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For other p it is equivalent to the system

. #ind2 4-yind3 = 0 mod p—1, _
(70) yind2 +2ind3 =2ind2 mod p—1,
where indices are taken with respect to a fixed primitive root mod p.
Now ) '
((ind2)?, (ind3)?}|ind 2ind 3.

Hence
(1nd2) . )
( (ind2 1nd3)— ,ind 3] {ind2
and the eguation
{(ind 2)*

e - +zind3 = 2ind2
(ind 2, ind3)

—tind 3 tind 2
(ind2,nd3)’ ¥ = {ind2, ind3)
and z satisfy the system (70) and hence also (69).

is soluble in integers. The numbers & =
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The generalized Hardy-Littlewood’s problem involving
a quadratic polynomial with coprime diseriminants

by

Heneyk IwanNTEC (Warszawa)

Dedicated to the memory
"of Tu. V. Linnik

Totroduction
' (History of the problem and the prineipal ideas)

The problem to be treated in this paper has its origin in the third pape

47 of Hardy and Litflewood’s fammous series “Seme problems of partitio
numerorum”, Having introduced in the analytic ftheory of numbers a new
and powerful circle method the authors derived with its help many asym-
ptotic formulae for the number of representation of a given positive integer
a8 the sum of s fixed number of summands taken from presecribed sequences
(prime numbers, sguares and higher powers of positive integers). The method.
is applicable to problems involving a large number summands. Neverthe-
lesy Hardy and Tittlewood using it in a formal way derived the asympto-
tic formula

(HIL) Ny
e
ptetyt=n
%(®) ) ( ? ) ( P ) n
~ 1o A 1 14—
“,ﬂ( BTy H p—p+1 H p—p -1 flogn

p=1(mod 4) pe=3{mod4)

and conjectured its validity (the first half of Conjecture J). In the fifth pa-
per of the series [5] they expressed the opinion that the generalized Riemann
hypothesis (GRH) implies the formula (HL) for almost all positive integers
n. The implication was proved by Miss Stanley in 1928 ([12]). The problem
of the validity of (HI) for almost all # unlike that for all » is ternary one
and nowadays it can be easily solved without the generalized Riemann
hypothesis by using Vinogradov’s estimates for trigonometric sums with
primes, which supplement the circle method in an essential way.
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A new turn to the study of Hardy-Littlewood’s problem has been
given by C. Hooley in his very important paper of 1957 [6], where he
dedueed from GRI the formula (HL) itself. An important feature of the
paper is the introdneing of a new concept of “quasiprimes” useful nowadays
also in other problems. The ultimate goal was achieved in 1960 by Linnik
[9] who by his dispersion method eliminated GRH from Hooley’s proof.
In this way Hardy-Littlewood’s problem was finally solved on having

-gtimulated many fruitful ideas in the analytic number theory. Soon after- °

wards it proved possible to replace the formidable Linnik’s method by
Bombieri’s mean value theorem.

The problem has been generalized in many different ways but the
name of the generalized Hardy-Littlewood’s problem was given by Linnik
to that in which the form. a*+y* is replaced by an arbitrary quadratic
form @(x,y). The principal difficulties involved in the new problem are
purely algebraie. Generally speaking the number of solutions of the equa-

tion ¢ (2, y) = m is known only if ¢ runs over all the inequivalent forms

of a genus which as a rule are many. Nevertheless for the numbers m being
a multiple of a suitable integer depending on ¢ one can estimate the
number of solutions of ¢(x, y) = m with a fixed ¢ by a bound which
exceeds a certain fixed fraction of the true value. Thus without essential
difficalty one can show the existence of solutions of the equation
P+g(z,y) =m and determine the order of their number N as the
fumction of m ([1]). (When the diseriminant of ¢ is negative we assume
that ¢ is positive definite and when it iy positive we identify the pairs
{z,¥y) and (2', ') differing by an auntomorph of ¢.) The above method
gives no chance to obtain an asymptotic formula for N.

The new idea came again from Linnik and has been developed to al-
most final form by Linnik and Bredihin [2]. Let us assume that discrimi-
nant € of ¢ is fundamental. An ideal q of Q{V'd)is called by Linnik an ideal
with good trajectory if it is divisible by gufticiently many prime ideals from
each class. The points of a trajectory are all the ideals with norm Nau.
Linnik remarks that for n—9 being the norm of an ideal with good trajec-
fory the number of solutions of the equation p+g{z,¥) = » is large and
agymptotically equal to a fixed fraction of the number of solutions of the
equation p+@(z,y) =n, where ¢ Tuné over inequivalent forms of the
genus of ., Moreover there are only few infegers » —p not being the norm
of an ideal with good frajectory (i.e. having few factors from some clasg).,
These notians have been used in [2], where the generalized Hardy-Lit-
tlewood’s problem is solved for all positive definite binary quadratic forms
with fundamental diseriminant.

The object of the present paper is the equation

15;+F($, Yy =mn,
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where F(z,y) = ax? }bay+ey®+en+fy+geZix,y}. The numbers 4
= b2 —dae, D = af?— bef + ce>+ dg and the form G(x,y) = az®+ bvy +cy®
are called the small, the large diseriminant and the quadratic form of
Pz, y) respectively. We assume that d is different from a perfect square
and is prime to D. The identity
d-z(F(;I?, y) —g)+G(r, 8) = G(dz +r, dy+35),

where r = bf —2¢e, s = be —2af allows one to reduee to problem of repre--
senting m by T to that of representing d®(m —g)+G{r,s) by the form
G(X, Y) for integers X, ¥ with prescribed residues mod |d|. It d is a funda-
mental diseriminant it torns out that Linnik's idea about good firajectories
is applicable also in the new situation. A particular role is played by the
ambiguous classes. In Linnik and Bredihin’s terminology (which will
not be used in the sequel) one can say that the good trajectories stay in
each class of ideals for approximately the same time and during their
stay in a given class fi.e. when the points of the trajectory differ from each
other by ideal factors belonging to ambiguous classes) the solubions X, Y
of the equation are uniformly distributed in the residue classes mod. |d|
(the mumber of admissible residue classes is equal to the number of ambi-
gnons classes and equals 9!-1, where { is the number of distinet prime fac-
tors of d). This line of argument has been used in [7]

The situation changes completely i 4 is not a fandamental discrimi-
nant. An attempt to apply the above argument requires use of the arithme-
tic of ideals in a non-maximal order Dy of discriminant d, in which there

" is no unigueness of factor1zat1on into prime ideals. For t]:us Teason we give

up the ideals in O, Ordinary classes of ideals in & Vd) being inadequate
we introduce finer classes (their group is isomorphie to the group of classes
of similar modules belonging to D). The group in question does
not admit an ergodic interpretation in the spirit of Linnik’s trajectories
and for this purpose has to be replaced by another one (see the remark
after Proposition 2 below).

The goal of the paper is the following

. MATN THEHEOREM. If the discriminants d, D of T are coprime macl its
guadratic form is positive definite for d < O then there ewists a positive con-
stant ¢ = g{d, D} sueh that

-1*

1
D+, u)=n
2 %(p) A WY
=, e I ] S Frved et
by pd{ D dn) P ovdp=an p{p—1)/ log g
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In the above formula p runs over the primes < Ny E* means that
the pairs (&, y) and (¢, ') differing by an automorph of ¥ are identi-
fied; y is the character of the field Q(¥d); &, is the order of group I%/I¢
(definition see part I, § 1). The constant in O depends only on & and D.

Remark. The right hand ride of the asymptotic formula depends
only on the diseriminants d and 17, which are pairwise equal for polyno-
mials equivalent by an unimodular atfine transformation but do not form
a complete system of invariants for such equivalence.

The analytiec part of the proof is almost mechanically transferred
from Hoeoley's paper, GRH being replaced by Bombieri’s theorem. Some
differences between the two papers oceur in the estimation of the sum
¥y, which in Hooley’s case is of smaller order than the main term, but in
our case contributes to the main term as much as the sum 3 ,.

I conclude this introduetion by expressing my thanks o Docent
Mareeli Stark for his valuable help and criticism concerning the display
of the subsequent text.

" Part I (Algebraic)
The formula for N[F = n]

§ 1. Notations, definitions and selected facts from the theory of quadratic
fields, Let K = Q(¥4) be a guadratic field with diseriminant 4, © be
the ring of integers of K and ©; == {ue D; « == a(mod¥d)} the order of
index f and discriminant d = Af?. In the group I of fractional ideals and
in the group & of units (of X) we can distinguish subgroups arranged in
the following diagrams

I I «—T*

A A .
| | &E—> 81N O —>8T—>8.
_ He—If—>I*
Here
T ={(y)el; y » 0} is the group of totally positive principal ideals

{L.e. ideals generated by totally positive elements),

If = {qel; Nuo= Ny, pe X'} = {abi; aelt, bé.l} ={aeI; (Na, A)

=1 for all p} the group of ideals of the principal genus,

I = {{y)e T*; y =1 {mod ¥d)},
I* = {ael; (a,d) =1},
I = {y)e I% pedy,
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&% = {ec &; Ne = 1} the group of totally positive units,
&y = {ee £58 =1 (mod Va)}.

' The arrows in the diagrams denote inclusion.

Let pyy poy ---, P¢ be the ramified ideals of K, i.e, the prime factors
of 4 and let us set d = pyp,...p,. Then

I/I® is the group of genera; [I: T8} =91,

IR = {(*; OeI/I™} the group of classes in the principal genus;
iIR . I—I—] = h—l—j_-)llflj

I/I* isthe class group; [I:I7] = &*,

o ={0eI/I*; 0 =C} ={CecT{IT; O* = I*} the group of ambigu-
ous classes.

Each ambiguous class contains exactly two ideals dividing b. There
exist 27! ambiguouns classes. An ideal o is called ambigrous if a = a.
Every ambiguous ideal a can be umquelv represented in the form
a = (r)by, where re @™, 0,10

Prorogrrion 1. We have

& = {m7; nld}.

Proof. For n!d the ideal (%) is ambiguous hence & = ny™?
Clearly &> 0 thus {ng™'; n|d} = &*.

For se &7 we get from Hilbert's theorem 80 that ¢ = 5,27’ where
e K*. Hence the ideal (n;) is ambiguous and %, = 7y, where re @*,
nib, Clearly ¢ = #%~!, thus £+ < {%‘1; 71o}.

Prorosrrion 2. We have

= {ae Id; aale If‘}

Proof. The inelusion I¢ < {ae 1% an~te I} is clear. Asswume that
ae I% qa~! = (y), where » > 0, y = 1 (mod Vd). Henee it follows in par-
ticular that the ideal a belongs to an ambiguous clags, thus there exist
qlp and ¢ » 0 such that qa = (¢). Hence aa™! = (g~} = (y) and for a
cerfain sedt we have E{p‘ = gy. By Proposition 1 there exists an
integer %ib such that & = ny~'. Putting p =gy~ we get yyp™' =y =1
modl/d The ideal (# *}q can be uniquely represented in the form 0./0s
Whele Dy 0,1b. Henee

is & unit.

Y-y

bily, (vt b =1, wz‘(lnodbﬁ), o = 0 (moddy).

Since the number (y — )/ Ais rational, the last congruence can be strenght-
aned to (y —p)/V 4 = 0 (mod d}), whieh implies that (y—y)/2 = 0 (mod 0i)-
On the other hand, the number {y+v)/2 is also rational, thus
i T e A
2 - 2

0 (mod &%),
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which iz possible only if by = (1). Similarly one ean prove that b, = (1).
Therefore q = {#} and a = (p)e I, which completes the proof.

Remark L. Proposition 2 ¢an be worded as follows: I%/If is the group
of the invariant ciasses of 1%/, i.e. )

IIF = {CeINIT; € =0}

ProposrTioN 8. Let (g, d) =1, Ne =1(mod d). Ther there ewists
ne B such that
& =yt (mod &/(2, a)).

Proof. Using the Chinese remainder theorem (for the field K) it
is easy to reduce the proot to the case of d being a prime power. It follows
from the congraence &8 = 1 (mod d) that the ideals (241, d) are ambiguous.
Hence (s-+-1, d)1(2, d) or {e—1, d){{2, ). Setting
(e +1,d)12,

(e+1,d)12,

_ e+1 B &
T Ve—wa it
we get & =ny ' (mod d/(2, @)}, whieh completes the proof. |
Remark 2. Proposition 2 can be improved in the following way: i

Tet 4 be a positive integer, se K™, (g,d) = 1. Then ,
Ne =1 (mod d) =& = 7y~ [mod d/(2, d, 4)). :

Let Gla,w) = az®-+bay -cy® be a primitive quadratie form of
1

diseriminant 4 = b*—4ac. Then the ideal a = (a, ) is prime to
a and has a norm Na = |uf.
b+vd

PROPOSITION 4. Let us set M = aZ -+ ~Z. Then M = anDy.

Proof. The inclusion M = an®; is clear. For fe anD,; we have

y=(E-E)Vde@nO =2

and 1
b4Va E+E b(E—§) :
—_— = _ — - Z = £ -
£ 5 Y o o7 eanf} = an aZ
He_nce
b+Vd b+Va
& =(E— ﬂ; y)crlsZ‘ and & =am- Ve ye M, '

- whieh eompletes the proof.
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Re;_na;i‘k 3. The group af/M is cyelic of order f, thus the numbers
b+Vd ’

a, form @ basis for the ideal a only if d is a fundamental discrimi-

nant.

§ 2. Automnorphs of the polymomial ¥(x, y). The form a@ and the
polynomial &(D—dF) are in the field K fhe norm of  linear form &,

b+vd ‘ ) . 7
= apt— Y and of a linear polynomial p,, =&, Vd+5_;,, res-

pectively:
(1) a5, y) = N&y,
(2 a(D—dF (&, y)) = Nity,y-

Tet us set 7 =£_;, = py,. Then v =0(moda) and Nv = a(D—dg).
For integers #,y<7Z we have

(3) &, =0(moda); gy =v(modaVd); Nu,, =Nr(mod |ad)).

Affine transformations
Mo, y) = (&, 4) = (aw+fy+p, 2+ 8y +v),
whera .

(p,'tp,a',ﬁ,‘y,an; lad— By] =1

are called unimodular. They form a group . Polynomials Fi(a, ) =
F(AMw, y)), where ic - called equivalent have the discriminants pairwise
equal. The subgroup A = {ke.1; F; = F} is called the group of aunto-
morphs of F. The group of automorphs of F, is Alx1"" thus equivalent

‘polynomials have isomorphic groups of automorphs. We have the well

known

LeMMa 1. The group Ay of awlomorphs of the form @ is isomorphic
to &Y Dy. The isomorphism is defined by the formula
A ——> s
B Sl =550,y
We shall prove
PROPOSITION 5. If the discriminants of ¥ are coprime then ils
group- of automorphs g is. isomorphic fo &,. The isomorphism is defined
by the formala '
A

> £,

‘ "'.‘(1',1[' = xp.!w,,u . )
Proof. Since (d, D) = 1 the form & is primitive and (za™", d) = 1.
 Let A(w, y) == {#', ) be an automorph of F. Then i{z, y) —A(0, 0) is
an automorph of @, thus there exists e« #7 such that p, , — oy = {4z, —T).

- We have from (2) Ny, , = Nu,, hence for any meZ we got

Wty o M o g =W oy oo — 6T
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Sinee for suitable integers @, yeZ the number u,, has arbitrarily large
divisors meZ it follows that er = yy =7 (mod ad d)., Hence ¢ =1

(modV d) and g = Silyy

Let se &, and for x, ¥ 57 let Ala, %) = (&', ¥) bea solution in rationals
of the equation g,. . = ep, v Hence and. from {2) we get F(z', y') = F(x, y)
and g, = 7 =7 (mod a¥ /d). Therefore &, ,e0. Hence a.nd again from
(2) we obtain

No=Npy =Ny = N(Ex’.y’l/a + 1)
= (&, o —TEy )V A+ Ny (mod |ad]).

Stnee « = 7 (mod ¥d) we have £y = Eppe(mod ¥V ), 1.6, £y ey Ib
follows from Proposition 4 that the numbers &', % are integers, thus (»,y)
= {z’, ¥’} is an automorph of ¥,

§ 3. Representation of integers by F and ideals of 0. Let us fix an inte-
ger n and consider the squation

(4) Fla, y) =n.

We say that two solutions (z,y), (¢, %) of (4) are equivalent, if (', 4)
= Mz, y) for a certain ie <lp. Such solutions will be identified. The class of
eqmva]ant solutions of (4) econtaining (@, y) will be denoted by [, y].

PROPOSITION 6. If the discriminanis of F are coprime then there exisis
a one-lo-one correspondence between the classes [z, y] of equivalent solutions
of (4) and the principal ideals (p)} = O such that

(8) Ny = a{D =dn),
(6) & =7 (mod al/a) .

The eorrespondence is given by formula (%, Y1 (Ugy) -
Proof. Clearly the mapping [, ¥1r> (p,,) is well defined.
Suppose that (u,,) = (ux.v), where (,9),
(4). Then for a certain s & We have u,, = gy p. SINCO ppy = uxy =7
{mod a]/d) it follows that ¢ = 1 (mod Vd), which together with Proposition
5 implies that the solutions (#,¥), (X, ¥) are equivalent. Thus we have
proved that the mapping [#, y]+—> (#,) s & monomorphism.

Suppose that a number gD satisfies (5) and (6), Then we get from

(6) &€ = (u—7)/Vdea and from {5}
' Nt =DNu _———N(El-’ﬁwkr) E(?E—ﬁf)l@ﬂ»Nr(mod lad]|}.
Since v = 7 (mod Vd) we have & = £ (mod Vd), i.e. £eD,. It follows from

Proposition 4 that there exist integers », ye Z such that g = p . By (2)

and (B) {z, ¥) is @ solution of (4). Thiz completes the proof,

(X, ¥) are solutions of
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§ 4. Proof of Theorem 1. Let us decompose the group I%/I7into a di-
rect sum of eyclic groups

R
=HGH

r=1

e

where @, is generated by a class H, of order k. and let us - introduce the
follewing notation

‘fm,:_D—dn; n o= am; l,,=[ Z %];

pitm, pe,, degp=1
& = (

h, —1)(cos = /h,)r;
NIF = n] the number of inequivalenﬁ solutions of the equation (4).
TemorEM L. If
(i) »’ >0 for << 0,
(i) (d, D) =1
(iii) L. = 2h,

then there ewist numbers 8, such that —1 < 8, <1 and

| (7 N[F—n]———n(1+a.s S’x(z

I|1n

COROLLARY. If I%/1§ = Z,

. XZ, then we have under the assump-
tton of Theorem 1 '

N[F—n]—»—zx(l)

g iim

In the proof of Theorem 1 we shall use the following two lemmata:
LEMMA 2. For any integer m == 0 we have
1= 2 x(1).
ac D, Noa=|m| iim

Proof, see [8], Satz 882
TuEMMa 3. For any positive integers I and h we have

2 '(-?);-_;rlzL 2 (L—2a)wr

008 —— {cos 7t [B)”
ri<hi2

s A
I=ct (mod A

— p'ot =1 4 8(h—1) cosL%}

= -
‘ g

=

[~

!

)
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Pfo of.- Sinee

Bl mifi-a)r it 1 =a(modh),
SW e T R N
P 0 if !sza(mod?),

we geb

BN HES R AT

[Ex&ah r=0 ogi<l,
I=a{mod )
k-1 amiar amir h—1 amiar iy 7,
=Ne Fl1rer =Za_ A 2005 g®
e v %
r=0 r=0
(L —2a)wr o\ L
= ok cos R (eo —)
fri<chi2 )

which completes the proof.

Proof of Theorsm 1. By Proposition 6 the number N [F = a] is
equal to the number of prineipal ideals of O generated by elements satis-
fying the conditions {3) and (6). Hence if i’ is not the norm of an ideal,
N{F =n] = 0 and the formula (7) iz trivial. Thus let us assume

(8) I»'| is the norm of an ideal (i..e; ép(]f:a'l) = (H_Lj’_d_) =1 for pt4).

By the assumption (iif) there exist distinet and pairwise non-conjugate
prime ideals p,,eH,, 1<r<R, 1 <1<, such that

Z(p'f,l) =1 and p'r,le'

Let us put :

b

i
= H Pot

rzll 1

and fix an mtegra.l ideal ¢ of the norm Ne = Em|.N g‘l.‘Each infegral ideal
of the norm |’} and divisible by :c__tc can be uniquely represented in the form

q‘lr: ﬂcgaff"i 3
where qlg. We shall prove.
Ima 4. For each fmtegfreﬂ ideal ¢ of the morm |m|Ng™! there emists
a class C'c I*[IT such that an ideal b, satisfies the conditions (5) and (6) if
and only if qeO’ ‘

_ FProof, Ideals b, have the norm Nb, = |n'|, hence they belong to
the same genus deternnned by the 1nvarlants

H , A P
g{lnl) = (WL ) for pid.

B

s v i

-
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Let ns remark, that for pld we have-

‘4 £ (D—a
()5 52)

() -5
P r P

“whence for
1 it n'>0,
Y =
VA it a <0,
we geb
1 A t ’ . l.
e, (| V2]) =(m;; ) =1l=g¢gn)=¢(n)) £ u>0
and. S |
A, 4 —1, 4 : ' . ‘
e, (| ¥%]) z'( 1’9 )m( P’ )=e,,(—n’) —e,(n)) i a<0.

In view of the above, the prineipal ideal (») belongs to the same genus as the
ideals b,. In particular (»7)b, e I%, i.e. there exists a number o » 0 and
an ideal x such that -

b, = {av)z?

It is easy to see, that for x one can take an ideal from I%, since each class

of ideals contains an Ideml prime to d. ;
R
If q runs over the divisors of the ideal I Hp”then its class mod I‘i

r=I1=
runs through the whole group I%/1%, hence exaetly one ideal q, is equiva-
lent to x mod If, i.e. there exists 9, I7 such that

01 = Di¥.

If Jit = (¥1), 92 » 0 by putting & = wy, Nz we get

Be, = Buui" = (@)D = (&)

aﬁd 'moreover _
i L © NE =n = Nt (mod ladj).

Hence for ¢ = 1:51 we have (¢,d) = 1land Ne =1 (mod [d|) By Proposi-
tion § there exists @ mumber # such that e =y~ (mod ¥d). The ideal

—1y—1 a
n -—(1 m; ) belongs to I%. R

If qg runs over the divisors of the ideal ] H Pra then ity class
i ©op=ll=h,t1
rns through the whole group J.”Z/Id hence exactly oné ideal qs I8 eqmvalent
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mod I% to 1, i.e. there exists 1y, I such that 9, p;™*

=)y %2> 0,4, =1
(mod V) and '

Oy == Poll.
Putting
&= Eyypyy
we get
NeE=NE =0
and
& = §yn~t = &g = r{mod aI/E).

Moreover
- (&192) = (£).

Thus we have proved that the ideal b, o, satisties the conditions (5) and (6).
It follows easily from Proposition 2 that the class CeI%/I% of the ideal
a,q, satisfies the conditions of Lemma 4 which completes its proof.

Let uws put
R
o - [[mr
r=1

By Lemmata 2, 3 and 4 we get

bqlqg = azqz_lbﬂl = RTI.

1<a<h

ip -

rems ¥ S 3T 3 ()

e algael I1=i<I,
Ne=|m|No -1 Vt:—jm[N _1 I=a,(mod %)

pi3
= > J] h;12’r{1 + 6,(hr—~1)cosrr—;l}

[2=3 s r=1 e
Ne=pm|vg—1!
R
=kt [](1+8,8) 1 =hy n(1+ﬂar)2}¢
r=1 ncD, Vne=|m| Iim

where —1 < 8, <1 (the numbers 6, occurring in different places need not
be equal). This completes the proof of Theorem 1.

Remark 4. The order I, of the growp I%/I% is given by the formula

o) fh ( Z(P))
By — po— I _x(p)
T e g ﬂ =)

where h is the abselute class number, &(f) the number of residue classes

of O mod f, prime to f, ¢, the index of the group of nmits belonging to
Dy in &.
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Part IT (Analytic)

An asymptotic formula for the sam ) %
p<n UD-dla—p)

§ 1. Lemmata from elementary and apalytic number theory. The lem-
mata given below are mostly versions of those used by Hooley [6], suitable
for a little different situation. The proofs that are simple or well known
will be omitited.

Let us put
dm) = D' 1 = M a1 +logdy,
dyovdp=m dim
d(m;y) 2 1; o q(m;y) = ZI a,
dim,d<y dim,d>y
d(m) = D1 oy (m) = >
dim dim
Ipwwa 1. If 1< e<<e<y we have
d(mﬂ < dim; y)d(n; y),
o_y(mn; Y) < o, (m)ff_l(%; y)+d(m)d(n; y)y~
St £(2) (L +logy/s),
zgly
DT rta(l;#) < (1-+loga) (1 +logy fa),

EI=y

o_i(m; z[l) < 1 (m),

5 1,(m)
i
"22 i
7=0

L(m) < k!{loglog3m)¥+!,
Proof. All these formulas are given explieitly or implicitly in [6],

e
i<z

Z d(m; =2/ (1 -loga Iy <

gometimes in & slightly weaker version.

L ) 14logx
LeMma 2. Let B{m; o) = o_j(m)a " +o_,(m; m)+d(m;m)T.
"~ Then '
> 2
l D
T, (3, m)=1 pil,ptn
=L(1:x)”(1 )]Y( )—{—O( (m;m)}.
. plm
The constant in the symbol O depends only on 4. g

28 — Acta Arithmetica XXVIL.
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Proof. Firss, we compute the following sum

l z(r) < 2(h)
O A= MunER 352
(l,lmﬁf—c—-l 7|m t<mir
= N s, n+o(Z))
A
= L1, 7} H (1—7’—(5)4) +0fo_y(m; @) +d(m; 2) ™).
pim ;

Next, we remark that for

pd) B (dm) =1,

"‘”(d):[o # 0 (d,m)>1,

we have

[T0-37 =[] (5] - D=t

() 1\ /
.-.'.>..JT (1“_) - Z” dtp(d) y

(I,m)==1
(l,m]— 2tn (d,m)=1 I<aid

JH( o 10t )

plm pmn
1
olrna, 1A
o ’“1,;1( )5-; )t
1 1
03y ayims wid) +0 (E T3 “‘1-("'”””"1))

d=<e

which by the formulae

1 1. 1(p) " .
S < [JP-2) i <

pine

Y"__m
?(d)d('m sold) <

2 (14+log);
@
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o_y(tm; ofd)

2

fiee

a1l 'v i
> y ‘P(d) +-’3/—-' dpld) 2— < d{m; @)e™ +o_y(m; @)

1]111. m,ll<dgz gz lm
I I>z

implies the agsertion of Lemwua 2.
Substituting in Lemma 2 5 = 1 we get the following
COROLLARY. {

1 ,
Sj X( ) = {1, % ]Y( AV )g(l +p__éa(?}1)) +O{m™ (1 +logz) 7).

I m)=1

Proof. We have the obvious estimates

oom) < d(m); o y(m;2) < d(m)a;

We have also d{m) < m>". Hence

d(m; ) < d{m).

3+log:
R(m;w)g—*%

d(m) < m (1 +logw)w?

which completes the proof

Lemwa 3. If 1< < we have

Ld
regw afr<siyly

1 1
Y‘? Z TR(.lws;) < (Ta(w) + 1o (w)logy f2) (1 +logy [z).

Proof. From Lemmsa 1 we get successively
B (lw; i)
¥
7 & 2 2\l r ]
<o ostoo oo 2] + [ 2w+ afts 2 (10100 2| Za s 2,

wlra;l'!swr r
' xy e\ r 2\
< (1---logy/m) [a_;, () %—lr o4 (w; ?) + (1 +10g% +Iog? ?) Zd (w; 7)] !
1 1
2 > _2 7E (E’w’ ) < (1+logy [m) {Ta(w) + 1 (w) +To(w)logy /2]

T :c!rslgy[r

and the proof is ecomplete.
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Lovua 4. If 1< o<z we have

1 1 -1
Z—zs_z-R(w;is—) < Ty(w).

ls<z

Proof. Since ‘

Riw; 2/ls) < o_, (w0)ls[w 4 o_y(i0; o fls) +d(w; 2fls) (1 +logz/ls)lsfe
wo get from Lemma 1

b} ! R(w; z)

L lg? s
8y

a_; (w) 1 <01 L@ 1 _ L 2
< Z?TZTS?U‘I(W’E) Sl 1“(“’%)(1“0%) -
lgcy

Isgca i3z
< oy (W) Fly(w) -+l (w) <€l (w).

Lemva 5 {A. I, Vinogradov). Let & (w, ) be the number of positive inte-
gers with all prime factors < =. Then for logo <2< e

2 [
(w,2) < (siogs) @,y

where s = logm/logz. The constant in the sgffmbol < 15 absolute.
Proof, see [13], Theorem 1, part 1.
Levma 6. If 21<<n we have

n
o (1)

z(n,l, a) < log™'n/l.

This is Theorem 4.1 of Chapter IT in [11].
LevmA 7. If 2m<<n we have

_ . i
Z 1 < o_y(d{D—dn)m] ‘—m—log‘2 —

o
| D-dfn—p) =mgp"

This is a simple consequence of Theorem 4.2 of Chapter IT.in [11].

Lzvma 8 (Bombieri-Montgomery).

max max

I (a.l)=1 y=<n
! <ynlog=15y

w{y,l, a)—

Liy
< nlog?n.
e(d) _

This it a sinple consequence of Theorem 15.1 of [10].
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Lenva 9 (0. Hooley). Put

P(n) = H 2;

logz <lognflog*logn iP{n) ?

B(%)=H(1;i)~m,

logn

1 i [, Pn) =1,
Cf)y =31 i v is @ prime factor of P(n),
0 otherwise. '
Then for y < n and k< 2™ we have

Byl +0( i) B Pm) =1,

n
0 .
(klogsfn,) i
Proof, see [6], Lemma 4. .
Levma 10. If $+<a<l< B, 8 << ® < M, then

D i) =

Yy
ve=] (mod k}

(T, %, P(n)) > 1.

1—1 '< (lOg M)a—l—u]ogulogc’

oMW M <l<eV M
{H{)<aloglogh

17! < (log M)P-Fres?,
i <M
‘ 1-4+2{l=Aloglog M

| For ¢ =log® M this is Lemma 7 of [6]. Hooley’s proof can be easily
: extended to any ¢ satisfying % <C 63 << M.

§ 2. Formulation of Theorem 2. After these preparations we can pro-
ceed to the proof of the following

THEOREM 2. For n > exp({d|+|D|) we have

2l =2L(1, 3 (1_MM) ( . x(®) ) n
p<nliD—din—p) Dl =an) P dntiam p(p—1}/ logn
H 5
+0 Wlog Iogn|s

where 6 = 12— elog?) > 1/35 (Hooley’s constant). The constant in the sym-
bl O depends only on A.

Let o = d(D—dn), m, = D—d(n—») and »(!) be a solution of the
congruence '

m, = 0 (mod l) for (d,0} =1.
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Let
M = maxim|.

= {m, P <N}
A {p?p\ 13 it

Henee

n< M = jd{n—2)—D| < nlogn.

Our sum ecan be represented in the following way

20 = > Xzl

p<n | D—d{n—p) meai Lm

~S{Y0+ 2 2+ 3 2M) = ZatTp+-Zo,

Tim ilm im
Tsmy i<y I=ng

where n, = Vnlog ®n, ny = Vnlog®n.
§3. An asymptetic- formula for X ,. From Lemma 8 and Corollary to

Lemma 2 we get

Xy Z 2(afn, 1, (D) = 2 2(Wfn, 1, v(1)) +0 (1)
(lz:i)ull (lzfx)n_ll
- 2 ()Lm—,—O(ﬂlocr n)
<ny
s _ _
%(D) . 2
= L(1, ) (1—“———) ( )LmTO(nlog n) 4
o[11-57)]1 ,
+0 (_IMUI;IOg”l Lin)
— L(1,; ——‘(p)) (11 A% )L‘ 1 0(nlog*n).
—L(l,nll;[(l . g o) Vi Otnlog™n

§ 4. An asympiotic formula for 2. I |D|<2< M the equation
im,| =& has exactly ome solution »[#] =n-— —z]@i ' —Dd~! contained
in the interval 2 < » < n. Since for me 4 we have

2(m) = (D) =1
hence and from Lemma § we geb
S D1

Zo = 2 Z x () =
<<Miny Pyl Eno

z<|m{jn2 {L)y=1 p=y(l) (modl)

= Z‘ 20) 1 (n,)+ O (nlog—m) -+ O (M ).

b p{l)
(I,w)r—l

icm
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To the last sum we shall apply partial summation. To this end we set

sy — N 40
& e
€ w)=1

and remark that i 21 Mfn, we have

s[(I—1)ngl - T

[Liz {fn,] —Liv[ (T —1)n,.]l = f Jog ™t wdu < »[(I—~1)ny] —v[Ing] = ar
s[inal

iDH""'a_
]

Partial summation and Corollary to Lemma 2 glve

{Lin —Liv[n,] << [n—v[na]| <<

(l) Sl Tiw I, = S(1)Liv ] — S{[M n,] +1)Li[ M [ne] +
ZQM"TL (l) .
)=
+ Z S(O{Liv[Ing] — Lis[(l —1)ny])
2l Ming
(1)Lm+0(|w 10 2 S’ - 110gl)
éﬂlnz
Hence
L xe) N s
L(lyx)n(l———)n(l ! P(P—l)) Lin+0(nlog™n).

pla
§ 5. An inequality for 2. Let
Dim)= Y 15 Fm)= 3 (-
ﬂlillﬂéﬂz nli'tﬁnl
From Caunchy-Schwartz inequality we get
b<{ ) 1Y Pim
met e

Dim)£0

) = ZpZa-

§ 6. Estimation of Z;. We have

Zp< nlog2n+ E D(m) -+ E
med,lml=nlog—2n et
282(m)<<eloglog M

1 = nlog ?n-+2p, #Z’Dz.

2Q(m)>eloglog M '

For the divisors I of numbers m involved in the swmmation of 27, we have
40N < eloglog M or 42(1) <

M, <n <l <n' < My,

eloglog M
Ny <Z 1< Ny
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where W = |m|, n' =Vnlog%n,
M, =V Hiog®¥. Hence and from Lemmata 6 and 10 we geb

Ip < S‘ Z 1=

e

mfn, L, »(1)

med  lm,n <l<n” n'<i<n”,(I,d=1
40()<eloglog™ 42(N)<eloglog M
logi—4
" 1 g2
Yozm I (logn) 2 log?logmn.
Og'n My<I<My ( )
4Q(l)geloglogM
From Lemmata 5, 7 and 10 we obtain
EDz < @(M; lelugloglll}+ Z Z 1
1floglog M &g medt,p'in
u <v'<M 28(m)>eloglog M

< nlog™?n+ 2 2 1

mecarl-1floglog 21 Imyl=mp’
24-20(m)>eloglog M

< nlog™*n +nloglogn 2
mepgl=1toglog M
24-2Q(m)>eloglog M

S

{mlog®njm)~"

< nlog™*n -+ nlog 2nlog3logn

m= M
24+22{m)>eloglog M
elog?—4
n{logn) - * log®logn.
Finally
. elog2~—4 .
Zp <n(logn) * - logtlogn.

§ 7. An inequality for I; with quasiprimes. Let f(») be the function
defined in Lemma 9, i.e. the characteristic function of the set of quasi-
primes. Then

Iy = MEm)< Y fIFm) = Y[ Y (1)
mes rh v ny<lt,l”<my
Vimy17m,

= M Y atl) = Y+ D =En+Zn
r<ng - 1 L Mg »all8 ',.<n1]B
Ny re <l g —

)=y ko my

§ 8. Estimation of Xg. In the range of summation of 2y, we have

vl by < mdfr < o™ logiin.

icm
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Hence and from Liemma 9 on guasiprimes we get

Zm = D T TS B S 1O

s n fly [
nl g, — <lplp< ra vap(riyly)(mod riyls)

(Fulg)=L (vl fp. d)=1
1
7 (LI (1) +0
,{( 1 2) (? )+ (log n Z ?"lilz)
ripla<n

— nB(n) 2

” n
n119<r<n2,71 <l lp< —f—
{1 12)=1,{rlylg, ) =1

2 + E )—1—0(%10@:‘2%),

7] <<y

= nB{n)]
aWBgran,

where w = (0, P(n)).
For » we have the trivial estimate

Ny <Py
1
Z < loglogn Z < log*logn.
7l 1,

Ty TNy

iy Tty
- <l la<< -

1
Rinee if {1;,1.) =1, then (rl 1) = (¥l n (l —_ —) it follows

. Plla.pir
- N z (%) Z x(h) ” (1 __i)“
L L A @(rl) Iy p
Pl n8gragny, (i, w)=1 g, Dllg.ntr
nfr<t) <mgjr T<12<_
' {la.Eyep)=1
< loglogn (1 ——)
; ’ ' r<n1<r11<nq (l =1 piLptr
i ’32
i —<l<

‘ Ny
By Lemma 2 the inner sum is < E (Z w )—|—R( 1103 " ) which by Lem-
ma 3 implies

< (L (w) +lo{w)logny i logn, /n,loglogn < log'logn.
nlBegrgm,

Finally

Ep <€ nB(n)logilogn - O{nlog™n) < 102% log™logn.

§ 9. Estimation of X;,. Since :
1 it (1,1
0. i (L,

2)=1:

2, #0= 1) > 1,

8171,8lly
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we have : B Tiet us remark - that
Im= X ) X J0= Y+ | $ o fr )y o i i
r<nlf® re<n <n s<nlf  s=al? min |1, = 14 < loglogn.
7 ﬂg ¥y lamirs = m,l ?’1"%“S e lyms < sl 808
<l e ' m<Mislyny ding (ding a T t
"< sy sl <m sy

For the sum Y we have the trivial estimate {

g Hence and from Lemma 4 the sum > can be estimated as follows

s<nli® .
| X< M oo1< YN am : Z = vy — 7,
n)loglo L ~2
s=nl® o} Scsblmretc M s=allt #ﬁﬂ/—!al“z 5 < B{mloglogn Z A(sh) 1, ms? +ulog™n
‘ : : g=<nll® M8y sl <ny
< 2 s~ Mlog® M < nlog™>n. : : snlf® e it ngs
s;nlfa ’”12 Wi ldl'ﬂr
e ~1 : 1 _
Since g(m,) = z(D) = 1, we have | < B(n)loglogn H )_J s~ (sl ) min (1, llms) +nlog—2n
. : ) 218y, <sly<ng .
==+ Z‘ x () 2 f». s<nM8,m< Ml ns
ganME  s<nti8 n, <rsl< gl 5 iyl <mnglis.sn
mr-:M;lulz ]('11:,.31’,3;21 y=r{lymest) (mod.Iymrs?) . ‘ < B(n)nlog®loga S_’ A{sly)
. s 2
Let us remark that for the numbers I,, m, #, & involved in the summation : s:ﬁs b
of 3 e have lymrs® < Mrs/ng << n**log'n, hence the inner sum can be ' a Moy iy <ny
a>nlld ; n "
estimated by means of Lemma 9. Thus we get < B(n)nlog*log ﬂ{mg“%—g +h{w; ”’ﬁm)log% +
) 1 Wy
VYg— Py ‘ n : :
M o« N e — T By 2 2 (Tymrs?)~ 1 n ”
Lo L 1 2 5 1 : Riw: — L2
a<nlf8 r,8<nlf8,n) <rety<ny pllmrs?) log'n by, rya<n : + Z I,8* i sty +Ew; sl
in e, (fymrs, 0)=1 : sly<my : ’
n .
Yy —9 7 1\t < B(n)nlog*logn < -———1log'logn.
D = WL ) (S R R N T
@ (b ms®) r P . Finall
s<nM Lnymesd . r<nlf® (rw)=1 Dlrptiyms nally
Ul <slj<ng ny<lra<ing _ H % ‘
‘where : 2E2 < log.n IOg logn.

= Nyl 8] = n— Ls|dj~t—Dd™?
vg = pmmbs] = n—mmbs|d™ —Dd™, Putting together the resuts of §§ 5-9 we get

vy = vfmin(M, mm,l;8)] = max(2, % —mngly§|d] ™ — Dd ™)

r

Tt
and hence 2p < Wlogslogn
vy — vy << min(lyms (ny —ny) |7 1) < Lymsn, |d| " min (1, -lldi%i) i which completes the proof of Theorem 2.
1M ;
From Lemma 3 applied o the inner swmn we get the estimate Part 11X .
]2% < Z e r) <€ logmyfmy = Asly) I w,< gil << Mg, Proof of the Main Theorem
r r<nging ' : ; . : . . - .
12 < R(w; nyfsly) + R(w; myfsly) = A(shy) if B Yo, < sl <n1, § 1. Estimation ome%L gmx(l). For a given positive integer T and
L : ' i a class Ce I4I? we set
]2 < E(w; nyfely) +R(w; n®) = Asly)  if aWa, < sl < 0V, 1 S Mo = {mm’[; 2 1< ‘L}-

plim, pel, deg p=1
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We shall prove
TurOREM 3. There exists an absolute constant A > 5 such that

n Aloglogn \*
Ex(l) < Togt iy ( T )

me‘.ﬁa 5 Iim

for L < loglogn. The constant in the symbol < is absolute.
In the proof we shall use the following
LemMaA, For o= 3 we have
1
(1+Np™h < (logz) ™.
MO, Np<z
The constant in the symbol < depends only on d.
" Proof. Let o be any class of I%/I;. By Theorem 2.4, Oha.pter VI
of [3], we have
1 T

1 Y
[I% I}] loga

pesd Np=<z
Since ¢ is a union of finite number of elasses from I*IF, we get
1 &

peC . Np<z hf loge
which implies the lernma.

Proof of Theorem 3. The sum in question can be decomposed into
three smms in the following way
my+ 3 30

2 Qs ) dmt ) d

meAg L Im mse medley 1, lm
sinspss @ phim ® plim
I>e P>z ’
T S

Putting logz == log M/loglog ¥ we get from Vinogradov’s lemma and
Cauchy—Schwartz inequality ‘

ILS B(M32) Y @ (m)

m<M

1( 3 axm

) < nﬂog"*%,

B X

) < Mlog® MZ;p" < n2log™n.

m<M m<M B8
" plm :
=g
Let us set : .
dor ={o=Oie,d) =1, 3 1<1).
. plio,pel
- degp=1
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Then

513y Y TS

PR 5 aedg L esd( 7, nEn
feti | =0 Nt No< Ifz tp|=P'Na
< 57 ﬂloglogn—1 nloglogn y Nat.

....J Nalog?*(nNa ) log?(ne| #) e

Nalez Nugﬁ?

Let us set further
oy = {b%;b =D} I,
= {b; p|b=p*Db, x(p) = "1}n1d:

sy = {b;p[b=>p*Db, x(r) =1, p¢ C}nI7,

Ay =P P37 <L x(p) =1, ;e O, p 5= p} for ¢ =4},

Then
MC',L = {alaﬂaaa45 ety i =1,2,3,4},
whence
N Worg( ) Na—l) [ X ¥ ( Y ¥o)( 3 W) = 555,
teolpy 7, aesdy ue.m'?. . aesly
NasM NagM NagcM
We have the obvious estimates
I DNbt <,
e
< D umym <1
(m, =1
< (1 +Np-1) < (logan) Y%,
pec, Np <

- We have also

D Wptg

N'p <M

2 gt < et Aloglogn

T opsM

for sufficiently la,rge eonstant 4 > 5. Hence

r / A T A L
e Sl < 3 e « st

.N P <i!f r

and the proof of Theorem 3 is complete.
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§ 2. Proof of the Main Theerem. By Theorem 1 there exist posifive
real numbers gy= go{d, D) << 1, Ly= Ly(d, D) such that for L > L, we have

= MN[F = n—p]

p<n

=7+ 0() 3 P a0 3 X 3 a).

med Uhm oerypd medc,y, m

Hence for L, < L loglogn we obtain from Theorsm 2 and 3

.9 , "
i, L) L
s Pla(D=an) P pripman PP 8
¢ n A L
< sF Togn 10alogn+ Iog logn+ W ——loglog% .

1
e loglogn we got the required estimate.

. ine I =
On putting yiY
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The proof of Minkowski’s conjecture concerning
the eritical determinant of the region

P +yF< 1 for p>6
by
A. V. MAarysERv and A. B. Vorowersky (Leningrad)

1. Introduction. Let » > 1 be a real number, 9, be the convex region
o +y1* < 1

and A(2,) be the critical determinant of 2, (for definition of the necessary
notions from the geometry of numbers see Cassels [17). Let us consider
two 2,-admissible lattices AD and AP, AD ag well as AP has six points
on the boundary of 2, and (1,0)e AD, (—27%,27Y7)c 4D, (The lat-
tices AL, AD) are defined uniquely wnder those conditions.) We write
AL, AD for (AP, d(4L7). Minkowski [4] had conjectured that

(1) A(%,) = min(4D, 40,

all critical lattices of 2, being contained among the lattices AL, A0 and
among those which are symmetrical to A3, AJ with respect to lines
szs?/:O:m:yam:.‘—"y- )

Papers [2], [3], [5]-[9] are devoted. to this conj_ecture. Watson [6]
has proved that there exists a constant p,, with 2.57 <C py << 2.58, such
that
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and
3 AP < AR for 1< p<<2, p>py,

AR < A4F for  2<p < Py

Therefore the conjectural eqﬁality (1) ean be written as

AV for  L<p<2,p =D,
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