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1. Introduction. Let a;, ..., a, be non-zere algebraic numbers with
- degrees at most d and sujppoqe that the height of ¢; is at most A4; (= 4).

Further let by, ..., b, be rafional integers with absclute values at mosk
B (=1), and let

A =bloge; +...+b,loga,,

where the logarithms are assumed to have their principal values. We
prove:

TeworREM. If A # 0 then 1] > B~Y%°, where
O =—logd,...logd,,

and C is an effectively computable number depending only on n and d.

The theorem improves upon the recent work of Stark [7] which
itself refined several earlier results in this field. If does. not, however,
include the theorems of the first two memoirs of this series [3], [4], nor
indeed those of [3] or [7] wherein, in partieular, the linear form A pos-
sesses algebraic and not merely rational integer coefficients; and it would
be of mueh interest to eliminate log 2 and to generalize - so as to incor-
porate these results.

The eqtlma,te of [7] was recently utilized by Stark [8] to strengthen
the bound for the size of the solutions of the Diophantine equation y*
= 2* + L obtained in [2], and moreover a special version was employed
by Shorey [6] to sharpen certain theorems concerning the distribution
of the primes; it seems likely that these results will admit still further
improvement in the light of the work here (' ).

() Added in proof. The work of this series has recently beem applied by
R. Tijdeman to show that the famous conjecture of Catalan is, in prineiple, decidable.




248 A, Baker .

2. Main theory. We signify by e,,...,a,, where »n =2, algebraic
mambers as in § 1, and we denote by K the field which they generate
over the rationals; further we denote by ¢, ¢y, ... numbers greater than
1 that ean be specified in fterms of n and d only. We suppose that there
exist rational integers by,...,b,, with .b, s ¢, having absclute values
at most B, such that [A]< B=““%% where ¢ = ((n,d) is assumed
sufficiently large. We procesd to prove that then, for any ¢,, there exists
¢, and a prime p with ¢, << p < ¢, such that K(aj”?, at?) is not an
extension of K of degres p™; we shall show in §4 tha.t this suffices to
establish the theorem.

The notation of [3] will be adopted without change, execept that
we now define Iy= [F""Y* Qlog Oflog A,] (0 <j< n), where 4, = Q.
It is then readily verified that Lemmas 5, 6 and 7 of {3] are valid with A
replaced by 2% and L = L,log 2; also one easily checks that Lemma 8

of [3] holds with the range of m,, ..., m,_; extended to cover all non-.

negative integers with

(1) . mﬂ+ Tﬂl‘n— 1kQIOg‘Q

for some ¢; a8 above. We now take g to be a prime p between &'* and 25"
exclusive and we assume that K(od®, ..., al”) is an extension of K of
degree p™. Then, for any integers 1,, ..., 4, between 0 and p —1 inclusive,
(2Y of {371 holds ‘with I replaced by I/p and with the p(A_,..., 4,) other
than those such that 4; = 4; (mod ) for all j, equated to 0. This gives
Lﬁ

(2) y yP L_15 Aos 1y -y fn) il (8)) All .. a:;"l =0

Ay=0 g e
for aﬂi I with 1 <1< hp, (I, p) = 1, where
L—1 =04, L =Ly, I L =L - 4)fpl  A<ji<n), Mjﬂﬂ;+P}'jr
and A" is denned llke A but with A replaced by s In fact (2) holds with
/' replaced by 4; for clemly Ab, ,u,,.—b,._ym 4n,) is a polynomialin p, = 4. —
—b,4,/b, with coefficients independent of the A’s and with degree m,,
whence arguing by induction with respeet to m, -...-+m, ;, as in the
proof of Lemma 7, we infer that (2) remains valid if the produet over »
in A" is replaced by (" ... 7273, and the required result then- follows
on t&king linear combinations. Thus we have shown that froth the validity

1 {2) of [3] for 1<1<h and Mo+, 1, _ <L.Qlog.Q we. 0btain

'LL
ZP —13 -

for all 7 with 1 <1 \7@, (t, p) =1, and adl Mgy ..., My, satisfying (1),
where the p'(1_,, ..., 4,) are integers given by some subset of the p (i
#rvy B}y Which, for a-suitable ehoice of A°, ..., A, are not all Q.

)A(l/?) gl ..capt =0

E 1_0

—_1) "=
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We shall demonstrate in the next section that the argument can
be repeated and one obtaana, for each positive Integer J, an equation
as above with L; < Ly/fp” {1 < j< n) and with Ifp replaced by Up?, valid
for all 1 with 1 <1< hp?, (I, p) =1, and all Mhyy -0y My _, Satisfying (1)
with ¢, replaced by p~7. The process is contmued untﬂ Li=0(1<j<gn),
which ocours for some o such that p’ < kQlog@2. There remains then
only ths gum over A_; and Z,, and the required contradiction follows
from Lemma 2 of {3] as in § 4 of that paper; this establishes the agsertion
at the beginning.

3. Inductive argmment. We require the proposition that for each inte-
gerd =0,1, ..., with 7 < k Rlog 2, there exist integers p(i_,, ..., 4,),
not all 0, with absolute values at most Q4% such that

L(J) 3%

(3) 2‘ pm

i 1—0 .
for all integers | with 1 <I< W', (1, p) =1, and all non-negative integers
Mgy veny Moy_y With '
(4) R R 'Jleog-_,

<
where I¥) = L_,, I{? = L, and I{" < L/p” (1< j<n) for all J.
The &sseltlon holds for J =0 by Lemma 1 of [3]. We assume the

n)—i(l/pj) aill .- a:;nz =0

result for J = K and proceed to prove the validity for J = K +1. For

any non-negative integers mg, ..., M, safisfying (4) with J = K we
write ' '
(K) (K}
T 2 p(K’u Ly vees de) Al2fPF) 0P L a@ns?
32 1::0 Bp=0 .

It iz then rea.dlly verified that
. f{z)l < ch.&flhk LIZ]/;UK

and furthermore that for any integer ! Wlth k< 1jp% < BE'", either (3)

holds with J = K or
F) = p—yzKLD Q-—cqﬂhk{lwlo"(lj(hpx))} ey ﬁLl[_pK

these estimates follow in fact as in the proof of Lemma 6 of {37, on noting
that the left-hand side of (3), mmltiplied by .

L(Kjl L‘K .
P . (v {T; 2hp ))

4hE Ly !
is an a.lgébrsuic integer, and we have mop < kQlog Q. One deduces. next,
a8 in Lemwma 7 of [3], that for some & (0 < ¢<C 1) depending only on n
and d, and for any integer J'. with 0 < J’ < 2n/e, (3) holds with J = K

FEVSNENSS
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for all integers I with 1 <1< hp™ k" and all non-negative infegers m, ...
vy, satistying (4) with % replaced by %/2”'; the argument follows
closely its earlier counterpart, h and logA being replaced by hpE and

p~E Qlog 2 respectively and, since KIL,logp does not exceed kfllog 2,

one obtains the same estimates as in [3] for the numbers on the right
of (12) and (13) with, say, K’ in place of K. Similarly one sees that the
analogue of Lemma 8 of [3] holds, that is, (3) is valid with I replaced
by Ifp forall Twith 1 < 1 < hkp®, (I, p) = 1, and all m, ..., m,_, satisfying
(4) with J = K -+1(*). Finally one argues as in § 2 above, and this yields
the required result. '

4. Proof of the theorem. We adopt the notation of § 2 and record
first two prelimimary lemmas; here A denotes the maximum of 44, ..., 4,
and D = g™

LEMMa 1. If A 5 0 then
log|Ad| > —4nDBlog(d4).

LEMMA 2. If A =0 but by, ..., b, are not all 0 -then in fact A = 0
for some by, ..., b,, not all 0, with absolute values at most

(47" D2log 4 )@ +17,

The firgt result is Lemma 6 of {1] and the second is a eonsequence
of the main deduction of that paper; indeed it iz clear that the eonclu-
sien of the last paragraph of § 2 of [1] holds when A = 0, and the required
result follows on applying this withn’ = n, § = land H = B—1 (> BY"),
where B, the maximum of the absolute values of by, ..., b,, i3 chosen
minimally.:

_We ghall suppose, as we may without loss of generality, that 4, < A,
< ... d, =4 and that e, = —1. We can clearly suppose further that
A > ¢, B> ( tor some suificiently large (' = 0'(n, d), for otherwise the
theorem follows at once either from the result of [3] or from Lemma 1.
‘We note also that if A % 0, then, by Lemma 1,

log|Ad} > —cBlogA,
where ¢ = 8n.D, and thus, if || < B 02 we have Blogd > (Cje) 0,
whence ' )
(5) ' log 4; < B
We now apply fhe result of §2 with e¢; = (4d)*; if p is the prime
indieated there, then, for somem with 0 < m < n, ol does not generate

-1
an extension of K(ag?, ..., ajf) of degree p. Hence, by Lemma 3 of [3]

I<jisn-1).

(*) In the proofs of the analogues of Lemmas 7 and 8, the factors (g—1I) in F(2)
and F(z) with (I, p) > 1 must be deleted; the arguments are not substantially affected.
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we have
(6) am-!—l = agl bl a;’;"?p

for some ¢ in K and some integers »y,..., 7, with 0< < p. We shall
suppose that the height A’ = A4, ., of a,,, satisfies

(M) log A’ < eB°,

and we verify first that this involves mo loss of generality. In fact, if
m < n—2, (7) iz a weaker version of (5); thus we assume that m = n—1,
whence 4' = 4. Clearly each conjugate of

— gl rip -7
y = aP a7 | g Tmi?

has absolute value at most (d4)/?{dd,, )™ and thus, by Lemma £ of [3],
the height of y is at most (244,,*"? A*?®_ This would be less than 4™
i (7) did not hold, for then (5) would give 47, < A. But from (6) we see that

loga, = rlogey+...+r,loga, +plogy
for some value of logy, and thus

4 =bjloga +... by loga,, +b,logy
‘where
b; = b;+b,1;

a<j<m), b, =h,p.

The integers b; plainly have absolute values at most 2pB and hence,
on modifying b, if necessary so as to make logy prineipal-valued, we see
that the theorem would follow by Induection on A, It suffices therefore
to assume that (7) is valid.

We now construct, as far as possible, a sequence y; = y, ¥2; ¥a; ---
of elements of K such that y, = o ... oy, (1 =1,2,...), where the
7y are integers with 0 < #;<< p. Clearly we have

7
— 37
(8) Dypr = At admy

where the s;; ave integers with 0 < g; < P, and from this we deduce as
ahove that the leight of 7, is at most (2DA'}**’. Let H be the bound
specified in Lemma 2 with the latter number in place of 4 and with n+1
in place of n. We distinguish two cases according as the sequence fer-
minates for some ! with p* << H or it does not. In the latter case, let I
be the least integer with ¢’ > H. From (8), taking logarithms, and Lemma

:2, we see that there exist integers b, by, ..., by s n0t all 0, Witk absolute

values at most H, such that
' b, loga, +... +byy loga,, b logy, =0,
and, on utilizing (8) again and eliminating y;, we obtain

(9 b;'logal+...—}-b;,'l_Hlogam_l =0
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for some integer b, where
b =plby—b'sy; (l<j<m), b;r,r,+1 = P'boyy U

Now the by (j > 1) are integers with absolute values at most 2pH?;
thus all b have absolute values at most 2npH* and, by (7), this is less
ﬂm.n B if ¢ is sufficiently large. Further, from (9), we can plainly express

o121 a8 a linear form in the loga; with j £ m +1 and with integer coeffi-
menﬁs having absolute values at mosﬁ 2B3. Henee, if ber ; # 0, the thecrem
follows b} induction on®n. T b, ., = 0 then, since p* > H, we have b’ = 0
and g0 b; 7 0 for some j < m; in $his case the elimination of loga, ﬁunlshes
the desu"e& conclusion,

It remains ‘ro consider the possibility that the sequence terminates
for some [ with p’ < H. From (8) we see that 4 ean be expressed as a linear
form in the loge; with a, ., replaced by y, and with integer coefficients
having absolute values at most 2nHB; further, from (7), this is less than
B2 if ('is sufficiently Iarge. Furthermore, since by supposition the sequence
terminates, we deduce from Lemma 3 of [3] that 4} generates an exten-
sion of K (i, ..., oXP) of degree p. Recalling that y; has height 47,
say, where log A" flogA' is bounded in terms of » and d only, it follows
that the hypotheses of §2 hold with y; substibuted for ¢,,,, and with
a reduced valune ot €. After at most » such substitutions this contradicts
the result of §2 (since the choice of p there depends only on n and d)
and the contradiction proves the theorem.
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IMprveneuns JHCTICPCHOHHONC METOA -
B npodaeme Ioabnbaxa

B. M. Brepmouw, H. A, frosmess (Hylifeiues)

1. Maorue appmTHBHEE 3aKAYH € LIPOCTEIME TICIAMHE PEIANTCH
€ NGMOINBIO METOHA CLEHKW TPHIOHOMETPHUIECKHX CYMM, 0THpHTore L M.
Bunorpamostm [5], B coenWHeRHE ¢ TeopeMaMH, KACAWINMMHCH Dacupe-

VJI&JIGI—IHH OPOCTLIX H9HCed B apmimemqecnmx HIpOrpeccuax ¢ MeIJICcHHO

pacrTymedl pasnoeTeio. 1IPA CBeTeRE TPETOHOMETDHYECKAX CYMAM II0 IIpo-
CTHM YHCIaM K JBOHHHM cyMmyay (yHIaMeHTATBHOH Asiderca mmes 11, M.
Bunorpagosa mo ,,(rIamuBaHEN” TAKAX CYMM,

B ocroee pmerepcuorroro merona, paspaborammoro 0. B. Jluunm-
rox [8], Taxme JeMHT HAed , CCIURHBAHEA” HaDAAY C PACCYIRICHHAMIE,
TMEeIOMIMMH CBOM HETORH B Knaccmdecrolt pafore IT. JI. Yefeimena O cped-
HUT gemunuHay (cm. [127).

ITa e HNed WCIoIbIYeTed B MeToie GoHbINOro. pemiera, cO3LAHBEOIO
10. B. JIpunwrom [$] ¥ MO3BOAMBIIEro NOIYIuThL PAX TEOPEM, OTHOCAMEXCA
K PACTpeRelIeHnI0 NPOCTHX JHCEN B ApE(OMeTHIeCKIX, IPOTPECCHAX B epefl-
HEM.

B camoe mocmemmee Bpexs J0. B. Junuuk (COBMECTHO ¢ OFHHM H3
aBTOPOB HAHHOH CTATHEH) PACCMOTPEI HPEMEHEHHA NMCHEPCHOHHOTO METONE
¥ TeopeM 0 NPOCTEX WICIAX ¥ HEROTODHM TEPHADHEM AXAHTHBHEM 34-
magaM {cM. [2]- [4]).

B pafiore [4] nano HOoBOe ]IDhaaaTEJIbCTBO TeopeMel BuHorpanosa
O HPENCTABIEHMM HEYETHAHIX HHCell CYMMaMI TPexX TPOCTHX duced (pajd
HPOCTOTEL Gepyres HEUeTHHE UHCHAA, He CONEPHAIINe MANLIX NPOCTHX
nexanTenreit).

AHamormuno Momer OHTH H3YUEHO YDABHEHHE

(1) ‘PP Dy = Pas

THE P, P1,y P2y Py OpoGeraor mpocrue uuena, p-+p; < . Iyers @(n) —
gEec pemenni ypasuerns (1), loura OyKBaXsabM IOBTOPEHUEM PACCY -
mermii paboT [4] (¢ NMpEeNBAPHTENbLHEM PHRCHPOBAHUEM P,) MOiHer OHTH
HOK&3AHA CIHeTYIOIMAA TeopeMa: :




