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TLet y denote a non-principal Dirvichlet character to the modualus
# > 1. In [1] Norton Ganjectured that for any positive integer h
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(m+y)lg< nk.

He obtained the Weaker upper bound {9/8)nh. The purpose of this paper
is- to prove (1).

Gallagher has proved that (1) holds i x 18 & primitive character modulo
n (8ee [1], Theorem 2.8). Thus we may assume that y is not a primitive
character. We prove (1) by induction on =.

If y is & character modulo & proper divisor m of »n then
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by the inductive hypothesis. Thus we may suppose that

X = X1ke

‘where %, is a primitive character modulo #, > 1, g, is the principal
character modulo 7, > 1, # = AN, (Mg, %) =1 and #n, I8 square-
free. :

Let p denote a prime factor of n,. Let 4, and y; denote respectively
the prineipal characters modulo p and ny/p. Let

Y = X1%as

which is a non-prineipal character modulo. I = n/p. Thus

X = Po-




2566 D. A, Burgess

Now we have
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We evaluate these four sums.
First we have
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Next we see thaf
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sinee (p,!) = 1. Thus it follows that
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It fo!lows immediately that

Z = I ﬁZEZw(v-r’y

y=] Y=
- Thus we dedunce from the inductive hypothesis that
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It remaing to estimate X,. We have
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On a conjecture of Norton

since pu-+lv rons through & complete set of residues modulo ». &mce
in addition v is & character module 1 it follows that
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by the inductive hypothesis again., But the last expression
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since (p, 1) = 1. (2), (3) and (4) together yield (1).
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