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1. Introduction. This paper continues [3] and [4]. Our firgt object
ig to estimate the number of times that a Dirichlet polynomial is large.

“In [3] we showed that the fate of any Dirichlet polynomial of length N

was entwined with that of a standard Dirichlet polynomial of the conjugate
length D/N. The question of how often two Dirichlet polynomials can
be large simultaneously is important in Haldsz's method. In this case
the two Dirichlet polynomials are of different lengths and we multiply
them together. Multiplying together two Dirichlet polynomials of the
same length merely estimates the mumber of times the square of either
could be large, and so gives trivial bounds.

Our Theorem 1 generalizes the key estimate of [2] to Divichlet poly-
nomials containing a variable Dirichlet character. Theorem 2 contains
further results and Theorem 3 is the appropriate application of Theorems 1
and 2 to our second object, which is to estimate the number of zeros of
Dirichlet L-functions. In the usual notation (see [6]) Theorem 3 implies

o E . sz 12{1— )58
(1.1) D D T < ( - ) ,
¥ mod ¢

Q=)
g=20 (mod gg)

and for o > 4/6 only

(1.2) No, T) < [H-7H,

Theorvem 12.1 of [6] contains (1.1) with 5/2 in place of 12/5 in the
exponent. Forti and Viela [1] improved 5/2 to 2.463..., Jutila [5] to
2.460... and the author [4] to 2.432,.. (Jutila actually treats all characters
to & fixed modulus, which ix essentially the special case € = gy, where g,
is a divisor of the given modulus.) The estimate (1.2) is the ‘density hypo-
thesis’ and has & longer history. It is obtained in [1] for o> 0.8059...,
and in {4] for ¢ > 0.801...

This paper is based on [3], but supersedes neither [3] nox [4], as it
provides an- alternative way of using the reflection argument of [31
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When log ¥ [log D is elose to a rational nwnber with small denominator
it may be better to apply Lemina 2 several times as in [3] and then to
form & product polynomial. The results of [8], [4] and the present paper
cannot be subsumed under one simple hound. For instance, an improve-
ment in the upper bound for £(3--i) would improve the abscissa of
validity of (1.2) found in [4] from 0.8(¢1 to one smaller than 4/5, The
proof of (1.2) for ¢ > 4/i which is compleled in the present paper uses
only averages of {(}1-4t).

2. Statement ef the results. We consider Divichlet polynomials of
the form
N

2 = D alm)yim)m™

(2.1) s,
! N+1

where x is a Dirichlet character to some modunlug ¢, s == o -4 is &
variable; a general Dirichlet polynomial can be partitioned into sums

of the form (2.1). Let g, be a positive integer, Q = ¢, and Tz 1 be real

numbers. Let
(2.2) D =@ gy, 1 =10gD.

We shall assume D is large. Let T be an aggregate of pairs (s, y) satisfying

(2.3) x propermodg, ¢ @, ¢ =0 (mod q,),
(2.4) 0ol

(2.5) , 1y —ty] << T

(2.6) i—tl =1 when 4 = g,.

Let B he the cardinality of U. The first object of this paper is to obtain
bounds for & under the assumption

(2.7) Fs, )=V
for each pair (s, ) of U. Let B(M, U) be the least positive B for which
FEB it N M
(2.8) 2 IP ! X - 3[2 1/') . . ’,
(5,70 I (N/M) ) G M.B lr Il'[ :N'::‘;» N \':: D,
where
. 2N
(2.9) ¢ = D la(m)
Nt )

for every choice of coefficients a(m), and let
(2.10) B(E, M, D) = maxB(M, U)
taken over sets U of cardinality B with fixed D). We also Gefine B (M, U)

complex .
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as the least positive B for which

MR it N M
(2:11) (E,)Zm SAEd MONEB it W< N’gD
for every choice of coefficients a(m) wfrh la{m)| <.1.
Clearly
(2.12) | B*(M, U) < B(M, U).
Let
(2.13) Ay == maxdy(q)

D -

he the maximuin of the kth divisor function. We shall assume D to be
large and

(2.14) 4, <D

for any &> 0.

Since (2.7) implies that the left hand side of (2.8) is at least RV,
a bound for B gives a bound for B in terms of V.

The main result of [3] ean be stated as follows

Losvma 1. For D> N we have
(2.15) B(R, N, D) € R N'"1ogl R D'
“and for any positive integer
(2.18)  B(R, N, D) € B N"logl+ RN"12 4
S TR LR NV VLB (R, DFJNE, D)k A,
In any cose
(2.17) B(E, N, D) € R*® (D" | N*™)1.

The implied constants dre absolute.

An examination of the proof of Lemma 1 leads us to the following
restatement of it. Liet U(h, @) be any aggregate of ordeved pairs (s, v)
with, w proper mod f, fs @/h; f=0 (mod qoj(h, q0)) for which {(s, wy)}
is a subset of U.

In the notation of [3] cur ¢, v, f, v, b, 0 are gl,xl,fl, ey By, and
%2%2- Wo can sharpen (2.16) to

Luvwa 2. Let & be any positive integer and D = N Then

(2.18) BN, U) < B N®logl-- RNV 2 -
..{ k75l2R1 szIcNIM Al,’z 12-1 ""“‘ma;x {.B (_D.'c/_Nk U(}l w )}1/2.":

By w)
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Moreover B (DF|N®, U (h, w)) may be veplaced by

(2.19) A B (DFIN*, Uk, w).
The simplest result we obtain from Lemma 2 i as follows.
TreorREM 1. In he notation above

(2.20) R < GVIN1ogl @V INDAE A,

provided that

(2.21) V > o PR NI,

where e, 18 an absolule constant. Moreover for N.D

(2.22) B(N, U) < R¥N"1logl-+- RN 4+ B NV A} 43S DVOTR,

Apart from divisor functions and logarithms, (2.20) contains (2.9)
of [2] as & special case and enables a similar zero density theorem

(2.23) 2- E"‘ N(o, T, ) € max{PU-Ge-tre ppi-dre

g<& z mod ¢

to be deduced by the methods of [2]. This establishes (1.1) for ¢ > 3/4,
and. the range 1/2 < ¢ < 3/4 follows from Theorem. 12.1 of [6].

To establish zero density theorems by the Haldsz-Montgemery-—
Jutila method we need information about short sums (¥ < D). Applying
Theorem 1 to F(s, ) raises ¥ and ¥ to the rth power and replaces @ by
A, (zee Lemma 3). If V is somewhat larger than the hound (2.21) we
can. do better.

TuEorREM 2. Let p, q,r be positive integers such that p <Lr—1 and
(2.24) NP Y
Then
(2.25) BN, U) & BV N2 A, R (R N7 DRyiarsan

+ RN Ay (R~ priyyiee+e) L g A, ( NOre Ry,

Moreover for |
(2.26) Vo> czglfﬂ N‘"‘"( DN—f)q/(urzwl-w) { Aﬁcx Aiﬁ«l A;jﬁ!;ﬁ)l/('ﬂlﬂkm)’-
where ¢, depends only on p, g, and r, we have
(3.27) B < (GN V2 D* (V0o o Dos | (65 Y6y paries,

The implied constants depend only on p, g, and in (2.27) alse on e.

Weo summarize the application of Theorems 1 and 2 to zero-dengity

theorems as follows.
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TrrorEM 3. Suppose |F(s, x) = V al each pair (s, y) of U and for
some inleger v = 2

(2.28) : N <D< N

Let : '

(2.29) VG = o

wnd « > 34, Lhen for any s> 0 and D sufficiently large
(2.30) R < Drai-aiste

the consterd depending on v, o and s Moreovey

(2.81) B « pHi-dts

for

(2.32) a> (3r—1)/(4r—2),

the constant depending on v, @ and e If the charaster y is the same in all
pairs {8, x) end if for some integer = 2 :

(2.38) N T < N,

then

(2.84) R %1’2(1—“)“

holds for

(2.35) 4 /b oo =2,

7(3r—1)/(287~12) i 73> 3.

Tf in Sections 6 to 8 of [3] we replace the use of Theorem 1 by (2.31)
and Theorem 2 by (2.34) in the estimation of class (i, n) zeros, we obtain
(1.1) for o> 3/4 and (1.2} for o> 4/b. :

3. Proof of Theorem 1. We hegin with a technical lemma.

Lomma 3, For & == 0,1, ..., % let

. My
(3.1) Tyls, 2) = 3 ag(m)gim)m=
1
with
&
(3.2) Fols, 7) = [[Fsts, )
L
be Diviohlet polynomials, Lot
iy
(3.3) G = ) laglm) ™.

1
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Then if My< D we have

&
(3.4) &= A [ [ 64

1

where Ay, was defined by (2.13), If M= I', wheve r > 1, then
I

(3.5) G < ] @,
;

where the constant depends on k and v,
Proof. We have

(3.6) G(,:Z[ X m(m]‘)--‘a:s('mh)lz

m e p=n

E 2 dy. () (o5 ()2 .« g ()|
m '

My =T
which proves (3.4) at. once, and (3.5) when we obgerve that
(8.7) ay(m) < dy

for m < D,

We now proceed to Theorem 1. Take the k and  for which the maxi-
mum in (2.18) is attained, and replace U by the corresponding subset
{(s, oy)}. The bound B*(D/N, U(h, )] is attained by some Dirichlet
polynomial (s, v} of length M say. We consider the Dirichlet polynomial

(3.8) Fols, y) = T1(s, ) F(s, op).
In the notation of Lemma. 3

(3.9) G, < 4, MG

it M < D/4N and o

(3.10) G < 4y M(IMN /D)6

i M > D/4N, by (3.5) and the estimate (2.14). For simplicity we shall
suppose M = D/4N. Both eages give the same upper hound apart from
the constant,

It (2.7) holds at each (s, ) we have by Lemima 2,

V Dl Fy(s, y) < (dy MGV EBUMY, Uh, )
£ Gl"zﬂf]m A;IQ'RW‘DU”,

(3.11)

where we have used (2.17). We deduce that
(3.12) B*(DIN, Ulh, o)) < G273 RY2 Dz qiaps

icm
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Bubetitating (3.12) into Lemma 2 we have

MiFGs,
< Guz{lez N”zlogl +RN1/4 ?’2 + G_IMRS!M V—lfz _Nlld._D]er Aéld, A;}e 111/4.} .

Hence if (2.21) holds with a sufficiently large ¢, the coeificient of &
on the left of (3.13) is at least twice that on the right, and we have

R < GV Nlog*l - VS N DAY 4,1,

which proves (2.20). The assertion (2.22) follows by dividing the get T
up according to : _

(8.15) V< [Fs, 1) <2V,

and yumming over & geometric progression of valueg of V.

(3.13)

4. Proof of Theorem 2. We work with powers of F(s, ). Let F,(s, v)
of length M be extremal for B*(D/N", U{k, w)}. We consider

(4.1) Fols, 1) = F2 (s, ) FLs, 2),

where p and ¢ are positive integers, p <t v —1, with

(4.2) N (D|N" < D.

Ag in the proof of Theorem 1 there are two cases. We ghall treat the case
(4.8) 9P NT M D,

Then in the notation of Lemma 3 we have

4d) Gy Ay, 07 M.

Ag in the proof of Theorem 1 we have
(4.5) V¥ D' Fy(s, p)I? < ("M, )0 BTN, U, o))
< GPRILYE AN (RMRHUR NPR . RO NP
o SIS e prels pife 4151!!2 A%/ﬁ 13}’
where we have used (2.22). Hence
(4.6)  BX(D/N", U(h, w)) € RODVoGrray-vic 158 (RN?-T0 D
o B2 N0 pyft g RS A 0-ralS Tk AVE Al
Lemma 2 applied to F"(s, ) gives
(A7) RV € (4yr@) (R N"Plogl - RN +
: + BN A s zgfiuﬁc {B* (DN, U(h, w)}2).
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Comparing (4.7) with (4.6}, we seo that if

(4.8) V > eGP N (4, )BT,
where ¢, is an abgolute constant, we have either
(4.9) R <@V ¥y 4., log*

or

(4.10) BV @Perr N0 A7 A AL 1

& RNF-TT A - R? yle—ra)s uft g + RE3 wte-ra)ie plak 1) Aélﬁ A{I)/n 1.

The condifion {2.26) with a suitable ¢, implies (4.8), Algo if (2.26) with
2 guitable ¢, and (4.10) hold then either

(4.11) B < (Gv—z)zqr-&pNja_Dqugdﬁillgg.,_:l
or
(412) R < (G720 yurp petl g12 e 4%, A;_In.q1274_1_10‘

This proves (2.27) subject to (2.26). The bound (2.25) follows from (2.27)
and the formulae for d,(m).

5. Proof of Theoremn 3. The first two assertions of Theorem 3 are
eagy consequences of Theorem 1. For (2.34) we use Theorem 2. Weo can
absorb the fixed character y into the coeflicients a(#n) without increasing &,
and take @ =1, D = 1. In Theorem 2 we take ¢ = 2; the cage ¢ = :
ig different becamse an exponent of 7, below becomes zero. We divide
‘the range for T in (2.27) into intervals of length T, 'where Ty << T and

(6.1) - V> GR(NwrpLr e L(oar-+47)

the constant necessary in (5.1) depending on &. 'We use ¢ for any exponent.
which is o(1), not necessarily the same at each occurrence. Then

(52) R < (@NV-EY eIy | (G -rars ye piteps-t
. 'l" (Gs_N'V'—G)EQI"Fﬁ Tl-}-umg‘}.g.

We choose T'y, if possible, to make the Lirst two terms in (5.2) of thoe same
order, that is

5.3y . Ty = (VEGgHear+o-iigyt-tia,

The condition (B.1) requires '

. (5‘4) Vs GllzNr(q»}«1+a)r(r1.a'9'-}-2'p+2r)5

and (5.3) alveady implies Z'; > ¥". The bound (5.2) becomes

. (5__5) Rp—1—¢ < (Gsz)wm-w—_r)mthrﬂwwr)/q+(Gv—z)nm-wwNww.
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The second term in (5.5) ir less than the fiest Lor
(5.6) V = QN2 -2 e -p)alog s 20+ 2pa-tp =),
The condition (5.6) is stronger than (b.4).

We now suppose (2.33) holds, so that 7' < N"*% Substituting for V
from (2.29), we find that the first torm in (5.5) is less than %7 for

3 I ki

o T it T e

H
which simplifies to
(5.8) ey

when ¢ =2, p = -1, These values of p and ¢ makes (5.6)

3 r-44
(5-9) | >3 Tifder—sy

For v 38 (5.9) iz the stronger condition. We need not check T, << T,
for replacing T, by T will reduce the second and third terms in (5.2),

it ') > T, and increase the first one to N¥U=9"° which is still less than
.sz?.a»{-n.

Altornatively we choose Ty to oqualise the first and thivd terms in
(5.2), giving . :
{ 5' 10) T, == (V£@~1)(6ar~l~ﬂﬁ~r)!(cz+1) N ardp—tie+),
We have Ty N for
(5.11) V 3 QAR NV -pliilGar3p—n),
The condition (B.1) I8 satisfied for
(5.12) Vo< Gll'-! lefh-l-q(r«-m)/d,(ﬂqzru-5qr«|~m-~2ﬂ)
for ¢ = 2, or for
(5.13) Vs QR ol )/ 0G50 ~ 2P0 20 =100)
whon ¢ == 1 or 2. The choice of T makes (B5.2)
(B.14) Rg_ymlw % (Gsz)('mr-l—:w}l(a-\-l) et ).

- (P Gw1)(4029"“9.rzr+2vtz—rrl-fh\-r)/(ﬁ-l) N (PRS2 )T

The second term fn (5.14) is less than the first if (5.6) is false. Substituting
for V from (2.20) we find that the first term in (5.14) is less than I°2F
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for _
: 3 r—p-+g-rl
B — P ]
(5-15) T i Tep—r—g—1)"

a condition. which implies (8.1}, With ¢ = 2, p = »—1 (B.15) is
5.16 AT
(5.16) Y T TR

which iz (2.38).

Errvata te Large voalues of Diviehlel polynomials

Eguation(1.12) : Imsorl factor NU* in the final term.
Equation(3.20): Right hand side should be M (1-u).L (u, ).
Equation(4.5): should read f = gy/h).

Equation(6.9): Replace Ty by #1TY.
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