of the congruence

(21) gL = g (mod p),

where h, k are integers usually taken such that 0 < &, k < ¢—1, is denoted
by (h, k),. The numbers (&, &), are called cyclotomic numbers of order e
and in addition to k, % and e depend upon p and g. A central problem
in the theory of cyclotomy is to evaluate the cyclotomic nmmbers in
terms of the sclutions of certain diophantine systems involving quadratic
forms. The cases e = 2,3, 4,5, 6, 7, 8, 9,10, 12, 14, 15, 16, 18,20, 24 and
30 have been treated by several authors (see for example Dickson ([2],
[3] and [4]), Lehmer ([6], ¢ = 8), Whiteman ([147], [15] and [16], e = 10,
12,16), Muskat ([8] and [9], e = 14, 24, 30), Baumert and Fledrmksen
(I1], e = 9,18), Muskat and Whiteman ([10], ¢ = 20), and Leonard and
Williams ([’T], e =T

In this paper we give the firsh complets treatment of the ¢ase ¢ = 11,
and we begin by stating, for e = 11, some results from the theory of
cyclotory. All results are stated when ¢ = 11 ag this.is the only case
we consider. For more general results and proofs the rea.der iz referred
to Dickson [2], [3] and Storer {117.

Let p be a prime of the form p = 11f+1, so that fis even. The cyclo-
tomic numbers (&, k) = (k, k),, are periodic in both » and % (mod 11).
They also have the following two well known properties: :

(1.2) (B, B) = (11—h, k—h)
and '
(1.3} ' (hy k) = (&, h).

* The research of both authors was sepported by a grant (no. A7233) from _
the National Research Council of Canada. The second author’s sabbatical leave at

sthe University of British Columbia was supported by a N.R.C. travel grant (no.

T 0259).



