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for amy positive m. Then {g(m)— Ay) /By does not have the proper limit
distribution.

Proof. We will assume that there exist A, and B, such that
{g(n) — Ay} /By has a proper limit distzibution. Then as a result of Theorem
1" we have

Ay = max(|dy], |Byl) < log™

Therefore g(n)/log"+ N, where m, > m, has the limit distribution. Applying
Theorem 2, we find that there exists a funetion Lg(u), Ly( 4= o0) = lim Ly(u)
such that o Moo

gip) 1

Tog™w | p ™)

e
PN,
ppIsulog™iIN

in all points of continuity of L,(%). From this, for m, > m, we have

[ 2 l
P P
PN N

_9(p)
log™ N

?

which contradicts the condition of the lemma.
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The cyclotomic numbers of order eleven*
C
Proie A. LeoNarD (Tempe, Ariz.) and
KENNETHE 8. WILLIAMS {Vancouver, Canada)

L. Introduction. Let ¢ be an integer greater than 1 and let » be a
prime =1 (mod e}, say, p =¢ef +1. Let g be a primitive root (mod p).
The number of solutlons {(8,%) with 0<s, tFf—1 of the congruence

(21) gL = g (mod p),

where h, k are integers usually taken such that 0 < &, k < ¢—1, is denoted
by (h, k),. The numbers (&, &), are called cyclotomic numbers of order e
and in addition to k, % and e depend upon p and g. A central problem
in the theory of cyclotomy is to evaluate the cyclotomic nmmbers in
terms of the sclutions of certain diophantine systems involving quadratic
forms. The cases e = 2,3, 4,5, 6, 7, 8, 9,10, 12, 14, 15, 16, 18,20, 24 and
30 have been treated by several authors (see for example Dickson ([2],
[3] and [4]), Lehmer ([6], ¢ = 8), Whiteman ([147], [15] and [16], e = 10,
12,16), Muskat ([8] and [9], e = 14, 24, 30), Baumert and Fledrmksen
(I1], e = 9,18), Muskat and Whiteman ([10], ¢ = 20), and Leonard and
Williams ([’T], e =T

In this paper we give the firsh complets treatment of the ¢ase ¢ = 11,
and we begin by stating, for e = 11, some results from the theory of
cyclotory. All results are stated when ¢ = 11 ag this.is the only case
we consider. For more general results and proofs the rea.der iz referred
to Dickson [2], [3] and Storer {117.

Let p be a prime of the form p = 11f+1, so that fis even. The cyclo-
tomic numbers (&, k) = (k, k),, are periodic in both » and % (mod 11).
They also have the following two well known properties: :

(1.2) (B, B) = (11—h, k—h)
and '
(1.3} ' (hy k) = (&, h).

* The research of both authors was sepported by a grant (no. A7233) from _
the National Research Council of Canada. The second author’s sabbatical leave at

sthe University of British Columbia was supported by a N.R.C. travel grant (no.

T 0259).
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Tsing (1.2) and (1.3) we find that the 11 x 11 mafrix whose entry in
the (&, kE)-place (0 <k, &< 10) is (b, k) is given by

4 B¢ DBF G HI J K
B KL MN O P Q E S8 T

¢ L J 8T UV WXIT M
D M3 I RX Y Z Y UN
B NT RHQ WZ 2Z V O
(1.4) PO UXQ G PVY WP
¢ PV Y WPF OUIXRQ
HGQ Wz Z V 0O ENTITR

I RX YZ Y UXNDMS
J 8 T UV WXT MC L
KL MN O P Q RS L B

Thus the evaluation of the 121 cyclotomic numbers (b, k) reduces to
the determination of the 26 quantities 4, B, ..., Z.

Let { = exp(2=i/11), & primitive 11th root of unity. Z[Z]is o unique

factorization domain. Let x be any prime factor of p in Z[{]. We order
its eonjugates by setting m; = oy(n), 1< k<10, where oy iz the auto-

morphism determined by ¢,(f) = t*. We write (—) for the 11th power
JT

character defined by (%) = " if g = " (mod ). This ordering is

such that
’ = }
(_g_)=(1) for 75:1,2,...,10. ‘

Tk

If (i) — ¢! then, if Tis any integer satistying I =1 (mod 11), we have
7T

2)-(2f -

so replacing # by =7 if necessary, we may assume without loss of generality
that (i) —¢.
T
In the theory of cyeclotomy the Jacobi sum plays & Fundamental
role. For any pair of integers m, n we define the Jacobi sum of order 11
by '
-1

(1.5) _Jn(m, n) = Z (;)m(l:m)n‘

@&==0

The Jacobi sum has the properties

(L.6)  Ju(m, ) = Jy(n, m) = dop(—m—n, 1) = Jo(m, —m—n)
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and, provided no one of the integers sm, n, m 4+ n is divisible by 11,
(1.7) (i, ) (my n) = p.
From (1.1) and (1.5) we have

10 q mh-{—p% 10
(18) Jn(m, ’I?;) = y (h, ]G) (———) e Sj (h’ ]G)ka-a-nk,
7L,‘7::0 49 hj,_l:n
as (‘i—) = [. Taking m =1 in (1.8) we obtain
10
(1.9 Ta(l,m) = D B(i, m)E,
i=p
where
10
(1.10) B, j) = X' (hy i—jh).
h=0

B(i, j) is the Dickson—Hurwitz sum of order 11. Tt is defined for all integers ¢
and j and has the properties (see for example [167)

(1.11) ' B(i, j) = B(i, 10 —j),

(L12) B, 0) = f—1, @ =  (mod 11),
1 4 # 0 (mod 11),

(1.13) B(i,]) = B{4j, 7),

if j 2 0 (mod 11) and 7 is any solution of the econgruence §j = 1 (mod 11),
. 10
(1.14) - 2B =p—2.
i=0
Whiteman [16] has proved the important property

(1.15) 121(h, k) = —10(p—1)+2(h)+11 > B(vh+k, v),

=0

Where .
0, if k=0 (modll),

g(h) =
) 1, i Rk os= 0 (mod 11).

The groundwork for our evaluation of the cyclotomie numbers of
order 11 was laid by Dicksonin [2] and [3]. His work leads us to consider
the diophantine system )

(1.16)  1200p = 1202 + 33} - 352; - 11027 + 3302 +
' - 660 (0} + a7+ af + 2+,
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(117)  45ai+ 5o} 200} — B40a% + T20x; — 72003, — 2880, ;5 4 300,25 —
— 120@,0, — T2m, 25 -+ 2002, 2 — 3602, 5 + 360w, 55 + 144:00,2, —
— 1440, 5, -+ 14402, 2, — 14402, 205 + 14400, 0y — 14402545+
+ 2880x,2,, = 0, ]

(1.18) 4522 — 3Bad — 80a] -+ T20m; — 72027, — 144w, o, — 14dw, x5 -
- 180m,05 — 982, 2, — 2162, 25 + L6023 5, - L2025 25 - 2402, 205 4
+ 2880w, 3, — 1440w, 4, -+ 144000, 0 — 1440, @y -+ 14402, 20, -
+ 14402, 2,5+ 14400, 0,9 == 0,

(1.19) 453 4 Bag + 202; — B402E - 72027 — 72045, — 96w, a0, — 48, w5, —
— A ddap, w; -+ 1260, 25 -+ 1082, 2, — 36wy, + 20250, — 60m525 -+
+ 6004, @, - 14400, 20, + 14400, 1, — 144002, + 14400, 0, +
F 1440 223y -+ 2880252, -1 1440, 13 = 0,

(1.20) 27 + 35a} — 40a] - 36027 - 72025 — 12023, — 720, 0, — 240, 24 —
— 48w, g — 1443, w5 + 104wy 55 - 48w 0, - 144w, 085+ 3208520, -
+ 1440 5, + 14400, 5, -+ 1440, 27, 4 28802, 24 -+ 14400, 2 +
-+ 14400y %, - 14400, 2, = 0,

{1.21) &g - By - 23 = 0 {mod 11},

(1.22) @, — i, --Bmg == 0 (mod 11),

and we are able to determine the number of integral simultaneous
solutions (@, ..., ®) of this system. The following theorem giving the
nature of the salutmns is proved in § 4 affer we prove some lemmas in
§ 2 and §3.

THEOREM 1. For a prime p =1 (mod 11), there are exactly 64 integral
solutions (21, ..., &y) of the system (1.16)—(1.22). Of these 64 solutions, 4
trivial solutions are given by
- (1.23) +(454,0,0,0,0,6, —b,b,5,0),
where 4p = a*+-116% a =9 (mod 11). Admoengst the remaining 60 non-
trivial solutions we can find 3 solutions

(Briy Bogy ooy ) (8 =1,2,3)

icm
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such thot all 60 solutions are given by

10 0 0 -0 00 00 OF
(1.24) 0 —1/¢ —1/4 -—-1/4 —1/4 00 00 0
0 —5/12 —5/12 T7/12 —1/12 00 066 0
0 5/3 —1/3 1/6 —1/6 60 00 ©
A+ (@, ) 0 0 2 12 —1/2 00 00 ©
W T g g 0 0 0. 01 00 ©
0 0 0 0 ¢ 00 01 0
¢ 0 0 o 0 00 00—1
0 0 0 0 0 00—-10 ©
¢ o0 0 0 ¢ —10 00 0|

fori =123 aond b =0,1,2,..., %

Theorem 1 is proved by establishing a one-to-one correspondence
between solutions --(#,..., @) of (1.16)—~(1.22) and those elements

K of Z[{] which satisfy the conditions KK = pand K = —1 {mod(1—2)?).

There are four possibilities for K with KK = p:

(I} K ~oy{(mymymymsmyy for gome £ =1,2,...,10,
or .
(I} K ~op (7, ey} for some & =1, 2,...,10,
or
(II1) K ~ oy (mymymym;oy) for some & =1, 2, ..., 10,
or

(V) K ~oy(mymamymsmy) for some EF=1,2,...,10
Tt is proved in § 2 (Lemma 1) that if K<Z[{] is such that KK =7p

- then K has a unique normalized agsociate satisfying the same condition.

Let K, (resp., Kp; H3) be the unique normalized associate of m,zgmymgm,
(TeSD., Ty Ty My Mg Toy; Ty Wy M) and let - (@yg, -0y ) (8'=1,2,3) be
the solutions of (1.16)—(1.22) corresponding to K; (¢ = 1, 2, 3) given by
the correspondence in Lemma 5. The conjugates of X, ({ =1, 2, 3) give
rige to the 60 solutions (1.24). These solutions are distinct as in cases
(1), (II), (III) the conjugates are distinet. The trivial solutlons arise from
case (IV) where the conjugates are not distinet.

The gquantities E, and K, are (see § 2 Lemma 1} the Jacobi sums
J.(1, 1) and J,.(1, 2) respectively. (Oun the other hand K, is not a Jacobi
gum.) Using this information we are able to compute the Dickson-Hurwitz
gums B(4,7) in terms of the solutions (#y1, ..., @1 1) == {1, ...y ¥y,) and
(#1gy e«ry Bro ) = (H1s or vy Y10) corresponding to the Jacobi sums (1, 1)
and J,.(1,2). The cyclotomic numbers of order 11 are computed using
these values and the result of Whiteman given in (1.15). We. have
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THEOREM 2, Let p be a prime = 1 (mod 11) and lef ¢ be a primitive
rool (mod p). Let = be the unique (up to associales) prime factor of p in Z[{],

{ = exp(Zwi/11), such that (_g_) o 0 Lol (g5 000y @) a0A (Yyy .00y Yyo) Be

the solutions of (1.16)—(1.22} corresponding to J,{1, 1) and J {1, 2) respectively.
Then the cyclotomic numbers: of order 11 are given by (1.4) and Table 1.

In § 6 we introduce two so-called Jacobsthal-Whiteman sums ¢*(a)
and qsz(a;)? defined by (6.1), in texrns of which we can express (@, @,, ..., @)
ang (Y1, Yo, -+, Y1o) 28 follows (see [137], equations (7.3), (9.5), and (71,

equations (1.6), for similar vesults for ¢ =3, 5 and 7):
@y = —(L+g(4),
110 = 9 (4) -9 (49%) + ' (49°) + ¢ (49%) — 49 (4g°) ~ A (4g%) +
+ " (497) + 01 (46°) + 91 (49°) +- 1 (49™),
11wy = ¢l(4g) + ¢ {497) + ¢*(49°) — 3™ (4¢%) — 3p* (497) +
+ @M (495) + 0™ (49°) -+ 9 (49™)
— 201 (4¢°) — 20" (49") + ¢* (4¢°) + 97 (49™),
( — ¢ (4¢°) + ¢ (49"),
1w = @ (4g) — (40"},
11z, = @l (4g%) —
it
gl

M

(1.28) 11z, = o'(4g) + o' (4%

1l = ¢'(4g) — ¢* (49?)
d¢

¢ (49°),
Uz = g'(4g%) —¢*(49°%),
11y = g (4g%) — o (497),
1legy = ¢'(4¢°) — o' (44°).

The corresponding formulae for the y, are obtalned by replacing each
by ¥ and each ¢'(dg") by ¢2(4¢%) in (1. 25) above.
Finally in§ 7 we illustrate the ideas of the paper by a simple example.

2. Technical lemmas. The element 1 —¢, £ = exp(2wif11), is a prime
in Z[{] as its norm iy the rational prime 11,

Depmvirton. An- element KeZ[(], ¢ = exp(2mi/11), is said to he
normalized it

o E = —1{mod(1—tp)
Clearly K = 3 a;0%eZ

=1

[£] is normalized if and only if

10 19
2 (mod 11), 2 id; = 0 (mod 11).

dw=1 feml

We will be particularly interested in thogse KeZ [£] for which KK = p.

Lomvia 1. (i) If K e Z[£] is such that KK = = p them K possesses a unigque

normalized associate K; such ﬁmt E, K, =9p.
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(ii) If no one of the iniegers m, n, M 11 45 divisible by 11, J.(m, n)
18 o normalized clement of Z[L] such that J,(m,n)J,(m,n) = p.

(ill) The unique normalized associate K, of K = mymymmsm, (resp.,
K == oy mymgmg) s By = J (1, 1) (resp., K, = J,(1,2)).

Proof. (i) This result is contained in the work of Dickson ({37,
p. 375).

(i) By (1.5) and (1.7) J.(m,n) i3 an element of Z[£] such that
J (1, %)J,,(«;ﬂwmz:n_)d = p. Now clearly

»

N [(,i’i) _ 1}{(” *‘1)"; 1} = 0 (mod (1—)s),

Lk W\ 7 %

==l
g0 that J,(m,n) = — —1(mod (1—¢)¥, proving that oJ,(m,n) is
normalized. :

- (iti) This is a result of Kummer (see for exéumple (81, p. 376).

14
Lovya 2. If K = 3a;l*eZ[[] is normalized and such that KE =p
then fe=l

10
N1 .4 .
/_\J% @; = 0 (mod 11).

g=1

10

oo
Z'a 4, =0,
=1

Proof. Az K is normalized we have

(K +1)(K-+1) =0 (mod (1—£)¥),

giving, as _ ) .
KK —=p =1{mod11~(1-0)"), K+EK = —2 (mod (1 —¢&)¥),
that is- )
5 . )
(2.1) D0+ o) (77— 2) = 0 (mod (1 — ¢4,
i=1 .

Now we seb f = £+ 79—2 so thab
Br~(1— 2,
F4-00 -2 = 4B+ 7
L0 —2 = 95+ 652+ 43,
£ 8T —2 = 1664208 +- 883+ g,
[P {0 =2 = 258 4508 4 3545 1 105 - .

Hence (2.1) becomes

. 5
(2.2) 2, bab’ =0 (mod ),
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‘where
‘ bl == @y ) + &l + ag) + 9 (a5 + a) 16 (4, + a,) +25 (o5 + @),
== (thg -+ ag) -+ 6 (@3 + @) +20{a, +a,) +50{a;+a),
{2.3) = (@ thg) + 8 (@ -+ ;) + 35 (as + ;) ,
=ty @g) + 10 (a5 + ag),
== ({1~} @) -

Trom. (2.2) we have b; = 0(mod g), implying b, = 0 (mod 11), as the
norm of B in Z[{] iy —11. Hence from (2.3) we have
(2.4) (@ = thy0) + 4 (@ + ay) + H{as + @) -+ 16 (@, - &) +25(a;+ as)
= 0 (mod 11),
which is
10

(2.5) Dita; = 0 (mod 11),

i=1 .
a§ required. Now (2.5), together with the fact that K is normalized, gives
K = —1 {mod (1—£)3), |
g0 that as above we have :
K+K = —2(mod (1 —1)°),

that is

25 (@ +ay_) (47 —2) = 0 (mod (1-0)f),
or -
(2.6) | jb{ﬁi = { {mod £%).

Nov;r, a8 b, = 0{mod 11~4%), (2.6) gives b, = 0 (inod B), implying as
before b, = 0 (mod 11). Hence from (2.3) we have
(2.7)  (@gtaty) - 6 (ag -+ ag) -+ 20 {a, + a,) + 50 (a5 + a;) = 0 (mod 11).
Thus taking (2.4) plus 12 times (2.7) we obtain
(a7 Lty ) -+ 16 (@5 - 65) + 8L (a5 - ag) - 286 (@ + a;) - 625 (a5 + a;)
‘ = 0 (mod 11),

which ig
16

Zi“af = 0 (mod 11),

Fe=1

as required. This completes the proof of Lemma 2.
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The next lemma giﬁres us information about the solutions of (1.16)—

—(1.22).
LeyMma 3. For any solution (@, ..., By) of (1.16)—(1.22) we have

(2.8) By + g+ @qg = 0 (mod 2),

(2.9) @y Ay F 2y + B = 0 (mod 2},
(2.10) 505% T+, = 0 (mod 2),

(2.11) @y — @5 + By - 2y == 0 (mod 4),
(2.12) By — iy + 4y -+ oy, = 0 (mod 8),
(2.13) 0y — @, == 0 (mod 3),

{2.14) @ — %y = 0 (mod 5},

(2. 15) @5+ 20, b 30y + dawy + 5wy == 0 (mod 11).

Proof. Redncing (1.16)-(1.20) modulo 32 we obtain

(2.18) 1227+ 2f 4 2305 + 1daf + 102 -- 20 (@ -- o3 -+ @i - i+ )
= 16 (mod 32),

(2.17)  13a3 -+ B 4 2045 +- 4ars + 16w -+ 1625, + 30042, + Sy, + 2da, 5,
‘ 4+ Bugay 4 24,25+ Sy, = 0 (imod 32);

(2.18) 135+ 294 + 16w, 4 16a) - 1623, -+ 160, 4, - 160, 25 4 22w, 04 -+
+ 8y 5 + 2485 + 16w, 2, = 0 {mod 32),

(2.19) 13234 baj + 2027 - 4o - 1628 + 162% + 16, @, + 160, 2, -
+- 30w, 0y +- 120,05, + 28,205 + 20242, -+ 42, 25 + 242, 5 = 0 (mod 32),

(2.20) 27} 1 3al 4 24af + 244 -- 1647 4 1642, -+ 2@, 1, - B2, 1, -+ .
+ 16wy + 163, 05 -+ 18%, @y - 16,0, + 160, ; = 0 (mod 32).

Taking (2.16) modulo 2 we obtain ®,—®, = 0 (mod 2). Using this and
(2.16) taken modulo 4 we obtain

(2.21) By — g = 0 (mod 2).

Next taking (2.18) modulo 8 we obtain b6a} -+ 52} -+ 62,2, == 0 (mod 8),
which gives ‘
(2.22) By — 2y = 0 (mod 4).

Reducing (2.16) module 8 we obtain

(2.28)  4a? + 23 4 Tak 4 60 + 202 + 4 {0l +af + 2+ 7} -+ o) = O (mod 8).

pezs
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From (2.22) we lmve 3+ To? = 0 (mod 8) and from (2.21) we have 6z} -
+2a; = 0 (mod 8), so that {2.23) becomes
{2.24) &y ~+ B+ 27+ g+ By + 25, = 0 (mod 2),
Subtracting (2.19) from (2.17) we obtain
(2.25) 160741603 + 16m,m, - 16a, 0, + 28,2, | 2@ + 200,y -}

+20,m5 + 16 2,3, = 0 (mod 32).
Appealing to (2.21) and (2.22) we have
281, %y + 28y my + 20049, + 205 2; = 0 (mod 32} s
16, - 168, %5+ 160,55 = 1622 (mod 32),

80 that (2.25) gives &+ @+ #; = 0 (mod 2), which iz (2.10).
Adding (2.18) and (2.20) we obtain

(2.26) @+ 80+ 203 -1 2F 4 ety 0y 0 By - By Wy - 200, + B0y,
+ 3x5; +2m,2; = 0 (mod 4).
Appealing to (2.21) and (2.22) we have
@ + 3w+ 2m,m5 = 202 (mod 4),

05 -1~ 3, 0, + By iy + o0y -+ 20,2y - 0,55 + Sipe iy = 22 (mod 4),

80 that (2.26) gives @y %, % 2, = 0 {mod 2), which is (2.9).

From (2.9), (2.10), (2.21) and (2.24) we have

By + Tyt Brg = Wy + &g+ B+ B + By (Mod 2) ,
= (@ - g + &7+ Dy + 0y + Byp) 1 (@5 1+ @6 + ) + (2 +- @ -+ By + 1)
= 0 (mod 2}, '

which. proves (2.8.)
Adding {£2.19) and (2.20) we -obtain

2 - 2 -+ 30, + Tar§ + daf + darf + 605 + 201 g + 4wy 2y +
Ty + 30005 + B2y + Bg s - 62,5 = O {tnod 8).

Using (2.21) in the form %, = a; 421, and also (2.22), this congruence
gives '

a3+l + 315 = 0 (mod 2), -
that is,

Lyt oy +1 =0 (mod 2)

or . :
— &5+ 2, -+ 20 = 0 (mod 4),
which is (2.11),
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TUsing (2.22) in the form =z, = @y+4m, and alko (2.21), in (2.18)
we obtain :
Cag af, Fmd o= 0 (mod 2),
that is _
Py + Byg +m = 0 (mod 2),
or .
@y~ g T 48y -+ diye = O (mod 8),
which is (2.12).
(2.13} follows by reducing (1.17) modualo 3.
Reduecing (1.16)—(1.20) modulo 5 we obtain,

(@1 -+ @) (1 — B} = WDy~ 2p) = {8y 85) (2 — &) = (divg 4 28, - ) (0 — )
7= (200 + @y -+ 2, - 05) (1 — @) = 0 (mod 5).

If &, —a, = 0 (mod 5) then we have
Py =Wy ==y 2=y o= 4y =0 (mod B,

cwhich is & contradiction. This proves (2.14).
Tinally from (1.21) and (1.22) we have
(2.27) 3®g -k 4y -+ By + 65 = 0 (mod 11).

Also by computing 3(1.17)4-4(1.18) 4+ (1.19) -+ 5(1.20) modulo 11 we
obtain

(2.28) (5 ~+ 200, + 30y + Ay + Bp10)? -+ 316, (3w, + 4y + By, - 6255)
= 0 (mod 11}.

Thus from (2.27) and (2.28) we have (2.15).
This completes the proof of Lemma 3.
. The next lerama, which is just stated here, is a result of Dickson.
It relates the factorization p = KK in Z[£] to representability of 1200p
as a sum of squares. For 4 proof the reader is referred to [8].

10
Lmywma 4. Let B = 3 a0 Z L], amd sol
=1

Ay == 0y 0y - Gy oy Oy @y - 0y g~ g g - g Gy - Oy Gy - Gy B -+ g By

Ay = gy afz%'*“%%‘l‘%% G5 0y - G i - Oy g -+ gy - gy,
Ay = 0y Oyt gty -+ Gy g - Gy 8y ++ U @y -+ B g - B 0By -ty @y - Gy o By,
Ay = 65 Gy (U~ Oig Gl =~ Gy Oy = O by~ Gl Gy - By 1y + Gy 1 + @0y,

A = Gy Qg 1 oy g+ gy B = Gy g - B g g + B By - g Gy -+ Gy g - @y a1,

icm
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Then we have KK = p if and only if

(2.29) 1200p = A2{@y + g+ g - g - 85+ g+ g - @ + g + Byg) 2+
+ 33 @o + g -y —4 0y — 40+ @y F g - G ay0)T
+ 55 (@ + @y + g — 3, — B, 4 ag g+ ayp) 2+
110 {a; + g — By — Dy - g + Gy )2 +
+ 330 (@ — g~ @y + Gy )% -
+ G660 {(t1 )% + (@3 — @)® + (@3~ 3)* + (G — a7)2 +-

+ (@5 — ae)?}

and

(2.30) _ Ay = A, = Ay =4, = 4.

3. Solutions of the diophantine system. In this section we provide
the main step in the proof of Theorem 1, by relating factorizations of p
in Z[{] to solutions of (1.16)-(1.22).

Levma 5. There is o one-to-one correspondence between normalized
elements K <Z[[] satisfying KK =p and solutions (&, ..., %) of
(1.18)~(1.22).

10
Proof. Tet K = } a;{* be a normalized element of Z[Z] satisfying

KK = p. We define :?L;;:egers Byy +ney Byp DY '
@y = Gy Qg+ Gyt g g @ T Gy - g 1 g+ Gy
By = Oy + g+ g+ &y — 45 — 4t -+ iy -+ Qg = Gy - g,
Wy = Gy + Ay + Gz — 3ty — 30y + g+ & + b,
By = @y - g — 205 — 284 - Gy T G105

(3.1) @By = Gy— g — g~ Byg, .
g = g — g,
&g == Ay~ Gy,
&g = Gz — Qg

- By = By — by,

w10= aiﬁ—'aa.

Note that as K is normalized we have z, = >o, = —1 (mod 11). Equation

Fa=l
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I

(2.29) of Lemma 4 shows that (1.16) holds. Inverting the system (3 1)
we obtain

120a; — 122, + 3w, + b, + 10m, + 302, -+ 60,

120m, = 120, 3m, 1 Doy -+ 10m, — 30, -+ 60a,,

120a; = 123, + 3%y + bwg — 20w, .+ 60z,

120a; = 12%; - 3w, — bz, -+ 60a,,
(3.2)  1200; = 12¢,—12m, + 60x,,

1200, = 122 —122, — 60,,,

1200, = 12, + 32, — 152, — 60u,,

120a, = 129, + 3x, + S, — 20z, ~ 60wy,

120a, = 12, + 3w, + By + 10m, — 302, — 60z,

120040 == 122, + 8%, + Birg + 102, + 302 — 60z,
Substituting these valnes for ay, ..., @y, into the conditions (2.30).
4;—dy =4, A, =4, — A, =4,—4, =0
given by Lemma 4, we obtain (1.17)~(1.20). Finally by Lemma 2 we have

20

{3.3) 2@% ——sz = 0 (mod 11),

=] =1

and. substituting the values for a,, ..., #;, given by (3.2) into (3.3) we
obtain (1.21) and (1.22). ‘

Conversely let - (z;,...,%,) be a solution of (1.16)—(1.22). By
Lemma 3 we may define integers a,, ..., a, by

1204ay = 12, + 30, - Bw; -+ 10, + 30a; + 60z,
120ie, = 122, 3w, + 52y -+ 10z, — 302, + 602,
12048, = 12@, + 3w, 45wy — 200, -- 60w, ,

120%a, = 122, + 32, — 152, + 601, , _

(3.4) 1202a;, = 120, — 122, - 60,
120ia; = 122, — 122, — 60,
12046, = 12, + 3z, — 150, — 60z,
1204y = 12, - 8w, + Bwy — 20, — 60a;,
12044, = 12, + 3w, + Bug + 10a,— 302, — 60w, ,
12040y, = 12, + 3w, + By -+ 10, - 30m; — 604,

10 .
where 2 = 1. Clearly 1 }a, = &, and since (@15 ..y @yo) sabisfies (1.16)
i=1 _ :
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we have @, = 41 (mod 11). Thus we take 1 = —1, if @, = 1 {mod 11},
and A = +1, if 2, = —1 (mod 11), so that
10
(3.5) Do = —1 (mod 11).
==l

10
We then set K = 3 a,{" so that K<Z[{] By Lemma 4 we have KK = p,
el
a4 (3.4) implies that (2.20) and (2.30) arc satistied. Now from (8.4) we have
10
(3.6) i }’mi <& &g - 24t -1 By - divg -+ Bwyg (aodl 11),

mm.l

fo that Lemma 3 gives

0 )
(3.7) Dia; =0 (mod 11).

Tt

Hence by (3.5) aud (3.7) K iz a normalized eloment of Z[{] satisfying
EE =p.

This completes the pl*oc}f of Lemma 5.

4. Proof of Theorem 1. The integers K of Z[¢] such that K& = p
have been described in § 1. Applying to Temma 1, we let X, = J, (%, 1),
Ky = dJ.(1,2) and K, denote, respectively, the unique normalized as-
sociates of

Ty T T T Mg, Ty Ma Ty ey,  ANA oy Womamwsot,

satisfying KK, =p, ¢ =1,2,3. By Lemma 5, each K, gives rise to
solutions o (wy;, @y, ..., @) of (L16)-(1.22). The conjugates of each K,
give rise to the 20 solutions given in (1.24). (These solutions are distinet
as the conjugates ave distinet.) Thus K 1; Ko andl Ky account for 60 solutions.
of (1.16)(1.22).,

- Tt remaing to consider the conjugates and associates of sy oy, mgsry.
As thig algebraic integer is loft lixed by the automorphism ¢y of @(£),

it 38 an integer of @(V'—11), so that |
(1) Ty Ty Ty Ty Ty 2 —T}l/:wlf

We hcwe & = oor 9 (mlel)
(Jonmcl(,rmg (4.1) and the Gaussian sum o a

Pl i
(4.2) }]( )a*‘ L P L [ L O T P 0 (1 = VDT

tpe)



380 P.A. Leonard and K. 8. Williams i
we have '
10
Toy Ty Ty Ty Ty == Zcié",
LN
where
0y == 05 =0 =G =0 =%(b—a), 0 =0¢ =6 =06 =0, = —4(b-a)
10 10- ' _
Now J'e; = —Ba, Yic; = 0 {mod 11}, so that
i=1 =1

ws) - l — 75, 974, T 7, 18 Mormalized it @ =2 (mod 11),

7y s, 18 normalized if a == 9 (mod 11).
The normnalized element (4.3) and its conjugate give rise to the 4 solutions.
' i(éa’a 0, 07 0, 07 _b1 b: “b) —bv _'b)5 HZ(S“J 0707070?bv _'bﬂ bﬁbr b):
if @ =2 (modl1l),

;7 +{—ba,0,0,0,0, — —b, —b, —b).

+(—5a,0,0,0,0,b, —b, b, b, b);
if aw_m‘J(modll).

By Lemma 5 every solution of (1.16)-(1.22) arises in this way so
the total number of solufions is 60-+4 = 64, and this conipletes the
proof of Theorem 1.

5. Evaluation of the cyclotomic numbers of order eleven — proof
of Theorem 2. We let (%, ..., @) (TesD., (Y1, ..., V1)) Where @y = —1
{mod 11} (resp., ¥; = —1 (mod 11)), be the solution of (1.16)«(1.22)‘

correspond.ing to J,(1, 1) (resp., J,(1, 2)) so that J_( 2, a;C* (resp.,
{1, 2) Zm Y, where the a; are given in terms of the m,; by (3.2)

(resp., the o] are given in terms of the y, by (3 2) modified in the obvious
way)., Moreover from (1.9) we have

(5.1) a; = B(i,1)—B(0, 1),
Now by (1.14) we have

a, = B(i, 2)—B(0, 2)."

@, %Zm ——ZB (4,1)—10B(0,1) = p—2—11B(0, 1)

so that .

(5.2) 11B(0,1) = p—2 —a,.
Similarly we have

{5.8y 1LB(0,2) =p—2—y,.

Then from {5.1), (5.2) and (5.3) we ean compute immediately B(i, 1)
and B(¢,2) for ¢ =0,1,2,...,10 in terms of the x; and g;. The values
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of B(0,0) and B(L, 0) follow immediately from (1.12). These 24 values
of the B(i, j) enable us to calenlate all the Dickson~Hurwitz sums B(%, j)
in view of (1.11} and (1.13). Using these valued in (1.15) we obtain the
¢yclotomic numbers of order 11 as given in Table 1.

6. Evaluation of solutions in terms of Jacebsthal-Whiteman sums.
In this section we folow ideas of 'Whiteman [12], [16] in order to give
explicit formulae for the solutions (m,, ..., 2,) and (Y, ..., ¥5,) of (2.16)-
(1.22) in terms of which the cyclotomic numberd of order eleven have
been given. In order to do this we need a sum considered by Whiteman
which generalizes the familar Jacobsthal sum. We define the Jacobsthal—:
Whiteman sum ¢"(») of order 11 as follows: for any positive integer «
and any integer a we let N, (s} denote the number of solutions y,0 <y
< p—1, tor which y""" 9™ = ¢ (mod p) and set

n-1

= ) N (dar)—(p+1),

Erel)

(6.1) ()

where 4 denotes the inverse of 4 modulo p. When # == 1, gp1{a} == @i, (a) —
the faroilax Jacobsthal sum, ak in this case

1440
-1 (22) ,
g0 that
Bl - s '
v( -I—aw“)= '1(_9_’_)“(1:—!—%11)_; (ﬂ)(mu”lma)= a).
PO =2\ % P P ﬁ-zﬂf-?-’ P "

Whiteman [16] has noted that, the numbe1 of csolutmns {z, y) of the con-
gruence

Yyt Emng" {mod p) (fv fixed; 0L,y p—1)

is equal to 2-11B(v, n) so that

Bl
24118 (v, n) ) N (gt o'ty = p -1 ™ (4g")
it
giving
(6.2) 11B(w, n) = ¢"(4¢") -+ p—1,

Taking # = 1,2 and # = ¢, 1, ..., 10 in (6.2) and using (3.1) and (5.1)
we obtain the expressions given in (1.25),

7. Example. We tako p = 23, Tho ¢(22) = 10 primitive roots (mod 23)
are ¢ =5, 7, 10, 11, 14, 15, 17, 19, 20, 21. We will just ‘determine the

4 — Acts Arithmetica XXVI.4



382 P. A Leonard and K. 8 Williams

. eyelotomic numbers of order 11 when g = 5, We first compute the number
of golutions of 2L = a and 2® +a? = ¢ (wod 23). We obtain

a 0!1 2\3!4 5 6‘7 8 .9’1011 12/ 18] 14/ 18] 1617 18|192021 22‘

Nyfe) 1210122010/ 2/2/0(012]0]2/0/01070]152[2(2]2]0
I\Tg(a.)2211130001‘1].21010003111'

Using the above values and (6.1) we obtain the vadues of ¢'{4¢®) and
p?{4g"), for ¢ =D andv = 0,1,...,10, as given below

gl 4) L g} | o' {407) @' (40%)| @' (g% @ (445)] @2 (405)] @ (4g7)| ¢ (44%)] ¢! (49°) (Pl(‘i!ﬁa_)—

-22 | 0 22 0 0o § 22 | —22| 11 0 0 | —22

@*(4) Esvﬂ (49} | ¢* (40%)] * (49%)| ¢* (4g")| % (49%)| 9% (409)| 92 {4g7)| 0® (49®)| o (497) |02 (49™)
1| 1 0 0 22 0 | ~11| —22 | —22 | 11 | -1

From (1.25) we find that the solubions (@, @, ..., ®1e) a0A (Y1, Yoy «- s Vo)
are. given by :

By (Tn| By | By |Tg | Pg | By | By | Do |Tyg| Y1 | Yo | Yol Wa|Ys | Ye|¥s|¥s!| Wy yml

21[1]-8)0 |42 ]2]0]-14]|-12/3|-1s|-12 -]z |1

Then from. Table 1 we obtain the cyclotomic numbers as given helow:

4B|0|D| BT \6|E|I|J|E Lju|NolP|g Rls|2||viwx]¥]z

001000000;{‘)(}0(}’1'001000100000

I

These values are eﬁnsily checked by direct caleulation.
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