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by .our choiee of 4. We have
M(logd —log2) = (M)(ME-+1)}|log 4] — Mlog2

> llog A|{(1/k) — (1/k2H)) — M log2

> (1/k) |log A} — (2/k) log A" (log 2)** —1og 2
by (22), so that by (23),

2y + Aryy < 44" exp (2 (log2) P £~ [log A7)
This in conjunction with (21) gives
8) = N{u(S)—o (4, o) 4Fexp(...)).

The same inequality holds with § replaced by 5. Both inequa.ﬁties. to-
gether yisld *

2{8) — Nu(8)] < N(cl (4, o) AHE eﬁp (2 (log2)* &~ llog A ]1’2)) .
Sinee this holds for every Se&(o), Theorem 3 is proved.
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The main aim of this paper is to extend the results of [6] to algebraic

- pumber fields. We shall prove

TEEOREM 1. Let K be an algebraic number field, {, a primitive gth
root of unity and = the greatest integer such that {yr + it e K. Lel My, oovy Mgy 0
be positive infegers, N;|N; ay, ..., O, § be non-zero elements of K. The solubility
of the T congruences o™ = ¢; mod p (1< i<C k) implies the solubility of the
congruence o = i mod p for almost all prime ideals p of K if and only if
at least one of the following four condilions is satisfied for switable rafional
integers 1y, ..., Ty My, oo, My, and switable y, de K:

‘ ®

1) B ] ajmin =y

i=1

(ii) » % 0med 27, Haz‘ = —3& and § Ha”ml""z = —";
2lnyg
(iil) n = 27 mod 2, [] o = — 8 and

2l”z

ﬁ” nnfng (il _|_2)n.’2 "

f=1

(IV) 7 = 0 mod 21+1 and ﬁ”a""’m’tmz — (é‘ + 1+2)ﬂ.’2yﬂ,.

i=1

If {,e K, the conditions (i), (mi“g (iv) imply (i); of v = 2, (i) implies
(1) for not necessarily the same My, ..., My and y.

Almost all prime ideals means all but for a set of Dirichlet density
zeto or all but finitely many. In this context it comes to the same in
virtue of Frobenius dengity theorem.

COROLLARY 1. If each of the fields K (&g, &, ..., &), where £ = oy
containg at least one n satisfying 4 = B then at least one of the conditions
(i)~(iv) - holds.
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This corollary may be regarded as a generalization of the well known
result concerning Kummer fields (see [3], p. 42). As one can see from Lem-
mata 6§ and 7 below it holds for arbitrary fields K of characterigtic not
dividing # (with = = oo, if necessary).

CorOLLARY 2. The congruences " = amod p and #™ = f modyp are
simultaneously soluble or insoluble for almost all pmme ideals p of K if
and only if either

or » = 0mod 27! and
fo = Ly -+ Lt Q)7

where (w,n) =1 and ye K.

This iz a simultaneous refinement of the thecorems of Flanders [1]
and Gerst [2] coneerning ¢ =1 and & — ¢}, respectively.

‘We ghall prove further ‘

TueorEM 2. If a4, ...
congruence

y ag, § are non-zero elements of K and the

alag? ..

aff = fmodp

s soluble for almost all prime ideals p of K then the corresponding equa,twn
in soluble in rational integers.

This is a refinement of a theorem of Skolem [7], in which he assumes
that the congruence is soluble for all moduli (also composite). Skolem’s
proof is defective but it can be amended.

On the lines indicated by Skolem we prove ,

TrEOREM 3. Lel ey, 8; (i =1,...,h, § =1,...,%) be non-zero ele-
ments of K, I a positive integer. If the system of congruences

is soluble for all moduli m prime 1o D then the eorresponding sysiem of equa-
tions 48 soluble in integers. &

"~ We show on .an example that already for b = 2, ¥ = 3 one cannot

replace here “all moduli prime to .D” by *“all prime moduli”.

On the other hand, the pre.senﬁ approach gives no clue to Skolem’s
very interesting conjecture:

If the congruence
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is soluble for oll moduli m then the eorresponding equation is soluble in ra-
tional integers.

The proof of Theorem 1 is based on nine lemmata. In formulating
and proving them we use as mueh a8 possible the matrix notation: Inte-
gral matrices are denoted by bold face capital letters, integral vectors
are treated as matrices with one row and denoted by bold face lower case
letters. A% ig the franspose of 4. A congruence a =b mod M or a” = b7
mod M means that for a certain @, @b = &M, a congruence & = b
mod (M, N) means that ¢ —b = xM+yN. Ingtead of mod #I or mod
(nI, N}, where I iz the identity matrix we write mod #» or mod{n, N},
respectively. The congruence ¢ = b mod (n, N) implies R = bR mod
(n, NR) for any R and @ =b (mod », RN) for any unimodular R.

Lemuma L. For every infegral matriz A there exist two unimodular mat-
rices P and O such that all elements of PAQ outstde the diagonal are zero.

Proof, see [8], p. 13.

LmvMa 2. Let A be an indegral maivim, b an indegral vector. If for
all integral wectors x the congruence x4 = Gmodn implies :ch =0
(mod ) then bt = Ae* moda for am integral vecior e.

Proof. Let 4 = [ayliep, b = [by, ..., b} Tf @y =0 for ¢ 7 then
’ jss

the congruence &4 = 0 mod » is satisfied by

% . oo
a,. ,0,(%%),...,0 (1<i<g=min(r,s),
x; = R
(0,...,0,1,0,...,0) (g<ism).
k4

Tt follows that 2,57 = 0 modn (1< i< 7) and hence

0 mod{n, a;) (1<

_ AT
W-Omo&n (g<i<r

}-

Thus b, = aye; mod n for suitable ¢; (1< < gq) and setting ¢ = [0y, ...
s Gy 0 .., 0] we get BT =Ae” modn.

In Lhe genela.l case lot P, @ have the property asserted in Lemma 1.
If «PAQ = O0mod# then xzPA = 0 mod n hence 2Pb” = 0 mod n. By
the already proved case of our lemma PbY = PAQd” modn for a
suitable integral d and since P is unimodular &% =AQ@d" mod n. Thus
we can take ¢ = dQ7.

Lismma 3. Let A and b satisfy the wssumptions of Lemmae 2, let be-"
sides a =0 mod np~! and b= 0 mod np~", where p is a prime cmd plin.
If for all integral vectors x the congruence ®A = amodn implies b7
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= b wmod n then

Y =Ad¥ modn and b =ad® modn

for an infegral veclor d.
Proof. Let A = [2y)icrs @ = (G, .., Gy)- As in the proof of

j<s

Lemma 2 it is enough to consider the ease, where a; = 0 for ¢ 0,4,
Tn virtue of that lemma we have BT = Ae” mod n, for a certain ¢.

If the econgruence #A =amodn is soluble then we take d ==ec.
Indeed, we have for a suitable x,

b =a,b” =x,de” = ac” mod n.

If the congruence x4 = e¢modn iz insoluble we have for a certain
i< min(r, s} (n, ay)tay, hence in view of ay; =0 mod np~*

P M)
(1) : play and  play.
We determine 4 from the system of congruences
2) 4 = 0 mod np™*,
(8) ag;d = (b~ acT)mod p

and set d =¢+(0,...,0,d,0,...,0).
e sovm—

. _ .
Tt follows from (1) and (2) that Ad? =Ae” =b” modn and by
(3) ad® = bmodn. -
Lmvwa 4. Let of, be a subgroup of the multiplicative group of residues
mod n and B the set of all imtegers b = 1mod (4, n), the residues of which
belong to sf,,. Let d be the grealest common factor of all numbers b —1, where
be B; n = nyn,, where each prime factor of n, divides d and (ny, d) = 1.
If an integer valued funciion h on B satisfies the congruences
(4) h(ab) = ah(b)--h(a) mod n,
(3) h(b) =Omodnm, if b =1modan,
then
h{b)y =c(b—1)mod

for a suitable ¢ and all be B.

. Proof. Let n = p)t p1? ...p}s be the factorization of n info primes.
Assume that p,|n, for i<, psn, for 4 >». Leb b; be an element of B
such thab ord, (h;—1) is minimal, equal, say u. We have

A=prplpyr, 1< sy B, =0 (1>

For 1< r 16t g; be a primifive root mod p5it" or if p; =2, v, =21 g, = 5.~

icm

On power residues 401

Let ind;a be defined by the congrueﬁce

g = grioapy
and set
. or-t ifp =2,v22
(6) () =1 7 ’
‘ P p—1) ofherwise.

ind;a is determined mode’ (p4+'), moreover for u < »;+1
(7N & = 1mod p} if and only if ind;a = 0mod ¢'(p¥).
Since ind,a’ E‘vmdia mod ¢’ (piet?) it follows from (6) and (7) that
min (v +1, ord,, (¢ —1)) = min(»;+1, ovd,, v —l;ordm(a, ~1))
and since »; can be arbitrarily large '
{8) ordy, (o —1) = ord, » +ord,, (e —1).
Since for all aeB |
(9) ordy, (@ —1) = py,
we have in particular
ord, (B0 1) 2y (1<G<A)
and hence B¢ =1modn,. By (5)
(10) R(BPETY) = 0 mod n,.
On the other hand, by (6) ‘

-1
b—1

(L1) R(b%) = R(b) mod n.
The formula {(8) gives ordpi(b.?ldvl—l) =v; and we infer from (10) and
(11) that p# (b, for all ¢ < #. The same holds clearly for ¢ > 7. We now
choose ¢ to satisfy the system of congruences

{Dg)pi

(12) PAESA

— (1<i<s).
(b, —L)pi ™

mod pi

For every be B we have by (6), (7) and (9)
(b, of (93] lind;.

Choosing @, so that

&;ind;by+indb = 0 mod ¢ ()

28 — Acta Arithmetica XX VII,
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we get
(13) biib = 1 mod piF.

It tollows from (8) and (9) with ¢ = b3 b that

ordy, ((bgfb)“lp; 1-1) >y (1A<i<n
~ and thus
(50)™% " = 1 mod a,.
Hence by (4) and {11}
L T :
]Ia{(b?"b) Wy ) = (—{F;II;-?__]_—__ h(b::'b) = {0 mod Ty o

However by (8} the cofactor of h{bfib) above is prime to p;, thus

boi—1
b, —1

T

h(b%D) = b h{b;) + h(b) = 0 wod pi

and by (12} and (13)
{14) E(b) = e(b—1) modpy (I<i<7).
On the other hand, for < > v we have by (4)
h(bb;) = bh(b;)+h(b) = bh(b) +h(b;) mod p¥,
henee by (12) '

R(b;) _ _ : .
(15) Wby = (b—1) =e(b—1)modpi (r<i<s),

b1

and the lemma follows from (14) and (15).

Lewwa 5. Let o, be a subgroup of the multiplicative group of residues
mod » and A the set of all integers the residues of which belong to o,. Let
M be o non-singular square matrio such that n M is infegral. Let f and g be
Sunctions on 4 into sel of integral veclors or integers respectively, satisfying
the conditions

6)  f(e) =f(b), g(a) =g(B)modn i a=bmodn,
(17) f{ab) = af(b)-+ f(a) mod M,
(18)  glab) = ag(b)+ g(a) mod n.

If for all ae A ihe congruence

fla) = 0mod(a—1, M)
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implies the congruéence
g{a) = 0mod(e—1, n)

then there emist vectors w, and w, and an integer ¢ such thet Jorall ¢ =1
mod {4, n)
g(a) = o(a—1)+ fla)nMuf mod n

and for all ae A
¢{a) = flayulmod (2, n), Mu? =0mod(2,n).

Proof. By Letnma 1 there exist unimodular matrices P and © such
that ‘

e 0 ... 0
(19} PMQJ =0 ¢, ...0 |.
00 ... 73
Since M is now-singular the entries ¢, are non-zero and since nM™*
is integral we have en (1<<i< k). Any congruence x = 0 mod (m,
PMQ) where & = [#,, ..., #;] is equivalent to the system of congruences
@; =0 mod(m, ¢) (1 < i< k), which will be frequently used in the sequel. '
Let n,, n, have the meaning defined in Lemma 4.
For each prime p;|n, there exishs b;e 4 such that b; # 1 mod p,.
If pi#|[n, we get by (17) for all ae 4
f@) (b, —1) = f(b)(a—1)mod M,
f(a)(,—1)@ =0 mod(a—1, PMO),
fla)g =0 mod((“_l: PE)s PMQ):
(20) ' ()@ =0 mod((a—1,n.), PMQ).
Let a,, ..., a, represent all residue classes of &7, congruent to 1 mod m;.
If x, ..., , are integers not necessatrily pogitive and
a = al... armod n

we have by (16), (17) and (18)

(21) f(@) = . f(a)+ ... 4, f(a,) mod(n,, M),
(22) 9(a) = 229(6e) + ... +,9(a,) mod n,.
Let us set :
flo)
F =T g e, e, pla).
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By (21)

fla) = «F mod (n,, PM)

and
(23) fie)@ = 2FQ mod (n,, PHMQ).
Now suppese that for a veetor @ we have
(24) aFnM™! = 6 mod n,.
Then

neFQ = 0 mod PMQ
and in view of (19)
2FQ = § mod (n,, PMQ).

By (23) we can write the above congruence in the form
fla) @ =6 mod (n,, PMQ).
This together with (20} gives
f(#)Q = 0mod((a—1,n), PMQ)
and ginece g;[n we infer that
f(&)Q = 0 mod(a—1, PMQ),

fla) =0mod (a—1, HM).
By the assumption L '
g{a) =0mod (a1, n)
and by (22)
(25} 2g” = 0 mod n;.
Thus (24) implies {25) and by Lemma 2 we get
g" = MM 1yl mod n,
for @ suitable u,. On comparing the components it follows
g(a) = fland uf modny,  (1<i<7).
However every ¢ = 1. mod ny satisfies o = q;mod » for a suitable <,
thus by (16) the funetion -
' hiay = g{a)— fla)nBl " ul
 satisties h(a) = 0 mod n,; for all @ = 1 mod #,. By (17) and (18) it satisfies
also h(ab) = ah{b)-k(a) mod m and by Lemma 4 we infer that for all
aed, 0 =1 mod(4d,n)
h(e) = e(a—1)mod »

for a snitable ¢. This gives the first assertion of the lemma.
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In order to prove the second one it is enough to consider the case,
where 4|n and A contains an integer @, = —1 mod 4. Let n, be the great-
est odd factor of n; and g, =@, Clearly o, = —1mod 4 and by (8)

&y =1 1mod g (@o—-1).
Hence by (17) and (18)
aﬂ'—}.

(26) fla) ===

-f(@,) = 8 mod(n,, M),

ay—1
(27) glay) =——=g(@,) = 0 mod n,.
@y —1

Let ay, ..., a, represent all residue classes of 4 congruent to 1 mod 4n,. If
(28) @ = apait... a mod %

we have by (16), (17) and (18)
(29) fla) = flag)+flaft ... a5f)
= f(a)+01f(a) + ... +a, §(a;)mod (4n,, M),
(30) g(a) = glao) +g(af... a5&) = g{a) +w10( )+ ... +ag(a,)mod 4n,.

Let us set : .
. flay) s ‘
F, = y o G = [g(a4), ..., g(a)].
flay)
By (29)
fla) = f(ay) -+aF mod (4n,, PM)
and

£(2)Q = f(a,)Q +xFQmiod (4n,, PMO).

Now suppose that for a vector & we have

(31) z2F R fla,) B = 0 mod 2n,,
where
2my
—_— . 0
(210, €5}
R=0Q}.............
0 ﬂ
(21, e)
Then

@B, 0+ fla)Q = 0 mod(2n,, PMO)
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and gince by (28) (214, &) = (6—1, %y, &) we have by (27)
f(a)Q =0 med ((¢—1, n), PMQ).
This together with (20) gives
f(a)Q = 0mod(a—1, PMQ),
fla) =0med(a—1, B).

By the assumption )
| g{a) EOmod(d—l,n)
and by (30}

(32) xgr 1-g{a,) = 0 mod 2n,.

Thus (31) implies (32). On the other hand, by the already proved part of
the lemma and since ¢—1 = 0 mod 2n,, :

gT = FynM*uf mod2n,.

Algo
(20, ‘9.1) 0
2,8
aM1l=R o P
: 0 . n{(2m, &)
S 2mq ey

and finally by (26) and (27)
' fla)R =0modn,, g{a) = 0modn,..

The assumptions of Lemma 3 are satisfied with = 2 and we infer that
for a suitable vector d

g% = F,RA" mod 2n,,  ¢(ap) = f(a) R mod 2n,.
Sefting u, = dRT we get
. ' 2ny61

(200, 1) - _

(33) Mul — MRd® = P! df =0 mod 2.

27’1’:0 @k
(214, )
On the other hand, for each i < s

g{a;) = f(a;)ug mod 2n,
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and since every a = 1 mod 2n, is congruent to e, or to g, a; mod n we .
infer from (16), (29) and (30) that
g{e) = f(a)uf mod 2n,
for all ¢ = 1 mod 2n,. By (8) for &hy ae A, ™ =1 mod #, and ﬁence
g(a™) — fla™) 2wl = 0 mod 2n,.
On the other hand by (17), (18) and (33)

ann — 1

oy g3 50T
g(a") —f(@™)u, = —

Thy """1

lgta) — Fla)ufmod 2

and since

js odd

gla) = fla)ul mod 2.

Livmaa 6. Let K be an arbitrary field, n « positive integer not divisible
by the characteristic of K, n; divisors of n and o, ..., ay, B non-zero elements
ny_ Rl
of K. Let % be the Galois group of the field K (L, Va,, ceey T/ak) and assumne
that every element of & which fiwes one of the fields K(&,, ..., &), where
&1t = a; fiwes at least one n with 4" = f. Then for any choice of numbers
& and v and for suitable emponemts My, My, ..., My, Gy vy O

Eatnfy .. e HALL),
and if n = 0mod 2, .

yREB ke K, 2¢, =O0modn, (1<i<h).

- Proot. Let us choose some & and 1. It is clear that
ne K(lmy &1y ovey &) = L
The elements o of % act on L in the following way
olf) =%, ol&) =ik,

% containg & notmal subgroup & = {v: ¢({,) = {,}- The vectors [4,...
...y t] such that for a ve

o(&) = L& _
constitute a lattice 4. The fundamental vectors of / written horizontally

form a matrix, say M. Since the vectors [n,, 0, ..., 03, [0, %, 0...,01,...,
(0,0, ..., n;] belong to A, M is non-sigular and

(Is<i< k)

nfng ... 0
{34)" aM ! =8N for 8 = _
0 ... ﬁ/nk
and a certain infegral mafrix N.
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Tet 4 be the set of all integers a sueh that for a o %: o(f,) = .
The residnes of a< 4 mod » form a subgroup £, of the muitiplicative group
of residues mod =, isomorphic to %[5, and every integer the residue of
which belongs to o, is in 4. Let f(1) = 0, for an ac 4, 1<<a<<n, flo)
= [fula), ..., fula)] be any vector such that for a ce¥:

o{le) =iy oflf)) = Q;‘;-(a)&: (1< k)

&
and for all the other a lebt f(a) = f(a——-n;[ﬁ]). Thus - f{e} = f{b) for
o = b mod n. On the other hand, for every e % we have
(35) ol = Ln, alf) = TR

for & suitable ae A and a suitable [4, .. tk] = 0 mod . Bince ¥ is a group
with respect to superposition we get for all @, be A

flab) = af(b) + f(a) mod M.

Now for every pair a,t where ac A, £ =0 mod M we define ¢ by
(85) and g{a, ) by the condifion
(36) | o(n) = LV, 0 <pla, f) < n.
Since o304 (n) = oa(o,(y)) we geb
(3T @l @y [, + F(80)) + B3+ () — F(2105)) = 0293, £1) + (80, E)mod 7
and in parficular

Pl h+t) =g(1, t)-Fo(l, &) modn  for  f, =%, = 0 mod M.
0y

Tt follows that ¢(1,0) = 0modn and if # = mM, M = | "2 | then
o1, 8) = mg(l, M)+ ..o+ Bp(l, B2,

Since #8 =0 modn implies ¢(1,t) =p(1,9) =O0modxn we infer by
Lemrha 2 that for an integral veetor ¢

I:W (1 :-ml)

‘P(l-i mk)
and thus (1, f) = iS¢’ mod n. Hence by (37) with ¢, =1, =0

] = MScT mod n

(38) o(a, ) = p(a, 0)--£8¢” mod n.

icm
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The condition (37) takes the form

pla;og, 0) - {amd, - tz)SQT+(“2f(“1) + flas}
= Gyp(tig, 0) + @, Se” L play, 0)+1,8¢” mod n.

It follows that the funetion

(39) g(a)

satisfies the eonditions ¢(a)

=gp{n,0)

=g(b)modn for ¢ = bmodr and

—fla)\SeT

g(ab) = ag(b) - g{a) mod n.

Now suppose that for an ae 4 we have

(40) fla) = 0 mod (a—1, M).

It follows that for » suitable v = [»),

fle)—

and ¢ contains ¢ such that

oy ]

(a—1)v =0 mod M

(Cn) =, olf) = ;gﬁ"l)&;."i

‘We have
5 (La "6
thus by the assumption

= C,:ivifi

(1 <i<R),

o({ny) = L3y

for a suitable »,. We obtain from (36), (38) and (39)

~op6+pla, a—1)v—f(
w(@, 0)-+ ((a—1)v — f(a)) S¢¥ = (a—1)v, mod 5,

a)] = —vemod n,

(L<i<

{41) g{a) == 0 mod(a-—-1,n).

- f(aqaz)] Se¢”

k).

400

Thus (40) implies (41) and we infer by Lemma 5 that forall e = 1. mod(4, n)

(42) g{a) = —my(a—1)-+f(a)

and for all ¢

aM ufmod n

43)  g(o) = f(a)ulmod(2,n), Muf = 0mod(2,n).

Set mr = [my, ..., m,] = —e—u, N*, where N iz defined by (34). If

a =1mod(4, n) and o is defined by (35) we get .
o(LrmEm... 8 = i L. £
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where by (36), (38), (39) and (42)

e, = wmy--gla, ¥)+(fla) - SmT |
Eam.o-{-g(a,)T(f( a) + 88T 4 fla) +£) Sm”
= amy—mg(a—1) +fa)n M u] — (f(a) +1)SNuf

= m,—InM Tu’ = m, mod n.

Thus o({,) = £, implies

ao(ShonET ...

§e%) = CaoméM .. &

and the first assertion of the lemma follows. In order to prove the second
one assume 2|[# and set

n
c 4w, ST

] = 5

(44) - g =4

g is integral since by (34) and (43)

(U, 87 = a8 ul = NMuf = 0mod 2.

Ii ¢ is defined by (35) we get
(R ED. . E) = Epa P ED. . £k,

where by (36), (38), (39) and (43)
0, = 2p(a, 8+ ((a) + §Sq"

+-;1 (F(a) + S +(f(a) + )= Se” +(f(a) +1 323 uf =0 mod n.

__’J’L
=594

It follows that
qER . Ehe K :

Also, by (44) 2¢; = 0 mod n,.

ImvwvA 7. Let K be an arbitrary field of characieristic different from
2 and v the greatest inleger such that Czr-:-c;le K 4f there are only finitely
many of them, otherwise v = oco. If #e K(L,), e K, then at leasi one of
the following four conditions is satisfied for a swilable ye K

(1) 8" =97,

(il) » % 0 mod 2%, #* = — 4",

(i) 7 =27 mod 27, 8" = —(L,.+ {5 +2) ",

(iv) o= 0 mmod 27, O = (£ 4 L2
Rematrk. If » is a power of 2 the lemmsa is contained in Satz 2 of [4].

icm
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Proof. Bet {, = 4,9 =a+§i,a,fe K. If ic K we have (i); if 14K
then {a- )" = xe K implies (a—fi)* = » hence =~
(45) a-+pi = & {a—pi),
,_atfi a-fi 2(at—pY)
a—fi  a+pi atpe

It follows that the only conjugate of £} over K is {;” and the only possible
conjugates of [, are

{ntCn K.

‘91&-;%: (g = T, 8, = 1.

(o 18 chosen so that &, = &,.)

Let .
(46) u = ordy 2n/(2n, »).
Then. _
(47) {u = £ p=1mod?2
If ¢ ig an automorphism of K (£)) and.
(48) . o{2n) = &l
we get y
(4:9) V G(Czu.) = le;%d'
If u = 2 we have ,, # 1, by (43)
1
S
' 2\ %\
8¢ " =F = ﬂ—i)( )
Nt g (Cn_l) g C2n = Laq

and by (48) and (49) for 2l antomorphisms o of K({},) over K

( 24 ) 2i
o3 .
é;n - CQ—N.V C2n . n

24 Noen .
Thus ————¢ K and by (46) and (50) we get (i) if » iz even and (i)

) g
if » i3 odd.
If p 52, §, # —1 and by (45) _
& -1

pi=epop

2 " 1 2 k1 2
b LN — -1V ,
0 e (c;;+1) i )(c;’n+§;,:’)
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If ¢ is an sutomorphism of K(,),
8 = (Gt Lo+
we have by (48} and (49)

o(d) = 8.
Thus de K and since £,,+ gj # 0 we get from (51)
e N » —1%35 2(1 "
(02) Ul :(Ml)(cﬂ,u"l_ 2#) —E' .

On the other hand, g < v+1. This is clear if g = 0 and if x > 0 it follows
from (47) that

B y ;. a+pi\e a—ft)°
Czn—l']‘gzul—l =R+ =(a—ﬁi) +(Q‘H%) e K

thus p—~1< 7

Denoting by y a suitable element of K we can draw from {46) and
(52) the following conclusions:

pe<r,» =0mod2 then & =

if pL7,» =1mod?2 then # = —9", n = 0mod 2%;

fu=x [1, »=1mod2, then & = —({ (142" and
n = 2'mod 27+ : :

i ue= r—f—l y =0 mod 2, then ¥ = .(52,+C;‘+2)“’2y“,
which correspornd to the condifions (i), (ii), (iil}, (iv), respectively.

Lewwa 8. Let K be an algebraic nwmber field, f;(x) polynomials over
K with integral coefficients and discriminamis D; and p a prime ideal of
E not dividing Dy ... D,. The k congruences fi{z) = 0modp (L<i<<h)
are soluble mod p if and only if p has o prime factor of degree one in at least
one field K (&,, ..., &), where f;(§;) = 0.

Proof. The sufficiency of the condition is obvious. In order to prove
the necessity we proceed by induction. For & = 1 the condition follows
from Dedekind’s theorem applied to a suifable irredueible factor of f
Suppose that the condition holds for less than & polynomials and that the
k congruencey f;(») = 0 mod p are soluble. Then p has a prime factor P of
degree one in K (£, ..., &._,), where £ is a certain zero of f;(x). The
congruenee f,.(#) = 0 mod P being soluble it follows by Dedekind’s theorem
that 9§ has a prime factor of relative degree one in at least one field K{&,,

.y &) where f,(&;) = 0. This factor is of degree cne over K which comple-
tas the proof.

Lemma 9. If K i an algebraic number fleld, v is defivied as in Theorem
1 and v > T then the congruence 12° = (52,-}- §2—,1 +2¥~ mod p’ 45 soluble for
all prime ideals p of K.

Proof, gee [5], p. 156.

icm
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Proof of Theorem 1. Necesgity. Suppose that the Galois group %

1 e

of the extension L = K({,, Val, <y V) of K conbains an element
o, which fixes one of the fields K (&, ..., &), where ¥ = o, but doss not
fix any n with 4™ = . By Frobenius density theorem prime ideals p of
XK belonging %o the division of ¢ in ¢ have a positive density. Every such
prime ideal p has a prime factor of degres one in K (&, ..., &) 1 <i<E)
where &, ..., &, are suitably chosen roots of & = a;, but it has no prime
factor of degree one in any of the fields K{x), where * = §. By Lemma 8,
for almost all p’s the congruences ¢™ = ¢, {mod p) ars soluble and the con-
gruence o™ = f (mod p) is insoluble. The obtained contradiction shows
that the asswmptions of Lemma 6 are satisfied. Let us choose some valuss
of &,...,& and 5. By Lemma 6 there exist integers g, My, ..., My,
1y -++5 G Such that

O o= &L ke B (L)
and if # = 0 mod 2

{53) %%ﬂn/2§%l.‘.§%k61f, 2q; =0mod n, (1<i<k).
Sinee :
&
" = .8 ﬂ?m‘i’niEK
[l
we have by Lemma 7 for a suitable ye K either
L
(54) ‘B H a?’mi-’,""i = 7“7
i=1
or n % 0 mod 27 '
13
(55) B n P SR
. 11
or n = 2° mod 27
(56) . ﬁﬂ nmging 1+c;1 “{‘2)”/2?“
i=1
or » = 0 mod 2*+!
(57) ﬁ H mefng Cz_r__[_é-z—;tl _}_2)%[2?11‘

i=1

(54) and (B7) correspond to the conditions (i} and (iv), respectively.
T n =2 0 mod 2 (55) reduces to {54). If # = 0 mod 2 we get from (53)

B n 23y — %z nel.

i=1
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This together with (55) and (56) gives on division

iy —2
where I = ——d—", le K.

M

i=1
However if n; is 0dd, I, i3 even, thus
H i = — 82, JeK.

7y €VED.

Sufficiency.  The sufficiency of the condition (i} is obvious. To
show that (ii) and ({ii) are sufficlent we argue as follews. The equality

ol = — 42

#; EVeL:

implies that for any choice of &; satisfying £ = a;

C4€K(‘517 ees g}

Since
Lot late K, 20, = L+ L0007 i)
we have K({,) = K({,). Hence {.e K (&, ..., &).
Lef » = ordyn. The conditions
k
B[ am =, <,
i=1
and
k .
B[ e i, v,

i=1

can be rewritten for a suitable 5 and o a8

ﬂnf’"“ zty

and

k
n [ &M =&+,

i=1
respectively.
It follows that ne K(£,,..., &) and any ideal p which has a prime
factor o.f degrefa one in K (&, ..., &) has a prime factor of degree one in
K(x). Sinee this is valid for any choice of &; and a suitable », we infer
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by Lemma 8 that the solﬁbility of 2™ = g; (1 <4 < k) implies the solubili-

"ty of " = § modp.

The sufficieney of condition (iv) follows from Lemma 9, since the
solubility of the congruenece

2" = (£, 4L 4+2)? Tmod p
clearly implies the solubility of the congruence
o = (+15 +2 mod p.
If {,e K tﬁen CQTE I and the equalities
~1=0{, E <o,
(0P (L b SO — (L1, w3
show that the conditions (ii), (iii), (iv) imply (i).

If 7 =2 and » =% 0mod 2° we have either » =1mod 2 In which
cage —yp" = (—p)" or n =2mod 4. In the latter case we get from (i)

[ [ [] dr* = oror,

n even

which leads to {i). The proof is complete.
Proof of Corollary 1 follows at onee from Lemma 8.

Proof of Corollary 2. If the congruences #" = amodp and z*
= f mod p are for almost all p simultaneously soluble or inseluble, we have
by Theorem. 1 the following seven possibilities:

(38) aZf, B=d;

(59) e dmod?®, ol f=—08, f=—d%

(60) n = 2"mod 2, a=f = —8, f§=—od;

(61) n o= 0mod 27, a=pf, B wd';

(62) n # 0 mod 27, aw—ﬁ‘:——éi, = ot = — 8
(63) m =2"mod 2!, o= — wff = —&, L —wd® =8
(64) no=0mod 2, o wff, B2 wd

and three other possibilities obtained by the permutation of « and f in
(59), (60) and. (61), Here y = 6 means that /8 is an nth power in K and o
= (Lo £ 4+2)"2. Moreover, in (59) to (64) it is assumed that {,¢ K.
Let us choose an integer & such that w = s 4 (st—1}w-is prime to n. If
s is even or t is odd @ will be chosen odd, which is posmble because then
(s +st—1,2(st-1)) = 1.
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Now, (58) gives a= o, ot =1, f 2 Y

(59) gives t =1mod 2, a = —o®, o™ & —1, f = o

(60) gives ¢ =1mod2, a= —wa®, a® % —0, f = %

(61) g‘l’V’BE a Ed mtast st—1 7 ﬂ)t, ﬁ il ) u,

{62) givess =1 =0 mod 2. Indeed, if for instance ¢ = 1 mod. 2 then
= =% and LK I s=t=0mod2 then a2 —a,
a1 E 1, = o

(63) gives like (62) that s =1t = 0mod 2. In t]nt case o = —aa®,
S o,

Finally (64) gives a-’-l- ol o E gttt g 2 m”"”“a”.

On the otherhand if {3 Z g¥or n= 0mod 2" and § = wa", where (u,n)
=1 then also a = §’ or ¢ = wf’, respectively and by Theorem 1 the con-
gruences 4" =amodp and 4" = fmodyp are simultansously soluble
or insoluble for almost all prime ideals p of K.

To prove Theorem 2 we need two lemmata both due to Skolem.

- Lmvma 10, In every algebraic number field K there ewists an infinite
sequence of elements m; such that every element of I 48 represented undquely
i

in the form § [[=¥, where { is a root of unily and d; ave rational integers.
j=1

Proof, see [9].

Leamaa 11. If a system of linear congruences is soluble for all moduli,
then the corresponding system of eguatwns is soluble in rational integers.

. Proof, see [7].

Proof of Theorem 2. Let

where  is the number of roots of unity confained in K, »; have the prop-
erty asserted in Lemma 10 and &y, b, are rational integers. Tf the con-
gruence

ot ... af* = 8 (mod p)

is soluble for almost all p then for every positive integer n the solubility
of the % congruenced " = ¢; (mod p) (L <i<k) implies the solubility
of @ = # (mod p). It follows hence by Theorem 1 with n = 2" lm that
for every positive mteger # there existye K aaldlatlonal integers my, ..., my,
such that

k3 e ki
ol ... ok =™,

icm

(68) a" = & mod p
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By Lemma 10 the last equality implies for a suitable m,

I
b+ 2 i ¥+ Wiy = 0 mmod m,

1=1
b;+ Z aymy; == 0 mod m
T=1

By Lemma 11 fhere exist rational integers my, ..

(1<i<.
.y My, such that

e
by + Z gy Fwm, = 0,

i=1

k
bj“}* 2 aijﬂziz 0

i=1

(1<j<y
and this gives

=] ar.
- i=1
The above proof is modelled on Skolem’s proof ([7]) of his theorem
that the solubility of the congruence of? ... ef% = f mod m for all moduli
implies the solubility of the corresponding equation. That proof uses instead
of Theorem 1 the case D =1 of the following

Luomma 12, Let £y= L,y &1y oovy & be any & distinel lerms of the se-
quence m;. For any positive integer m there exists ue K prime o D such
that the congruence

£l §§’1
implies y, = 0 mod w, ¥y, =...
Skolem’s proof of the above lemma given only in the case of fields with
class number one is defective because he claims the existence of prime
1deznls Pos».; P 0f K such that 2™ = & mod p, is soluble for » + ¢ and
= & mod p, i1s insoluble for j=£ O0modm, r 0 and j == 0 mod
(m w),r = 0. The assertion is false for K =@, t =1, & =2, m =4,
Proof of Lemma 12. We can assunie without loss of generality
that m = 0 mod 27 w. For every pjm set n = m(p, 2). Suppose that
the solubility of

&t =1 mod u

=1, = 0 mod m.

(1 #£r£0)
implies the solubility of
(66) ' = Ef." modp ‘
for almost all p. Then by Theorem 1
Emm EM e ?‘m'z ,

27 — Acta Arithmetica XX VIZ
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for suitable y ¢ K and suitable exponents m;. We get

2
R i EOn’[Oaml’
P 2

which is 'mpossible.

The obtained contradiction shows that for a certain prime ideal p
prime to D the congruences (65) ure soluble, but (66) iz insoluble.
Denoting this prime ideal by p,, we infer from

gt & =1 mod p, ,
that
. e
('m(j?, 2), :13,,) ’%"EJ

hence
ord,», = ord,m.

It plw, suppose that the solubility of the congruences
(67) . | P =Emodp (1KiKl)
implies the solubility Aof the congruence
{68) =1, mod p

for almosé all p, Then by Theorem T

i

L £y H Fm = g0

=1 . B
for suitable ¢« K and suitable exponents my. We get .

a w0(p, 2) )
)

. ~

EEOmod(—,w), — =0mo
- 2, P

The obtained contradiction shows that for a certain prime ideal p
prime to I the congrnences (67) are soluble, but (68) is insoluble.
Dencting this prime ideal by p,, we infer from

. g, = 1 mod p,,
thab . .

| (ma,a:mfri']?

hence ord, s, = ord,w

icm

On power residues 419

For u we can choose any number prime to D divisible by

anwﬂm,o

pim r= lw

Proof of Theorem 3. Let for 4k, j<< &

i
IO B

in the notation of Lemma 12 and let m, D he positive integers.
Let x be a modulus with the property asserfed in Lemma 12. Then
the congruences

I3

na:f,? =fmodp (i=1,...,4h)

j=1

imply

k
Zaiiﬂmj ==ty mod

Fa=l

(i=1,..., k),

I o _
Z%sﬁ =g, modm (i =1,...,k 5=1,...,8)
=t

and by Lemma 11 there exist rational infegers #; (j =1,
4 (i=1,..., h} satisfying the system of equations

- Ok

Za’ijﬂmj = Gy +wy; (¢ =1, »"'1_?3')3

J=1

., k) and

Hence

The proof is complete

We procéed to the example showing that Theorem 3 iz no longer
valid if the solubility for all moduli prime to D is replaced by the solu-
bility for all prime moduli.

Let us consider the system

2°3¥ =1 mod p,
2Y3F =4 mod p.
For p = 2, 3 it has the golution (#, ¥, 2) = (0, 1, 0), (0,0, 0), i_‘espedtivély.

(59)
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For other p it is equivalent to the system

. #ind2 4-yind3 = 0 mod p—1, _
(70) yind2 +2ind3 =2ind2 mod p—1,
where indices are taken with respect to a fixed primitive root mod p.
Now ) '
((ind2)?, (ind3)?}|ind 2ind 3.

Hence
(1nd2) . )
( (ind2 1nd3)— ,ind 3] {ind2
and the eguation
{(ind 2)*

e - +zind3 = 2ind2
(ind 2, ind3)

—tind 3 tind 2
(ind2,nd3)’ ¥ = {ind2, ind3)
and z satisfy the system (70) and hence also (69).

is soluble in integers. The numbers & =
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a quadratic polynomial with coprime diseriminants
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Totroduction
' (History of the problem and the prineipal ideas)

The problem to be treated in this paper has its origin in the third pape

47 of Hardy and Litflewood’s fammous series “Seme problems of partitio
numerorum”, Having introduced in the analytic ftheory of numbers a new
and powerful circle method the authors derived with its help many asym-
ptotic formulae for the number of representation of a given positive integer
a8 the sum of s fixed number of summands taken from presecribed sequences
(prime numbers, sguares and higher powers of positive integers). The method.
is applicable to problems involving a large number summands. Neverthe-
lesy Hardy and Tittlewood using it in a formal way derived the asympto-
tic formula

(HIL) Ny
e
ptetyt=n
%(®) ) ( ? ) ( P ) n
~ 1o A 1 14—
“,ﬂ( BTy H p—p+1 H p—p -1 flogn

p=1(mod 4) pe=3{mod4)

and conjectured its validity (the first half of Conjecture J). In the fifth pa-
per of the series [5] they expressed the opinion that the generalized Riemann
hypothesis (GRH) implies the formula (HL) for almost all positive integers
n. The implication was proved by Miss Stanley in 1928 ([12]). The problem
of the validity of (HI) for almost all # unlike that for all » is ternary one
and nowadays it can be easily solved without the generalized Riemann
hypothesis by using Vinogradov’s estimates for trigonometric sums with
primes, which supplement the circle method in an essential way.



