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1, Introduction. Using the extended Riemann hypothesis in 1930
Titchmarsh [15] proved an asymptotic estimate for the sum of the number
ot divisors @{p —¢,;) extended over the shifted primes p —o, (¢, an integer
constant == 0). Im 1957 Hooley [10] proved an analogous formula (also
on the extended Riemann hypothesis) with d(p — ¢,) replaced by 7{p—¢1),
the number of representations of p—e; as a sum of two squares (which
is also the number of integers having the norm p — ¢, in the field generated

by 1/:). About 1960 Linnik (see [13]) showed that these results of
Titehmarsh and Hooley can be proved without any hypotheses but using
his rather complicated method of dispersions. In 1965 Bombieri ([1],
Theorem 4) proved a mean value theorem for the functicn '

max max |- 2 ./i(az-)my]:p(k)l
I<y<se (k1y=1 yzn=lmod k)

where A(n) = logp it n = p* (p prime, k =1, 2, ...), A(n) = 0 otherwise
and o(k) is the number of reduced classes mod k This theore;m has been
used since by many authors as a powerful substitute for the extended
Riemann hypothesis. We shall mention here merely Eiliott and Hal-
berstam [6] who showed that some small changes in Hooley’s paper
would make his proofs tmconditional. In the present paper we shall prove

4 generalization of this result for a set of primes p* which are norms of

ideals of a fixed class &, in a quadratic field K {of diseriminant 4,) on
the condition that the shifted primes p* ¢, are norms of integer ideals
a belonging to another class & {possibly & = &;) in the same or another
quadratic field K with the dizeriminant 4. For the sum

1 0 am®) =aR R = Y 1
o aeSt, (N, 4)=1
p¥—cy=Na=lz

e
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we shall prove the asympfotic formula
(2) n(3; &) = eyoflogz-+0(z(logae)™ %) (3->c0)

where 4, stands for a positive constant depending merely on the number
of ideal classes in K (see (80}, (46), (44)) and apart from an exceptional
case 6, = t,(cy, Ay, A) is positive (see the Theorem and (50), (35), (20),
(19), (74)).

The principal aim in writing this paper is a possibly simple appli-
cation of a mean value theorem of Bombieri’s type (see (13), (14)). For
this reason we have introduced in (1) the restriction (Na, 4} = 1 which
could he removed using in (8) one more summation (of. [3], pp. 150-151).

Let g denote the number of genera of ‘classes & in K and let
A =g{4)/2¢ (). There are A natural numbers ¢,<C 4] with

(3) (Coy 4) =1

such thaf the idealnorms Na with (Na, 4) =1 and a belonging to the
genera (5 o & are the positive numbers = ¢,(mod 4) (see {3], pp. 150-151).
In proving (2) we shall use the following restriction: For at least one of
the numbers ¢, thers i3 an -integer ideal a, R, such that

(4) (Nag, 4) =1, Na, = ¢-+¢ (mod 4).

We shall prove the following

THEOREM. On the condition (4) we have in {2) ¢, > 0 with ewception
of the case A, = 12 (mod 16), 4 = 5§ (mod B8) and —e, an odd number con-
gruent mod 4 o an idealnorm of the dass K;. In this exceplional case ¢, = 0.

. The theorem remains trua also in the case of A, = 1 when K, is the
field of rational numbers and p* runs through all primes, generally denoted
by p(%. We take for granted that A == 1 (whence [4]|:= 3), since the
daze with K the field of rationals is of no interest.

The condition (4) by which a restriction on the choice of ¢, is imposed,
is not superfluous. If for example 4 = A, = —3, then merely the primes
p* =8 and p* =1 (mod3) are representable by the form w4 uv+4°
“(representing norms in K and K,); diminished by ¢, = —1 they give 4
and numbers = 2 (mod 3). The latfer being not representable by the
form, in the present case the equation p*—e, = Na (aeR, Na < «) has
no more than a single solution, whence (2) cannot hold with ¢, > 0.

) For A< 0 by p(4), mod 4, ... we mean ¢{]4]) and mod 4], respecﬁvely.

(%) Jn the case of A, = 1 the proof is simpler and can be based on Bombieri’s

theorem {17; and if we drop in (1) the restrietion (Na, 4) = 1, then the condition (4)
gets superflnous.

icm
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In thé expression (1) any shifted prime p* —o¢; Teappears as many
times as there are ideals aef with Na = 9" —¢,. The number of ideals a
in K with Na = 4 being

3

diee

(¢f. [12], Satz 882) from (2) we deduce (provided ¢, > 0) that for any con-
stant &> 0 and @ > my(e) there are > z'~° shifted primes p* —¢, in the
sequence of all different idealnorms Na < % with aeR. By Iwaniec [11]
the order of magnitude for the nmmber of shifted primes p-—e¢; in the
sequence of all different idealnorms Na < s, aef, is w(logw)™*. His
method seems applicable in proving & similar result also for the shifted
primes p* —e¢;.

The chief weapon of proof in the present paper is a mean value the-
orem of Bombieri’s type, but for primes p* which are idealnorms of class
R, (see [9]). The method iz in outline the same as in the papers of EHiott—~
Halberstam [6], Hooley [10] and Bredihin-Linnik [3], e¢xcept. that we
deal with the conjugate problem. The fransition from w(z; ®) (see (6))
to =(x; &) in § 8 is then by the method of Bredihin-Linnik [3], first used
in proving an asymptotic formula for the number of representations
of a large number #» as the sum of a prime p and a number representable
by a given binary quadratic form. In a similar paper [4] by the same
authors and Cudakov the same problem is considered but for a set of
primes p* representable by some other hinary quadratlc form, both
discriminants supposed negative. :

2. The fumction =z(w; §). Instead of (2) we shall prove first an
analogous result for a simpler function

(6) a{z; ) = Z 1

aef,(Na, A)ml
p‘—cJ =NaST

where § is the genera containing the given class K. Choosing a fized e,
satisfying (3} and (4) we introduce the funetion

(7) gz, ¢;) = (A)
© xzpYe-e=tm=cg{mod 4) [ .

The Kronecker symbol (4/I) being a character mod|A4| ([12], I, p. 83)

-instead of it throughout this paper we shall write yx(I). Considering that

all ideals a with the same norm ¢ = Ng are in the same genera (zee [2],
p- 320), we have by (5), (6), (T)

(8) | a(w; §) = > g, o).

e T
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Comparing (8), (35) and (48) one can see fthat for any fixed value
of ¢, not satisfying {4) the contribution of the shifted primes in (2) is of
no importance (*). Therefore the sum in (8) is merely over numbers ¢,
satisfying (4).

By ¢ denoting some constamt > 3 (which will be specified in §3)
we split the sum (7) into parts

(8) _ glw, c) = 2,4 +2p+2¢

corresponding to the values of

(10) 1< alogz)™, o (logm)*< 1< P (loga)’, 1> P (log )",
respectively.

3. An estimate for the sum X, For any natural number g let ¢.(g)
denote the number of reduced classes @ (mod g) such that there are integer
ideals a,<®; with Nq, = a(med ¢); any sush & throughout this paper
«will be called admissible mod q. We shall use the following properties:

{11)  owmlp =9l E (g,4y) =1
(12) D@ @) =) el I (g ge) = 1. '

For a proof see the Appendix, Lemma 3.

Let a be admissible mod ¢ snd «*(z; ¢, a) stand for the number
of primes p* = a(mod g), p* <@ By h, denoting the number of the
ideal classes in the field X, and Wrztmg '

(13) E(fy, ¢) = Max | (¥; 4, a)—(Lw [ (9)F

a(mod q)

we have (see [9])

(14) 'Y maxB(y,q) <o(oga)t (2323
i geriifogzy—B ¥<F )

for any congtant A >0 and appropriate B = B(4) > 0. We shall use
(14)with 4 = 2. Now we fix the constant ¢in (10) to be = max {3, B(2) +1}.
To estimate X, by means of (14) we have first to show that the primes

7" satisfying the condmon :

(s o pt e =Tm = ¢y(mod 4)

() Let us suppose that corresponding to the fixed ¢, (satisfying (3)) there is
at least one shifted prime p*—e, > (4] +ig[ in the sequence of idealnorms Na with
aef, (Na, 4) = 1. Then there is a prime ideal p, &, snch that Np, = p* > {4,
wheneo (¥p,, 4) =1 and we have p*—e¢; = Fao = ¢y {mod 4). Hence Np, =¢+
+eg{mod 4), whieh iz (4) with ¢ = p,. ' '
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(see (T)) are admissible mod i4, provided that (I, ¢,) =1 and {I, 4) = 1.
We may take for granted that {I, A} = 1, since otherwise in (7) %{l) = 0.
We replace (15) by the system of congruences . ‘

o) P* =6 (mod 1),

( p* = 6+ ¢o{mod A).

Since by (4) ¢;+6, is admissible mod 4, there are primes p™ satisfying
the second congruence (16) (see [9], §3). Provided that ¢, is admissible
mod I (no other values of I will be used) the system (16) is compatible
(since (I, A) = 1), its solution being

(17) 7* = ¢, (mod 14)

for appropriate ¢y, admissible mod I4 (see the proof of {12)).
Now by (7), (9), (10), (15), (17)

I ) 2(D

<z *(logx)—C ¢yadm. mod
p*=0g (mod I4)

whenee by (13), (14)

5. Y 2 (W Li(w+ey)
4 by, (14)
1<zt ¥ log 2)—C,cradm. mod T
z4e
< P
< Y Bate,l < T

1<zl 2(log ) —¢

and thus by (12)
Li(z+¢) ‘ %{1) 0( @ )

By, (A - 1 log?z |
19:(4) 1<z toga)— %, cadm. mod 7:(0) 5

a8) X, =

By a generalization of Hooley [10], Lemmsa 3, for a nonprincipal
character y mod 4 we have

1 (1) g2y
=0, B(m}+0 (——— a(m ))
y o (V) y
{s -m.) 1
{for any ¥ > 1 and any natural number m) where

: 1V —
(19) 0, = L(1, %)H(N‘ (P)l)) Bm) = H (p )(P I(P)),

b PPt a(P)
L(s, v bemg the Dirichlet IL-function. Hence )
4 log 21 ’
(20) X ;EZ'; = 04—5—0(—%), 6 = O, Ble, 4y) > 0,

[

@ epdp=1

by (19).
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Tet us write the variable [ of (18) in the form of
(21) T=gl, (I,64:).=1,

where ¢ is either 1 or a natural number divisible merely by primes divid-
ing A,. Then (gq,%) =1, whenece by (21), (12), (11)

D) = gu(g)@(T)

and writing
{(22) y = o (logz)™°
we have
‘ 2 o 20 2 ()
%3) P U 2 () Ce(l)
=L wGamy T pcyigofaamomonr @
ejadm. modl cyadm.ode (¥, 4y =1

Sinee I = ¢-1, (g, 1) = 1, in order that ¢, should be admissible mod 7, it
is necessary and sufficient that (i) ¢; admissible mod I and (ii) ¢; admissible
mod ¢ {see the proof of (12)). The condition (i) holds by (11) for any ¥’
with (', 4,¢;) = 1. The investigation of numbers g satistying (i) will be
postponed to the Appendix, Lemmas 4~7.

By (20}, (28), (22) and Appendix, Lemma 8§

t ) log2
2w 2wt
L1 aﬂ;:ﬁil‘;udl cla.g.ff gflg& a .

_ 1 x{g) (lﬂgy q )
= g, 0
‘ }4 @1 (M) + Y 2 o1{9)

isig<ly 1<y
cyndm. mod g

; £9) ) (mg”?y)
% K;m RPN R
ci8dm. mod g £ 8dm. modg
1o l:'-l-cjtzm
~.—.-.G407‘}"O (iﬁ—_)’

since the number of numbers g< o (#> 8) is < (loga)®, where b stands
for the number of different primes dividing 4, and since qlp:(q) < logg
([14], p. 24, Batz 5.1). Henee by (18)

(24) 24 = osofloge +-0(a/logis),
where the constant

(25} K O = 6,0, [l gy (A)
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(see (20}, {74)) is generally > 0 with exeeption of the case when —e¢, is
an odd number = N, (mod 4) for appropriate a; <Ry, and 4, = 12 (mod 16),
A =5 (mod 8} (see Appendix, Lemma 8).

4. The sum ¥, In accordance with (7), (2), (10)

(26) X = pX W= D > .
=zl o 2)° m<zlog )¢  zW{logz)f<i<nlm
z=lm=p*—e =cylraod ) ejadm.modm  p*—cy=im=cyimod 4)

For any fixed m satisfying the condition under the first sum on the
right in (26) we consider separately the set of numbers I = I with y(§') =1
and the set I =" with y{I”) = —1. The first set containg one half of
the reduced classes mod 4 and the second set the other half. Let the
corresponding classes be represented by I, ..., Land ), ..., I (v = @(4)/2),
respectively. The primes p* with p*—e, = Im corregponding to lj'- are

P* = e, +m(l+14) = ¢, +ml (mod md)

(4 integer). We shall first prove that for any j =1, 2, ..., p(4)/2 the system
of congrnences

(27) " =c,+mlmodmd), 3% = +e(mod 4), ml = ¢ (modd)
is compatible and has the solution

(28) ' P* = a; (mod mA)

with @; = ¢, +-mlj, admissible mod mA.

Since Im = ¢,(mod 4} and (e, 4) =1 (see (3)), it follows that
(m, d) = 1. Therefore the first eongruence (27) (which will be denoted
by (27,) ete.) can be replaced by two congruences of modulus m and 4,
respectively; the latter congruence may be dropped, being a consequence
of (27,). The remaining system

P* =c¢+ml(modm), p* =e +ey(modd), ml =c,(mod 4)
can be replaeed by

* = g, +ml(mod m
(29) ?* 1"E‘ ii( )7
P =0, +ml(mod 4).

Since {(m, 4) =1, it remains to prove that taken separately the
congruences (29,) and (29,) can be satisfied. (29,) being the same as
P* = ¢, (mod m) can be sabistied, since ¢, is admissible mod m (see (28)).
Sinee ml; = ¢,(mod 4), the congruence (29,) is the same as p* = ¢,-}
+ep(mod A}, It ean be satisfied, sinee by (4) ¢, -} ¢, is admissible mod 4.
This completes the proof of (28).
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In the same way one can prove that the analogous system of congru-
ences (27) with I} replaced by I} is compatible and has a solution p* = 4
(mod m4) with an admissible ¢ mod mA.

Now by (26) and. (28)

-
= X M X = 3 1

m<liiogs)~ 1<i=spld) pr=a.(mod md) p*?_a:'(modmd)

cyadm. mod m o w 2

.Hmj€13*~€=v+01 Yy S S0y
y;nj = 31+'m'l;0? ?/1’;1;' = 01+ml:;£l7

where I, is the minimal 7 =1; (mod 4) satistying !> «'*(logz)® = a,,
say (analogous definition for I;). From both terms of the difference in
%, subiracting {Li(o-c;) —Limag} ko (ma), using (14) (with 4 =3)
and considering that

Wyt =iyl <m, Y m < a(loga)",
m<zY2logz)—?°

we obtain
(30)
Xo € Z {B(w+ ey, mdl)+E (mpy, mA) +o(loga) ¢ < w(logs)?,

m<zl¥{logz)— ¢

5. The som X5, In this section the estimation of the sum

Iy = D 1()
@2 * —o =Im=cy(mod 4)
212 loge)—t<i<zi/(logx)°
of (9) will be reduced to that of two other sums Z’E and X, defined by (32)..
Writing

(81) D(m) = Y 1, Fim)= > 1(D)

. lim lm
= loge)—C<T<zl{log 2)° 2M2(10gx)—C i<zl Qog )¢

we have
ig = 2 F(p*—¢),
xz=p™— oy =cp{mod 4)
] Dip*—ecg)=0

whence by the inequality of Cauchy—Schwarz
(32)

N 1f2 3 if2 2
ez M 1 P(p*— )] = (Zp)(Ze)",

p*—ep=gy(mod 4) =gt —cp=eg{mod 4)

Dip®—e)>0 )

P
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say. By the method of Hooley in §§ 6 and T we shall prove that
(33) Zg < w{loglogz)'jlogao,
(34) Zp < w(logw)‘“l-m
whenee by (32)
' Zp < w{loge)™ ",
Henece by (8), (9), (24), (25), (30)
(3B) : ni(z; ®) = cgw/logm—]—O(w(logcu)—“'m),
where

8y = 20407/]‘1971(1])

[ )

is generally > 0 with exception of the case mentioned in the theorem.
6. A proof of (34). In order to prove (34) we start with

< Y1
Py <
D(pt—op>

(ef. (32)) and go on as in [10], p. 104, except that now (L), (M), (P)
denote conditions '
2 (logw)™° < 1 << 2 (log#)°,
72 (loga) " < m < &' (log=)’,
[ — Im < @,
respectively, and in [10], Lemma 7, the sum is over the interval Y2 (logs) 2
< m << y*(logz)’. For a proof of [10], Lemma 5, see [14], p. 50, Satz 4.6.

7. A proof of (33). We start the proof of (33) by introducing the
number : '

a

(36) 971 — mlj(fogiog:r)g
and writing :
o= v
nil,psay

for any ! with the canonical representation ¢ == [ p° Further we introduce

. : . - plt
a non-negative arithmetical function f(n) = fy(n) such that f(p) =1

for any prime p (see [10], p. 96). By (32), (31)
Ip = 2 P p*—¢) < D Pn—c)f(n)

zzp*—cy=colmod 4} ke o T
. n=ey+¢o(mod 4)

= D1 (APA(ATICON
z?l;m1=l;mzsnuclzco(modd)_
:all’z{logx)"’{l;,l;<$”2(10gm)°
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For fixed I, I, the number % — ¢, is divisible by the least common mul-
tiple [I,L]. Writing (,%) =d, I =dl,,l; =, we have (I,,%) =1
and 11, L] = dl,1,. We can take for granted that (dlls, 4) = 1 (since
otherwise yx(l)x(%) =0) in which case the system of congruences
{n =¢,(mod dl,ly), n = 6;-F¢o(mod 4)} is satisfied by a single class
os(mod di,1, 4). Using the conditions

7 o (log@)° '
(L) d(loga)’ < hi< i ; (H) (113 L) =1; (K) (4dil;, d") =1
we can write _ _
(37) Zg < > (@LL)f(n) = 3+ N =S+,
Llgdm=n—ty=cyfmod 4) C a8 el
(I} Zg)(E) -

say. Since in X, we have l,1;d < s(logz)*/d, by [10], Lemma 4,
(38) Zi= D gl@hl) Y f(n) < (@+6)Bu{Z I} +aflog’s,

{LNLo)(H} AgL+0y
nme)(mod dlyl,)
where n=61-+cglmod 4)
(39) B, < (loglogz)®flogz,
R S U B @1
i PATRE) i P(AMRL)
1/8 - deen 12 —c 172, -C.
e i<zl log) 220 2)—Ccd<aliZlog )’

?Jsing [10], Lemmsa &, and a generalization of [10], Lemma 9 (with the
interval of summation %/d< 1< u({loga)®/d) one can prove that X, <
< (loglogz)®, Wgence by (38), (39) (since evidently 2, < (loglogaz))
(40) Z; < z{loglogw) [logz.
By (37) '
Zy = > 2@ f(n).
hydm=n—cy=cgrmod 4)
(L)L), a<f®
Congidering that ([12], Satz 35)

1 i (I, L) =1,
Z#(t}m e b} =1

=l 10  otherwise
si=1,

wWe ean write

(41) 2y = D) sl gE@Es)fm = 3 1+ Y = 545,

z;rs!2&m=n-c1=c;ﬂ(mnd £) N7 S
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say; Since in 2y

= 2 (loga)* dt < &**{logz’,

% »
rdm < — <
’ s T g (logmyTcd !

uging the conditions

(01‘12 m”g(logm)"
o e <r <)
an/z ml!ﬂ (logm)° " .
(5) {dt(logm)” <SS T }’ (DT) {d< 2Pt <"}
we have
(2) n= Q) whaedn) 2 2(8)f ()

ri2gm<atlog 2y xEn—¢;=rsidm=cyimod 4)

< X | X awim]
ri%nﬁgu(%i%ogz)ﬂ n_cﬁr.sg)z,%?i?i?ﬁm )
where 1< ¥y, ¥ = @-+¢,. We split the inner sum into parts correspond-
ing to pairs of clagses s', s’ (mod A) with 7(8") =1, z{s"} = —1, and
for each eclass separately we shall use [10], Lemmsa 4, the corresponding
numbers » being

(43) p = @y = ¢y +7i2dms (mnod ri*dmd),
v =gy = ¢y +rizdme’”’ (aod ri*dmAd).

Yet we have first to prove that if one of the numbers
8, = (6, F1fdms, (P dmA\), 8 = (o0 -+ dms”, (rt* dmA))

is =1, so iz the other.

Let p, be a prime <« (see (36)) such thab Py e +ri2dms’ and
py |7t2dmA. Then either (i) p, [ri*dm or (if) p4| A4 {or both). In the first case
p,)e; and thus 6, > 1 implies d;>> 1 and vice versa. In the second case
consider thab (see (42)) rt2dms = ¢,(mod /), whence ¢ Fritdms’ = 0,
-+, (mod A). Since py| 4 and psle, +ritdms’, it follows that pile;+6
and p,|4, a contradiction to (4}

Now by [10], Lemma 4, the part of the last sum on the right in (42)
for any of the pairs of numbers (43) is : :

Ya—l Ys— Y & &
= 1 B, ——=~—25,10
p(riddmd) " gp(ritdmd) 2t ( ritdm|A|log’® ) < rirdm{logz) ’
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whenee by (42)

& &x
&5 < (loga)® 52 Yamt < Togio

o

T, satisfies the same estimate (see [103, (62)) and so does 2., by (41).
Henee (33) follows from (40), (37).

8. Proof of the theorem. We shall use (85) with ¢, > 0, the exceptional
ease ¢ = 0 being excluded. In what follows let

K, = [¢,logloga],

where e, stands for the least positive solution of the equation

(44) 1/h—2¢log2 — e -+ eloge = 0, |

% being the number of the classes &; of the field K. We split the sum (6) .
into parts

(45) (25 B) = Zg-+2p,

where each a of Xy is a product of at least K, prime ideals pe&; (for
every ¢ =1,2,..., h; p4a) and Zp is the remaining part.
Let F; (14 %) denote the set of natural numbers m having less

than K, prime divisors p;|m such that z(p;) = 1, p; = PiPss Pie K. Write

Am)= X1, Zp = A(m).
[ m=p*—Cy KT

Na=m el
Then

Zp < h-max Zp,.
1ct<h

Arguing as in Bredihin-Linnik [3], pp. 154-157 (with " —¢, = m instead
of ptm —n and » instead of ») we can prove that

w{loglogx)*(log )l oloE%

x(logloga)* < @
(logw)++%

" (loga) s (loga)FR

(46) Zp <

for any d,<C g,log2. Hence by (45)
47 n(@; ©) = X5 +0 [z(logz) %),

Let Fg(m) be the number of solutions of the equa,ﬁion
(48) ‘ Na.= mo-

With_tha restriction aef (Ke®) and let Fg(m) denote the number of
solutmns_ of {48) when a rung through all the elasses K« ® (4, in number).

{(m =< w)

icm
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Writing meH i m = Ng with o satisfying the restriction imposed on
Xy, we have by [3], Lemma 3, for mek

(49) Fa(m) = 171 Fg(m){1+0(log™’x)}, 0 = glog2.

Summing (49) over the numbers m = p* —¢eH, m < & we get

Ty =1, Fo(m){1+0(log™’2)},

rxm=p*—cied

whenee by (47}, (35)
HA & pi
t —_— —— ——————— — —_— .
o 2 Fﬁ(m) Gy Iogm +O ((Iogm)l-{—do\) +O( (logw)l.ﬂﬂs )

rrm=p*—c e

Now using (46) we get

S Fa(p* — ) = confloga+0{wlloga) ™%,
: -z
‘where

(50) 0y = Cglty, 6, = min(fy, 3-10%).

This completes the proof of the theorem.

Appendix

9. Tn thiz section we shall prove some properties of the function
@, (q) denoting the number of normresidues amod g with (a, ¢) =1 for
a given clags K&; of ideals in the quadratic field K’ of diseriminant d.
Tnstead of the class of ideals we shall deal with a quadratic form and
solve the question in a more general sebbing. ‘ '
. Given a primitive binary quadratic form F(u,v) = Au?-}-Bup +0v?
(or a elass € of forms with FeQ), we call a rational integer n admissible
mod g if {#, g) = 1 and if there are tational integers u, » such that F(u, )
= n (mod g¢). In what follows we denote the number of admissible numbers
(in a set of residues mod ¢) by ¢i(g} = z1(g, ©). If in particular the form
F represents the norms in question (ef. [7], § 3), we get the desired results.
Lesma 1. Let Flu,v) = Au?+Buv+-0v? be a primilive form and
let g be any natural integer. Then F represents some integer n such that
(n,q) =1 i
For the proof see e.g. [5], Satz 66.
LEvmA 2. Suppose that ¢ = ¢1s, (¢1; g) = 1 and n is admissible
mod ¢, and admissible mod g,. Then:n ds admissible mod g and conversely.
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Proof. By the premises of the lemma we have (#, ;) =1, (n, ¢;) =1
and Flug, vy) = n (mod g), Fluy, ) =n (mod g,} for appropriate in-
tREETS Uy, ¥y, Uay Vs, FHOTCE (N, 1¢s) =1 and for all u, » satisfying

% = uy (mod ¢,), v = v, (100d ¢4),

w =g (mod gp); |2 = v, (m0d go)

we have F (4, v) = % (mod ¢, g;). If on the contrary Fug, vo) =n (mod g),

(n,g) =1, ¢ =q:gs, then evidently (ug, v} =n (mod gy); F(tho, o)

=n (mod g), (%, 4:) =1, (n,q;) =1, whence the lemma.

TemMA 3. Suppose that F(u,v) = Auw+Buw--Cv? is a pmmm@:s
form of diseriminant D = B*—4AC. Let (for any inleger q > 1) @(q) be
the number of reduced classes mod q and p,(q) denote the number of reduced
classes a {mod g) such that F(u,7) = a(mod ¢) has a solution. Then

(51) o1 (4es) = g (@) palts) o (g, @) =1; .
(52) plg) =9l o (D, =1
(53) g (1) = @ (2) = 1;

(54)  @u(0®) = 30" for k=1 and any odd prime p dividing D;
1 if D =12 (modl8),
2 i D =8(modl6)

(56) (2% =2% if k=3 and D is an even fundamental

diseriminant (D = d).

(55) ¢1(4d) =

From Lemma 3 follows the inequality p;(g) > p(g) which was nsed
in {9] without a proper reference.

Proof. Let a; and b; run through the sets of ali mcongruent and

afdmissible nombers mod ¢; and mod g,, respectively. Solving all systems
of congruences

%
[l

m(mod ¢4);, 1< i< u{),
7 =b{mod g}, 1 <ji< ‘Pl(flz)
(compatible, since (g:,g,) = 1) we get a set of ¢,(gqy)¢.(g) numbers r:

(58) TysPay o Ty N = @u(q)ea ()

By Lemmsa 2 all the numbers (57) are admisgible mod g, 4,. And evidently
any two of them are incongruent mod g¢;¢s,.

T a, is any admissible number mod g,q,, then @, is also admissible
mod ¢, and admissible mod g¢,, whenee far appropriate 4y, 75 (1< 49 < ¢1(41),
1< 5o < 0a{g2)) o = o (mod ¢y) and a, = b; (mod g,). Henee a, is con-
gruent mod ¢,q, to some of the numbers (58), whence {51) follows.

{87)

On shifted primes 347

For a proof of (52) see [8], §23.
By the definition of ¢.(g) we have 1< {g) <e(gh whence (53)
follows (sinee (1) =¢(2) =1). :

10. In proving (54) we may suppose that p{d (otherwise use Lemma 1
and replace F by appropriate equivalent form). From

(59) 44F(n,v) = (24u+Bv)>—Dv?, D = B*—4A0

we deduce that 44F(u,v) = (24u-+Bv)*(mod p). Hence we see that the
admissible numbers mod p are quadratic residues, if 4 is quadratic residue,
and otherwise they are all quadratic nonresidues.

Supposing A 2 gquadratie residue mod p et us prove that for any
of the $(p—1) quadratic residues ! (mod p) there are integers u, v such
that

(60) F{u, v} =1 (mod p).
A and 1 being quadratic residues we can find an integer » such that
(61) 441 = n*(mod p).

Now let u, v be a pair of integers satisfying 24w +Bv = 5 (mod p)
(one can take for example v = 0, 4 = /24 (mod ‘p)). Then by (61) and (59)

441 = (24u+Bv)?
, {(mod p),
448 (u, v) = (244 -+Bv)?
whenece (80) follows.

By the same argument one can prove that in the case of a quadratic
nonrésidue .4 for any of the (p—1) guadratic nonresidues l there are

integers u, v satisfying {60). This proves (54) for k — 1.

Let us suppose that (54} holds for some ﬁxed k> 1 and « is admissible
mod p*l. Then @ is also admissible mod p* whence s = ly(mod p ),
where I, stands for one of the ¢; {p*) admissible numbers mod p®, Tt remaing
to prove that for any [, all the numbers 1,+yp® (with y runing through
the set of all residues mod p) are admissible mod pEFL, From this it wonld
follow that @, (p*) = p @:(P") = p-p(p") = 1p(p®*Y) and the truth of
(54) would he established for the exponent k+1

By the definition of I, there are integers u,, v, such that

(62) F(uy, v) = lo(mod )
which is the same thing as
(63) Py 90) = by +2"Yo-

Let us write # = w,-+p*t, where ¢ stands for a variable infeger.
By the Taylor expa.nsmn

(64) ' B, v5) = F(1ho, ¥5) -{-p"tb_—l— opt¥,
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where b and ¢ are integers,
ar
N

du U=ty Y=ty

Since pfl,, from (62) and (59) (where pt44,p|D) we deduce thab
b = 0 (mod p). Hence, if ¢ rans throngh the set of all residues mod p,
go does bt. Now by (63) and (64)

Flug+2",05) =1, 'f“Pk(yo ~+b%) (mod p*+Y)
and the desired result follows,
11. In order to prove (55) consider that by .(39)
(68) A-T(u,v) = (Au+1Bv)* — D%

‘where

= 2 Au,+Dv,.

D, =D/4 =2 or 3 (mod 4},

2[R, and we may suppose that 24 4. In (65) we shall use merely such
values of w and » for which the Tight hand side U (say) is an odd number
(sinee even U do not furnish admissible numbers mod 2¥). Supposing v
odd we have :

a

1 | 0 : 3
(modd) U =1 i (AutiBo = wnd Dy =

I v is even,'then U = 4A°%* =1 (mod 4). This proves (b5).
Passing to the eomputation of ¢, (8) let us write

(66) U — B —D;»?, where F = Au+tiBv, D, = D/4.
Suppose first » odd and thus »? =1 (mod 8). We have
{67) D, =2, 6 or3, 7 (mod8),

In the first two cases (67) we have in (66) an odd U merely for B*
=1 (mod 8); in the remaining cases U is odd for B* =4 or 0 (mod 8).
The corresponding values of U are

L5 i B =4,
5,1 it EF =0.
Now suppose v even and thus +2 = 4 or 0(mod 8). Then we have

an odd U in (66) merely for an odd F* =1 (mod 8). The values of U
corresponding to the numbers (67) are as follows:

1,1, 1,1 if 2 =0,
1, 1,5, 8 i ot=4d.

(mod 8) U =1, 8§, ‘

(IIlGd 8) 0 z—|

This proves that ¢,(8) = 2.
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In order to compute ¢,(2%) for k>4 consider that an admissible
number mod 2° iz also admissible mod 2*7' and from any of the two
CODZTTENces

U =n(mod 2% and U =n-+2F"(mod?2"

it follows U = a (mod 2¥77). Therefore

(68) C @a(2F) < 20 (2.
Tet us suppose that for some fixed k2> 4
(69) p(257) = 247,

Then by (68) ¢,(2%) < 2%* whence (56) would follow if we could find
o et of 28% numbers U, incongruent and admissible med 2k,

The nwmbers a = 1 (mod 4) of the reduced system of residues mod 2*
are representable as the powers 5°, b =1, 2,..., 2" and the remaining
nurmbers = 3 (mod 4) are representable as —5° ([12], I, Satz 126). These
representations being unique there are 2%-% pdd quadratic residues mod 2%,
viz. the numbers = 5? with b = 2, 4, ..., 2*7% In another arrangement
they are the numbers ' i

(70} g =1 (mod 8}.

Using in (66) v =0 we -get these 2% numbers (70) as values of U. It
remains to prove that there are at least as many incongruent (mod 2%

-other values of U.

It D, = 2 (mod 4), then using in (65) 22 =1 we get 2*° odd values
of U =q—D, (mod 2*). Not being congruent neither among themselves
nor to any of the numbers {70) (since otherwise would follow 0 = —Dy
(mod 8)) they furnish the set of numbers U we need.

If D, = 3 (mod 4), then using +? = 4 we get 2%~ numbers U =¢—
—4D,(mod 2%) and argue as hefore. :

By this we have proved (86). From the proof follows that if k>4
and n» rans through a set of all admissible numbers mod 2k=1, then so
does n--2%1. Any admissible number mod 2* is either in the first or in
the second set (since the set theoretical sum of both sets eontain gk—2
pumbers, incongruent mod 2%).

12. Levwa 4. Suppose that p s an odd prime, Flu,v) = Aur+
-+ Buv +0v? is a primitive form with the discriminant D = B —4AC, and
the integer ¢, is admissible mod p with respect to F. Then for any kb = 1,2, ...
there are integers %, such that Flu,v)—o, i¢ divisible by fa

Proof. Being admissible mod p the integer ¢, is not divisible by p.
Tence if p+ D, then the result follows from [8], § 23 with g = ot It p| D,
then arguing as in the proof of (34) we prove that ¢, is also admissible

mod p% &k =2, 3,...
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If ¢, and the discriminant D of F(u, ) are odd numbers, then by -

[8], §23 with ¢ = 2° for any %k =1,2,... there are integers w,v such
that 2°|F(u,»)—e;. This may not be true for an even D.

LevMA 5. Let F(u, v) = Au* +Buv+0v* (4 odd) be a primitive form
with the discriminant D = 4D,, D, = 2 (mod 4). Let further ¢, be an odd
number and & = 3. Then for the existence of imtegers u, v with 2°|F (u, v) —e,
we hove the necessary ond sufficient condition

1,7, i D, =2,

71 mod 8) Ae, =
(1) ( ) Al 1,3 i D=

o

Proof. Since by (56) ¢,(2%) = ¢(2%)/2, the congruence
(72) : F(u,v) = ¢ (mod 2%)

has a solufion merely for ome half of the odd numbers congtituting the
reduced system of residues mod 2% Sinee (72) is equivalent to

B D,o* = Ac,(mod 9%), B = Au-1Bv
{zee (65)), from § 11 (the proof of ¢,(8) = 2) the lamma follows for & = 3.

Suppose Ade, = a{mod 2*) (where a runs through ¢,(2*) = 4 incon-
gruent numbers) is the necessary and sufficient condition for the existence

" of u, v sueh that 2*{F(u, v) —e¢;. Comparing with the condition for k¥ = 3-

we deduce (cf. the remark at the end of § 11) that

1, 7; 1492, 742 (mod 2%, it D, =3 (wod8),
1, 3;  14+2% 3429 (mod 2%, if D, =6 (mod 8).

a =

This proves (71) for & = 4. Proceeding in the same manner we prove
the lemma for any & > 4.

Lnnea 6. Lat F{w, v) = Adu*+Buv+0v2 (4 odd) be o primitive form
with the discriminant D = 4D;, D, = 3 (mod 4). Let further ¢, be an odd
number and k> 2. Then Ac, =1 (mod 4) s the necessary and sufficient
condition for the existence of integers w, v such that 28| F(u, v)—c;.

. The proof is similar fo that of the previons lemma. If %k = 2, from’
B —Dyv* = Aoy (mod 4) we get Ao, = 1 (mod 4) (cf. the proof -of (55)),
*ﬂ;hence for k = 3 we get (cf. the proof of ¢, (8) = 2} Ae, =1,1+4 (mod 8),
ete.

Lz 7. Let F(u,v) = Au?--Buv+0v? (4 odd) be a primitive form
with the diseriminant D = 4D,, Dy =3 (mod 4) ond let Ae, =3 (mod 4)
Then there are imilegers u, v such that 2[F(u,v)—c,.

(By Lemma 6 there are no integers u, v with 4|F(%, 1) —6,.)
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Proof. By (55) we have ¢,(4) = 1 = ¢(4). If F{u, v)—e¢, is divisible
by 2 bub not by 4, then
(73) Flu,v) = ¢, +2 (mod 4),
whenes ¢,+2 is admissible mod 4. (73) being equivalent to F*—D,e?
= A {0, +2) (mod 4), which is the same thing as B? +-0* = Ade¢, 4- (mod 4),
wo deduce that 4e¢, = 3 (mod 4). If this condition is satisfied we ean
get values of ¢, H (or u, v) satisfying the previons congruence and also {73).

13. In this section let ¢, 4,, 4, ]; and p;(g) have the meaning
a5 explained in §§ 1, 3.

Tienma 8. Tet x(n) be the Kronecker symbol (A[n) and let g run thr ough
all natural numbers including 1 such that ony ¢ > 1 is divisible merely by
primes dividing A, and o, is admissible mod ¢ with respect to Flu,v),
represending idealnorms of the class K;. Writing

x(q)
(74) D = ¢
1o (1)
¢y adm. mod g

we have ¢, > 0 apart from the exceptional case when —c¢y is on odd
number = No,(mod 4) for appropricte aeRy and 4, =12 (mod 16},
A =5 (mod 8), in which case c¢; = 0.

Proof. Let ns consider that if ¢, is admissible mod ¢, then ¢, is also
admissible mod ¢, for any ¢, dividing g. Using Lemma 4 (with F'(u, v)
represeniing idealnorms of the class &,) we deduce that g is divisible
by any power of any odd prime p, dividing 4,, provided ¢, admissible
mod p,. In the cage of an even 4, the same i3 trme for the powers 9% if ¢ -
satisfies the restrictions stated in Lemmas 5 and 6 where k2= 3 or k= 2,
respectively; simultaneously it is true also for lower powers of 2 {see the
beginning of this proof). In the case of Lemma 7 there are ¢ven nurnbers
g, but no g divisible by 4. Therefore using (51) we can represent (74)
ag the product

' < 2@ e
(75) ~>=’J M'Zfz- II { Pl) ” w1 (P2) _l—”.}’

lsig<too D12
¢y adm. mod g :Hlldppﬂcl
¢yadm.modpy
where )

(76)
' 1, # 214y,
1+4(2), if Ae; =3(mod4), 4, =12 (mod 16),
jo— | 1) EA@ A2+ U0 A,
2 it Acl_l(mod4) 4, =12 (mod 16),
L 5(2) )2+ £ ()24 gAY Ay i Aoy =1, 7 (mod 8),
A, = 8{mod 32) or if Ade; =1,3 (mod 8), A, = 24 (mod 32).
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From (74), (78), (76) it follows that generally ¢, > 0, except merely '

the ease with y(2) = —1 {whence 4 = 5 (mod 8); see [12], I, p. 51),
A, =12 (mod 16) and Ae¢; == 3 (mod 4), in which case f, = 0 and simul-
taneously ¢, = 0. In this exceptional case p,(4) =1, by (55). Therefore
we have either 4 =1 (mod 4) (whenee ¢, = 3, —¢, = A) or 4 = 3 (mod 4)
(whence ¢, =1, —¢; = 4). In both cases —e, is an odd number con-
gruent mod 4 to a norm of some 1dea1 of the class R;. This completes the
proof of the lemma.
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The exceptional set in Goldbach’s problem
by

H. L. MonteoM®ERY (Ann Arbor, Mich.) and R. €. VivceEan {London)

Dedicated with deepest respect
to the memory of
Academician Fu, V. Linnik

1. Introduction. Goldbach stated, in a letter to Euler {c. 1742}, that
every even infeger exceeding 2 can be written as a sum of two primes.
If we let H(X) denote the number of even nunibers not exceeding X which
cannot be written as a sum of two primes, then Goldbach’s con-
jecture can be formulated as the assertion that #(X) =1 for X = 2.
Goldbach’s problem remains unseltled, but Vinogradov’s fundamental

* work {[20], [21]) on three primes inspired others [1], [4], [17] to show that

B(X) = 6(X), so that almost all even numbers can be expregsed as a sum
of two primes. Recently Vaughan [18] sharpened the earlier results by
showing that

F(X) << Xexp(—elog” X).

We improve on this by establishing the following theorem.

Tumorey 1. There is a positive (effectively computable) constant o such
that for oll large X '

B(X) < X',

Hardy and Lititlewood [8] infroduced the approach by -which one
shows that most even integers are sums of two primes; they showed that
if the Generalized Riemann Mypothesis (GRH) is true then one may take
§ = 1~z in the above. We avoid the GRH by appealing to a recent
result of Gallagher [6] which reflects considerable Imowledge of the dis-
tribution of the zeros of L-functions. To indieate the depth of Gallagher’s
regult (our Lemma 4.3), we note that one may easily derive from it the
celebrated theorem of Linnik ([9], [10]) concerning the leagt prime in
an arithmetic progression. A recent form of the Linnik—Rényi Jarge sieve,
Turan’s method, and the Dem’mg—Heﬂbronn phenomenon all play essgn-
tla,l roles in Gallagher’s proof.
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