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1. Introduction. Let 4 = {a,}, —cc<n< oo,' be a sequence of

- complex numbers with period % > 0; thus a,.,, = a, for every integer n.
- Our first major result is found in Seection 3, where we develop a formula

for » a,f(») which is analogous to the Fuler-Maclaurin summation
e<nad

tormula, where f is a sufficiently smooth, complex-valued function on
[¢,d]. When A =1 = {1} and k& = 1, our result reduces to the ordinary
Euler-Maclaurin formula. When 4 =T, = {{—1)"} and k = 2, we obtain
Boole's summation formula. When @, = x(#), & character of modulus k,
we obtain results due to Davies and Haselgrove [19], Chowla {17], and
Berndt [9]. Another approach to our periodic swmmation formula hasg
been given by Rosser and Schoenfeld [40].

Appearing in our formulae are certain numbers and functions Whlch
generalize the ordinary Bernoulli numbers and funections, respectively,
and which reduce to them for A — I and % = 1. Properties of these
periodie Bernoulli numbers and functions are developed in Sections 2
and 9. These properties are well known in the classical case 4 = I, and
many of them have been found in recent years in the case @, = y(n} by
Leopoldt [31] and others who use them in connection with yarious probiems
in. algebraic number theory.

A gecond major result is obtained in Section 4 where we derive a

formula for . 3 @,f(n) which generalizes the clagsical Poigson summation
en=ld ’

formula.. We obtain this periodic Poisson formula from the ordinary
Poisson formula and then use it to derive & gecond proof of our generaliza-
tion of the Euler-Maeclaurin formula. The periodic vorsion of the Poisson
summation formula was previously obtained by Berndt [9] for a, = y(n)
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in a more difficult faghion by appealing to & version of the Voronoi sum-
mation formula. See alse [5] and [6] by Berndt.

In Section b, we apply our periodic Poisson formula to prove a reci-
procity formula for certain exponential swms which, by specialization,
vields the well-known reciprocity formula for generalized Gaussian suwms.

In Section 6, we introduce 2 generalized Lerch funetion which.ineludes,
ag special cases, the Riemann zeta-funetion £(s), the Dirichlet .L-series
L{s, x), the Hurwitz zeta-function {(s, ¢}, and the Lerch function ¢(z, &, ).
For this periodic Lerch function we obtain a functional equation which
implies those of {(s), L{s, x); (8, @), and ¢(x, a, §). To obtain the result,
we use the periodic Huler—Maclaurin summation formula.

In Section 7, we introduce periodie theta-functions and apply our
periodic. Poisson formmla to obtain. a transformation formula which
reduces to that given by Epstein [22] when A = I. From this we obiain
a second proot of the reciprocity formula for the exponential sems men-
tioned above.

In Bection 8, we give a peuo(lle form of the Lipschitz summation
formula. Here the proof iz based upon the periodic Poisgon formula in
2 manner similar to that used by Berndt {9] in the case of a primitive
character.

Section 10 is devoted to the generalization of some curious identities
for trigonometric and hyperbolic functions discovered by Berndt [9]
in the case a, == y(n). '

The final section is concerned with certain formulas for nwmerieal
integration. The formulas give what may be regarded as correction terms
a8 well ag explicit formulas for the errors based on the remainder integral
for the periodic Fuler-Maclanrin formula. '

The authors wish to express their appreciation to Ralph P. Boas
for a number of bibliographic citations.

'2. Periodic Bernoulli mumbers and funcﬁons

DerinyrioN 1. The periodic Bernoulli nwmbers B, (4), 0 < n< oo,
and periodic Bernoulli functions P, (2, 4), 0 < n < oc, are defined recursively
a8 follows. Let

]
(21) Po(s; A) = By(4) = S“ 2
. n:——D .
' fomcl Bl
| ) L .
@) 2; (nmmk) - GEHZ:““"H S kBy(4),

and for « >0,

(2.3) | Pl(mi-A)=BG(A)W;BI(A)_M(M)7
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‘where

(@) = 3 a,.

st
For w22 and 22> 0, let B, (4) and P,(», A) be defined induetively as
follows:
1 R

(2.4) By(d) = = (=1 n! j k—u)P,_y(t, A)du
and

g (=1
(2.5) Poo, 4) = [ Pystu, A)du 230 B, (4).

i !
Prorosirron 2.1, For nz 1, .

k '
[ Py(o, )iz = 0.
9
Proof. For n =1 Dby (2.3),
%

&
[ Pi(@, A)do = $By(A) =By (A)k— > a, [ do

Osnh
o -1 Xl ‘
= 3By (A) R —By(A)h—F D) a,+ D na, =0,
=0 =0

by (2.1) and ( 2).

For n=22 by (2.5),
an(m AdWMfdwaﬂlu A)du +( ) B (A)E
= an_l(u,A)dufdm-{— (:j)ﬂ B,,(A)k =0,
] «

by (2.4}, and the proof is complete.
ProrostrroN 2.2. For 20 and 23>0, P,(w, A) has pertod k.
Proof. For n =1 and 3 0, :

k—1
Bo(d)h— > a, = By(d)kb~ > @, =

a<nsztk m=0

Pywt+k, 4)—Pyle, A} =
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by (2.1). Proceeding by induction on n, we have for » > 2 and ¢ = 0 by
{2.5),
: -k
P (w+k, A)—P, (@, A f Pty A)du = an A, Aydu =0,

upon the use of the induetion hypothesis and Proposition 2.1.

We now define the periodic Bernoulli functions P, (w, 4) for all real
# by periodicity. Then {2.5) is scen to hold for all #. Observe that for
nz?, P,z A) is continuous for all @ P,(x, 4) i3 continuons except at
those integers » where a,, = 0, in which cases P,(w, 4) is continuous from
the right. Furthermore, it is apparvent from (2.5) and (2.3) that

P;H-:(W,A) =P, (e, A}, n=2,
.P;(ﬂ?, 'A') 2131(39,
Pi(@, A) = By(4)

— 00 < @< 00,

{2.8) Ay, & #=n if @, #+ 0,

=Py, A}, @ #n if a, # 0.

Lastly, observe that P,{#, 4) is a polynomial on each interval [¥, ¥ +1),
where N is an integer. The degree of each polynomial is less than or equal
to n and exactly equal to m if B,(A4) 7 0.

In the special case A — I and k = 1, it is not difficult to prove that
By(I) = —1/2 == B, and P, (s, I) = o —[w]—1/2 = P,(2), where B, and
P, (%) are the nth ordinary Bernoulli numbers and functions, respectively;
see Knopp's book [28], pp. 521-523. In general, perhaps the simplest
proof that P, (@, I) = P,(2) and B,(I) = B,, » > 2, iz given by (4.8)
helow.

For later nse, we note thaf, it @z —1 then

Pi(w, A) = Py(o+k, A) = By(A) @+ - By(d)— D a,

0<ngahk
= By(A)o+kBy(4) —By(4)— D a,— Gy |

0nagk-1 brl<nsli-n

= By(d)w—B,(4)~
where we set m = n—k and used the fact that a,,, = a,- Hence,
By(d)z—B, (4}, if —1<

Py(2, 4) = Bo(d)o—By(4d)—a,, i 0<a<l,
By(d)o—By(Ad)~ag—a,, i 1<

La<0,
(2.7)
< 2.
In particular,
(2.8)

Py(0, ) = — B, (A)—a,
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Furthermore, for a positive integer m, we have

Py(m—, A) = By(A)ym—By(4)— > @, = Py(m, A)+ .

Ign<in—1
By periodicity, the above ig valid for all integer.s m. Hence,
(2.9) Piim—, 4y =P, (m, A) +a,,
(2.10) Py(mt, A) = Py(m, 4),
and
(2.11) HPy(m—, A)+Py(m+, 4)} = Py(m, A)+ia,.
Finally, (2.5) and (2.1) give
(2.12) P 0,4) = (_ﬂ})n EN(A) it w220 m=0.

3. The periodic Euler-Maclaurin summation_ formula

TonorEM 3.1. Let feO0 e, d] where ¥ > 1 and ¢ and & are real. Then
Jor each real number 8,

a

(31) auf(n+0) = Bo(d) [ f(w)dw+
. o< Uesd . P
+ D (=17 (By(d— 0, A)fINd) —Bylo—8, )79 (0)}+ B, (8, 4),
where

B.(6, A) = T+1f19 x—0, A)fO (z)dx

Prootf. For simplicity, we begin by assuming that ¢ > 0 and B = 0.
With the help of (2.3) and an integration by parts, we find that

a
B0, 4) = | P1(¢,A)f'(w>dw |
= (Bl ) 3= Bu(AR(@ — (Bold) o~ By(A)ifie) =

ff(wdfv 2 d

O=cn<d

F{x)da.

max {c, )
The sum on the righ‘s' pide above is
D af@—{ 3 afer+ 3 afn) |
ognsd [IE=tP P cn<id -
= f(@ (@) —Fe) L ()~ D af(n

c<nd
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Henée,

B0, A) = {Bo(A)d— B, (4) — 7 (d)}f(d

11
—{By(A)o—By(A) — o (0)}f (¢) — By(4) f f@dw+ > a,fn)
o<l
= Py(d, A)f(d)~ P (¢, A)f(c) f F@ds+ 3 a.f(n).
e<nagd

Rearranging the above, we obtain

D af(n

LRl
which is (8.1) for » =1, ¢z 0 and # == 0.
For general ¢ and 6, let N be a pogitive integer chosen large enough
so that ¢, = ¢— 6 kN > 0. Furthermore, let d; = d—6+kN and f,(o)
= f(z+9—kN) so that f,¢07[e,, d,]. By applying the preceding case
to f, on [y, d,] and using the periodicity of {@,} and P,{», 4), we obtain
(32) D afn+6)

et lgd

j Fl@)dn—Py(d, A)f(d)+Py(o, A)f(e) + Er(0, A),

12 ‘ .
= By(4) [ fle)d—Py(2~ 6, A)f(d)+Pa(e— 8, 4)f(0) 4 By (0, 4),

which is (3.1) for » =1,
Integrating by parts with the help of (2.6), we obtainfor 1 <<j<<r—1

a
(3.3}  Iy(0,4) = (-1 j P a(w—0, 4)f9 (@) dw

= (—1Y*"P; . (d—6, 4 f”’ )= Pale— 6, )P (e)} + By (6, A).
From (3.2) and an eagy inductive argument with the aid of (3.3), we
easily obtain (3.1) for all » = 1.

COROLLARY 3.2. Let feO[e,
Suppose also that

00) where =1 and ¢ and 0 are real.

Polaw—0, A)f M) do

Q%S

converges. Then theve ewisis o constamt C,.(0, A) such that for all d == e,

(34) D a,f(n+0)

c<n.+ f<d

= B,(4) ff ydw -+ C,(6, A)+2(~—1’P (@— 0, A)f-0(g

F=1

~F.(d; 0, 4),
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where

(3.5) Fo(d; 6, 4) = (=17 [ P,(s—0, A)f (z)dz.
‘ a

Furthermore, if 1< m <

<7 and if £ (@), f)(a),
0 as x-» o0, then

ey 5N (@) all tend do

(3~6) Gvra~1(07 A) = Gm(ey A) == = O,.(ﬁ, A)

Proof. 'We obtain (3.4) from (3.1) on defining

ik

3.7)  0,(0,4) = — ¥
=

—1PPy(e— 0, A)fUD(0) + F, (05 0, 4).

—

Furthernore, replacing j by I—1 in (3.3), where mgléoj and then
letting d-—>o0, we get with the use of (3.5)

(38)  Frale; 0, 4) = —(—1yPye— 0, A)f* e )+fz(@3 o, 4),
pwwded that either Iy or F,_, exists. As F, exists by hypothesus, 30

do, in turn, F._, F._yy ...y £y Gonsequentlv, for m < 1< v we obtain
from (3.7) and (3.8)

C.(6, 4)—C;_1(0, A)
= — > (—=1YPj(¢—8, A)fV"V(e) + F,(c; 0, A) —F,_(0; 6, 4)
i=l
Z‘{rj (05 0, A) —Fy(c; 6, A)}+ T, (0; 6, 4) —Fy (636, A) =0
Fe=l

and the proof iz complete.

In actual cages, the constant 0,(8, 4) is usually approximated by
uging (3.4) for a moderately large value of d chosen so tha.t F.(d; 06, .4)
is rather gmall.

It may be noted that although the proofs of (3.1) and (3.4) used the
periodicity of Py(x, 4), they did not use the periodicity of P, (w, 4} for
n 2 2. Hence the regults hold for any set of functions Fi(x) such that

. p :
FY(w) = Py(m, A) and E_P:’;-!—l(m)
k=1, a slightly altered form of (3.1) has been given by L. K. Hua {26],
p. 79.

= P¥(w) for all n3>1. For the case
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COROLLARY 3.3. Let feCW [ MK, NE), where vr=1, M and N are
integers, and 0 << 6. 1. Then

Nk, v
(3.9) a,f(n+0) = Bo(d) [ fl@)dw+{Bo(d)0+Bi(4)} x
Mhen<Nl Mk .
X {f (%) —F (M)} -+ O (—1Y P —0,4) {(f=) W) — 4= M)} + B 6, 4),
i=2
where .
N '
By(8, 4) = (—17" [ Po(e—0, 4)f"(@)do.
Mis

Proof. We first let 0 < 8 << 1. In this cage, if ¢ and d are integers,
we have

D afnt )

Mb<n<Nk

> afnt0) = D aflnt6) =
o<+ ﬂsd_ en-<<d
on putting ¢ = Mk and d = Nk. Also, for j > 1, the periodicity of P
gives
- Py(Nk—8, A) = P;(—6, A) = P;(Mk—6, 4).

Furthermore, since 0 < 6< 1, (2.7) gives
Pi(—6, A) = —By(4)0—By(4).

The result now follows from (8.1) provided that 0 < 6 < 1.

The integrand of ¥,(6, 4) is bounded for bounded ¢ and x; and, as
#-0-L, the integrand tends wniformly to P,(x, 4)f®(») except, possibly,
in neighborhoods of integral values of x. Hence, £, (0, _A) tends to B,.(0, A}
as 60+, Since the rest of the terms in ({3.9) are also right-continuous
at 6 = 0, it follows that (3.9) holds for 6 = 0 as well.

OOROLLARY 3.4. Let f be as in Corollary 3.3. Then

(3.10) a, f(n)

| ﬂfkéw;kl\"k 11 B (A) |
= By(4 do+ > L (O NE) — fUU (MR + B, (0, A).
=By )Mfk f@)da % U }

. Proof. Using (2.12) and setting 6 = 0 in (3.9), we deduce (3.10)
at once.
We refrain from attempting to give any historical account of the
classical Buler—Maclaurin formula for 4 = I. Some historical material
may be found in a paper of Ostrowski [381, Other. versions of the formula
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have been found by Duncan [21] and Mahler [84]. There is also another
clagsical formula which Jordan [277 calls Boole’s firgt summation formula;
see Boole’s treatise [147 (1st ed., p. 95; 3rd ed,, p. 102). In fact, this resuliz
appears to be due to Buler; see Burkhardt’s article in the Encyklopidie
[15], p. 133B. In our work, the formula results from taking & =2 and
A = I, = {(—1)"}. Norlund [37], p. 34, proves a vesult from which
Boole’s result can be obtained by addition. In Nérlund’s development,
the result is obtained by means of the Fuler polynoniia,ls in much the
same way as the ordinary Buler-Maclaurin formula is approached through
the classical Bernoulli polynomials. It is also of inferest to mote that
Euler’s transformation of serieg

S . o (1)
é (—1)"f(n) = Z_' - A,

where f satisfies suitable conditions, can be obtained from Boole’s formula
by replacing the derivatives by their forward difference approxima.tions
A™f(0). For a discussion of this transformation, see Enopp’s book [287],
p. 244, or Hildebrand’s book [25], p. 157. . ' -
In the proof below we cite two results proved. later, namely, {4.9)
and (9.11). It is clear, however, that no circularity is involved. We give -

- the result corresponding te Corollary 3.4 rather than the one associated

with other corollaries because of the greater simplicity.

COROLLARY 3.5 (Boole's summation formula). Let f<C®I[23, 2],
where v =1 and M and N are integers. Then

2N

.
D) (—1Pf(n) = SN +f(200) +
A2 0T
5, . B i
L. ATy 2 p-Deo wry A1) _ ]
%g( ) Gar BN eI} + 1,0, 1),
where

2N

B0, 1)) = — [ {#Py(0/2) — Py ()} ) (2) dar.
2

Proof. It is clear that Py(w, I,) = 0 = B,(I,) and that B,(I;) = —1/2.
For n > 2, (4.9) and (9,11) yield : :

- 1
Po(w, I,) = zn—l{Pn(g) ~P, (w—;'—)} — 2"P, (g) —~P,(x).

Congequently, (2.12) yields for n =2
By (1)) = (—1)"n'P,(0, I) = (~1)*nl{2"P,(0) — P, (0)} = (2*-1)B,,
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where B, denotes the nth ordinary Bernoulli number. Since B, = 0 for
0dd % = 2, we obtain the above result after replacing k by 2, a, by (—1)"
+ by 27, and j by 2j in (3.10), and then adding f(2N) to both sides.
It is fairly clear that Corollary 3.3 is obtainable from the -classical
Buler-Maclawrin formula. Indeed we need only observe that

N
(B1) D (~1)\fln S‘fzm 2 f(2m 1)+ f(27)
=2 . m=1|1 s I
2V -1,
=2 Zf (2m)— D f(m)+f(2N),
e M =20

and then apply Corollary 3.4 with 4 = I to both sums on the far right

side of (3.11). In fact, the whole theory of the periodic Huler~Maclaurin

formula can be developed from the classical form of Corollary 3.3 for
general fe [0, 1]. For, by subdividing the range of summation into residue
clagses modulo %, we get

Nl—~1 E—=1 N1 k-1 N—1
D) taf(nt0) = D D ey fOmk+jH6) = ) a; D, glm-0y),
= ME j=0 me=M J=a T M

where 6; = (j+ 0)/ke[0,1] and g{x) = f(k»). This approach iz adopted
in the work of Rosser and Schoenfeld [40]

4. The periodic Poisson summation formula. Define the sequence
B ={b,}, —oo<<n<< oo, by

fe~1
1 —~2nignli
{41) . b, = % ‘Eo! a;e omifnfi
o

These are the finite Fourier series coefficients of {@,}. Observe that
bo = By(A). Clearly, B also has period k. Note that (4.1) holds if and
only if ‘

k-1
(4_2) &, 3263'621‘:1:1‘71!&’

F=10

-0 < P < o0,

Algo, if we replace b, by ¢, and 4, by b, in (4.1), then we find that ¢, = a_, /k.
TaeoReM 4.1. For vz 1 and & rosl,

(4.3)  #H{Pule+, A)+P (20—, A}

= — Z (76_[21‘ci%)"{bn32“m$”" =1y b‘_ne—miom/k} .

T&=1

Unless r = 1 and @ is an mteqeo such that a, = 0, the left side of (4.3) may
be reploced by P,.(z, A).
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Proof. Since P, (2, 4) is of bounded variation on every finite interval,
P (@, 4) may be espanded in s Fourier series:

(4.4) AP

T(m-l-p A) +P,(a:m

1} = lim 2 0, szm/k

N0y LN
where .

1 .
Cor ="17,J-P"(m’ A)e—2m1mfkdm_

From ]?rqposition 2.1 we gee that for r = 1,

(45) G = 0. ’ |
Using Definition 1 and then inverting the order of integration, we have
for r>2 and # £ 0,

E

1l (—1y .
Onr _};!{JP (%, d)du -+ o Br(,A)} g inall

17 4
="]:J"Pr—1('u') A)dufe—Zninmjkdw

L2

01’!-,1'-'«15

= _ a—2winufk -
" 2min .{Pr (%, A)(1—e ) rin

where we have again employed Proposition 2.1. Henece, for # == 0 and
r=1,

(4.6) = (k/2min) e,

There remains the caleulation of ¢,, for # 0. From Definition 1
and an integration by parts, we get

I

=_‘f {By{d)a—B (A)—~ (@ )}gwﬂﬂfm/kdm

g [

Bt 3 3 s
. =0 H
k=1
= e 1 Za‘_e—Zn!’nﬁk'= _ k b
Smin = ! _ Qin

where we have used the deflmtlon of By(4) and (4. 1 Hence, for m £ 0
and r 2 1, (4.6) and the a,bove yield

(4.7) Gy = —(bf2min)'b,

3 — Acta Arithmetlea XXVIILL | O \
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Substituting (4.5) and (4.7) into {4.4) and then replacing # by —n for
n < 0, we arvive at (4.3), and the proof in complete, on using (2.11) and
the fact that P,(w, A) is continueng for r > 2.

It 4 =TI and &k =1, we note that (4.3) yields for v 1

[o=)

(48) Pzt D) +P, (0=, D} = — 3 (rin) T {6 4 (— 10

=l

-—me}

= ${Py(@+) +Pr (o),

" which is a familiar result; for example, see Knopp’s book [28], p.”522.
Thus, (4.8) gives the simple proof mentioned earlier that P,(w, I) = F,(x)

and B,(I) = B, for r =2
COROLIARY 4.2. For r = 1,
k-1 :
=1 j 1 _P & '"[“' m
(4.9) Pz, A) =K 5’.“:( - )_7{, Zﬂa_m ( ).
- oy

Proof. Fors=1and non-integral w, P (,
by (4.3) and (4.1),

AY == lim 8y (x, A), where,
N-sto

N
: (4.10) SN(m , _A-) — A\—J (70/271@% {b 2mina/ic __{ ( )1" b_neuﬁwfnmﬂﬂ}
n=1
1 k=1 I“\_T1
— _EZ‘ jZ (k/QT’C’M% { Snan{m—;p)/)‘c_]_( _ ) —2mn(:zc—~5)/k}

On letting ¥ - o0, we obtain the first form of (4.9) if # is not an integer.
As the first two expressions in (4.9) are right-continuous abt integers,
it follows that the first form of (4.9) is valid for integral & as well. The
lagt exprension in (4.9) is easily obtained by setting m = k—j and using
periodicity. '

It is kpown that the partial sums Sy(z, I) are bounded for all ¥
and real # and that they converge uniformly on bounded intorvals except,
possibly, in the neighborhoods of infegers. For » = 2 this is trivial, and
for # = 1 see, for example, Titehmarsh’s text [41], pp. 42-48. By (4.10),
the same is therefore true of Sy(w, A). Thus, as a result of a well-known,
theorem [41], p. 41, we can multiply the geries on the right side of (4.3)
by a function integrable on a bounded. interval [, v] and then integrate
term by term over [u, v].
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We now define

{4£11) : £ = max |
0giule-1
and
k=1
(4.12) 0 =% mi, e, = 282wy L(r) it r>2.

Je=0

Cororramy 4.3. For r=1 aend all real 2 we have |P,(x, 4)| < p,
Furthermore, for the integral of (3.5),

;F,,(d;e,A ef|f‘ﬂ )| da,

provided that the integral on the right converges. Also, for the ervor term
B0, A) of Theorem 3.1, we have

d
B8, A)] < ¢, [ 1 ()] da;
.6

this vesult also holds for H (8, 4) in Corollaries 3.8 and 3.4 if we set ¢ = Mk
and d = Nk.

Proof. As Py(x) = z—[®]— %, it follows that [P,(v)| < %, so that
(4.9} yields |P{®, 4)] < g;. For r = 2, we use (4.3) to get |P, (o, 4)] < p,.
The estimates for F,(d; 6, 4) and H,.(8, A) now follow f_rom the definitions
of these quantities.

The above estimates for the error terms E, and F, are rather crude
For the clagsical cagse A = I, botter estimates are available. In particular,
see Ostrowski’s paper [38] where o detailed study is made of E, (0, I)
when ¢ and ¢ are integers.

‘We now derive our periodic version of the Poisson summation formuala.

TuworeM 4.4. If f 4s of bounded variation on [e¢, d], f.hcm

b Y e dfin+) +fin—y}

essnsid

=b ff(w)dm+2f

n=l ©

(4.13)

2nin£[k 4 b_ne—znt‘nm,‘k)f(m) d.‘fﬂ,

where here, and in the sequel, the dash ' on the summation sign indicales
thet if ¢ ¢s an integer then the first term of the sum on the lefi is a,f(e+),
and if d i8 an integer then the last term of that sum 48 azf(d —

Proof. The proof uses an extension of an idea of L. J. Mordell [35].
We use the ordinary Poisgon summation formula in the form given by
Landau ([29], Vol. 2, p. 274): if F{x) is of bounded variation on [¢, 4],
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then ‘
(4.14) % 2" {F(%«{-)-{—F(mm—)} Lim. 2 f Fw S

ened N>y N o

Put F(#) = G(x, B)f(zr), where f(#) is of bounded variation on [e d]
and

Je~1

w .B) Z b GZmUNIc

je=0

Since G(n, B) = a, by (4.2), we find that (/1 :ld) given

N
b adfint)+f(n=)} = lim f 6@, BIf(0)6"™* da
esnsd N-roo ,,__N ¢
N k=)

d
= lim by [ ™I () diy
If we now pub m == j+ok, woe find that
NE4R=1 &

(15) 3 3 au{f(n+)+im—)} = lim by | S ()
enld e Yoy °
M d

= Tim 2 by, f gl f g

AM=+00 2 ¢
since by the Riemann-Lebesgue lemma,
Qg a
Lim b, | E™mfipyde = 0
lQHmMéaQ K |
for bounded integers ag and fg. From (4.15), it is now easy to deduce
(4.13). . '

DErINITION 2. 4 i8 even if a_, = a,, —oo<<n< oo, A 1§ odd if
a_, = —at,, —o0<<hn< oo, If either of these holds, we shall write
G_, == p0y,, 80 that y = +1 if 4 is even, and ¢ = —1 if 4 is odd

Obgerve that A is even if and only if B iy even. For if A is even,

i .
n ] § & 6—2::#991,/15 =___Z _Je»-ﬂwi'n(kwj)/k._.:nj;; \) t (szr’nh’c . b‘-n‘

=1 =
The converse is proved similarly. Likewise, .4 is odd if and only if B i
odd. Note that if 4 is odd, ey = by = 0.

The following corollary now follows easily from Theorem 4.1.

CorROLLARY 4.5. Let ¥ > 1, & be w;al and A be even or odd. If { —1)
=1, then

AP e+, 4) -

(=]

Po—, 4)} = -2 ) (k/zwin)*‘bncos(zmw/ﬁ;);

fe=l

icm

Periodic analogues of the Buler—-Maclowrin and Poisson summation formules 387
and if (—1)y = —1, then

P (o4, A)+P,(5—, 4)} = _232 (kj2min)"h, sm(Zamw/ic)

n=1

COROLLARY 4.6, Let r20, A be even or odd, and (—1)y = —1.,
Then B,(A) == 0, unless v = 1 and A is even in which case B, (4) = —1a,.

Proof. If r =0, then 4 is odd, 8o that, as already observed, B,(4)
= by = 0, For r == 1, the result is clear if we put # = 0 in Corollary 4.5
and them wuse (2.11) and (2.3). For » = 2, the result follows from (2.12)
and Corcllary 4.5.

The above corollary generalizes the familiar fact that B, = B, = B,
=L, = 0,

The following corollary is immediate from Theorem 4.4.

CororLARY 4.7, Let f be of bounded variation on [e, d1. If A iz even,

b ) alfn)+f }““boff )is+2 D', ff )cos (2mna ) dw;

csnsd froum |
if A is odd, |
3 Z @n{f (1) “l“f } = 2 2 b, f f(@)sin (2wnm k) do. |
LA n=l @

'We now indieate another proof of Theorem 3. 1, the periodic Euler~
Maclaurin formula in the cage § == 0. Let feO0™[e, d] where 7> 1. From
Theorem 4.4, an mtegra.tlon by parts, and Theorem 4.1, we obtain

(416) 3" aufm) = b f faaat > f

eaned nesl o
= by f (@) dew — %{P:(d 4y A) +Poy(d—, AV} F(@)+
o ok, )P0, A)f(0)~

2r:imclic + b_ne—ﬂninm!k)f(w).dm

“Z & [2min) j (b, et p_ g2l £ () dp.

sl

By our remarks following Corollary 4.2, wo ‘m-a,y invert the order of sum-
mation and integration on the far right side of (4.16). Using Theorem 4.1
and (2.11), we may then write (4.16) as :

4
> auf(n) =1b, [ f@yde—Py(d, A)f(@)+

e<nid

a
+Pule, A)f(ey+ [ Pila, A)f (@) dz
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Sinee b, = B,(4), the above i simply (3.2) with 8 = 0, and the remainder
of the proof is precisely the same as hefore.

5. A reciprocity theorem for some exponential sums. The following
reciprocity theorem contains the reciprocity theorem for - generalized
Gaussian sums a8 o special cage. _

TeroREM 5.1, Let a, b and ¢ be inlegers such that ac + 0 and ack--b
is even. Then,

(5_1) lcl]{’"l @ em’anzlcfc-|-r:ibnjcla .
’é‘_{] 13

|eslfs—1
"N - n N
— (|0|7‘3/10f| 1,’2 Tib*{Anck--trisgn ac) Z b 6 mien? fuie--meitinj ol

=0

A proof of Theorem B.1 {with ¢ > 0) by contour integration cen be
found in [10], Theorem 1, by Berndt. The proof we give here uses our
periodic Poisson summation formula. The proof is in the same gpirit as
that of Dirichlet [20] where he used the Poisson summation formula to
evaluate ordinary Gaussian sums. (Dirichlet’s proof can a.lso be f,mmd
in Davenport’s book [18], pp. 14-17.)

Preof of Theorem B.l. Let f(x) == exp(nian? ok + nibx/ok). Since
ack -~ b is even, it is easily verified that f(n - |o| k) = f(n), if » is an integer.
Hence, Theorem 4.4 yields

lelle—1 \clk

8 = ZI a,, Gn{mnzfck-{—nibn,lck — lim n f eznim,uc-pmfamﬂjck.;ﬁnib:cfck dx
=0 . C Noeon LN 0
|elk ’
2 b e—ma(b/m+ncla) ek f 6mr;a(az:{ b,’za—{»ncfa,)“,’ck dtb

n—moo

where for the remainder of the proof we write E for lim 2 Now
o= — 00 Vim0 e con [N

replace z+4b/2a-+ne/a by cku to obfain

SR - Df2ack4-nfak

o0
8 = ¢k 2* b, 6—ni(b.’2+nc)2/ack eniuckuz du.

No=—00 bi2ack.niak

- Put n =gkm-r, —co<m< oo, 0 r<|ajk—1, and  obtain afber
some manipulation '
lalk—1

§ = er_—_m:bﬂfaack 2 b, e—r:icrgfak—-nibrfa,k %
=0
m--sgne--bf2aek -riak

[+0)
* i 2 i 2 .
% Z‘ o miaelm? —mibin griastlt g,

M= — 00 m-tbf2aek+rriak
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Observe that exp( —niackm® ~nibm) = 1. If m is even, this is obvious;
if m is odd, this follows from the fact that aek b is even. Heuce, the
above equation can he simplified to

jall1

o
- vl e ol e . o
(5.2) 8§ == glpp— b aack §| b, e fatke mbw‘aksgn ° j griaces® g,
=) o

\aji—1
= (2o|k/|a]) 1/2 —mbz,%ack Z b, —nwrzjuk-—mbriakf 2my25gn(cw)dy

=0 —00
where we put ¥ = (jae|%/2)*u. The infegral on the right side of (5.2)
may be evaluated by letting k¥ = a, =¢ =1, b =0, and a = 2e where
e == -1, Then (5.2) reduces to

1 o«
1 =2 ﬁw—-m'uﬂ/z f 82,,,,-”2,,‘1?!
=0 — 80
or
o
(5.3) j Gt gy — gV g,
‘ -0

If we substitute (5.3) into (5.2) With & = ggn(ae), we arrive at (3.1) ab
once, and the proof is complete. '

UorOLLARY 5.2 (Reciprocity theorem for genera.hzed Gaugsian Bums)
Let a, b and ¢ be integers such that ac % 0 and ac+b is even. Then

je]ml la|—1
Z" nlan?jepmibnie |G/(.T«i1'lz —mib?/4ao+tmisgn{ac) 2’ e—-nicnzla—nibnfa .
ne=Q =0

Proof. Let & ==a, =1 in Theorem 5.1; then Oorollary 5.2 follows
immediately.
For other 1mpllcat10ns of Theorem 3.1, see Berndt’s paper [10].

6. Periodic Lerch and zeta-funetions
DurmNmion 3. Let ¢ = Re(s) > 1 and let & and & be real. Then
the periodic Lerch function ¢(w, o, 8;.4) is defined by

. .
- Z" arngﬂnmmfk(% )

Nezall

p(w, 4, 8; A)

where the prime ’ indicates that if « i3 & non-positive integer, then the
term corresponding to n = —a iz omitted from the sum. The periodic
Hurwits zeta-fanction £ (s, a; A} and the periodic zeta-funchion £(s;.4)
are defined by

o0

2, dnlnta)”

nel

Lis, a3 4) = p(0, , 55 4) =
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and
m’ (=)
L(s;4) =L(s,0;4) = > a,,,,w,"“ = Mam,
EEd) =1

It A=1 and 0<a<1, then giw a 6;.4) and (s, a3 4) roduce
to the clagsical Lerch function ¢(w, @, 4) and classical FHurwitzs zeta-function
£{s, @), respectively. Also, if 4 =1, {(s;.4) reduces to the Riemann
zeta-function {(s). Furthermore, if A = y = {y(n)}, where x(n) is a
character of niodulus %, then £(s;.4) = L(s, ¢); the clagsical Dirichlet
L-funetion.

Note that on setting % = mk-+r, 0

Sm< oo, 057X b—1, we geb

f—1

(6.1)  g(@,a,s;.4) -—k““’z a, eﬂfwf’cj ™ (- (v + a) [ )

real M=
k=1 }

= e 2 mrezmrm.’!n(p(m, (r+a)/k, 83 I)
r=>0

Before stating and proving the functional equation for p(w, a, g; Ay,
we need to define some sequonces assoclated with 4. Let 411 {an},
where . a, = a,,;; A" —{aﬂ}, where a, = a_,; and AY = {a;}, where
@, = 0_p.;. Thus, 4,, 4% and 4} all have period % when A does.

THEzoREM 6.1, If @ cmd & are real, then the function ¢ (=, a, 8; A) has
an analylic’ continuation into the entire s-plane where p(w, a, 83 A) is holo-
morphic ewpcept, possibly, for a simple pole at s = 1. The pole exists only
if @ is an integer and b_, = 0, and in this case the residue of ¢(a, @, 55 A)
18 b_,. Furthermore, if 0 < a <1 and #< 1, then for all s

p(w, a,_l—S;A) ()27} I'(s){g™P "l ( —a, w, 55 B) -+
+e—-ma/2+2ma(1—x)/kq7(a, 1-—09, 83 BT)}

Proof. In Theorem 3.1 let f(u) = ™™#y~% § =g, ¢ =1, and
7 = 1. Then,

_ : Ca
(62} D af(n+a) = By(4) ) [ Flw) Py (d-a, A)f(d)+
l<ntad ' 1
&

P, AV + [ Py, A)f ()i

) ) . . i

» Now, | N '
©3) . . fay=(
- ' = 2m‘w[fc

2,7“::13]70) ngim"hu“a H.__w-mua:/k “8_1
g(u; m, ) —sg(u; o, s +1),

where we now write g(u; 3, 8) = gty f(u) in order to indicate
the dependence on the parameters @ and s. Define also an entire function
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H(s) by
]
omiazik Z‘ a eﬂmnwﬂc(%+a) , fa<1,
E(S) — . e l—q
. eﬁmam/lcl 2 anGZmnrﬂ'c(n + a)—s’ ifa >1,
: l—g<n<0

and define for o1
Gz, 8) = f g(us e, 8)du
and 1
H{x, s) ::j?Pl(u—a, Ayg{u; @, 8)du.
Recalling that By(4) = by, letting d—oco in (6.2), and employing the-
ahove notation, we find that for c>1
(64) i, 4,85 A) = B(s)+5,F (0, 8)+ Py(1—a, A1)+

+(2nio/k) H (@, ) —sH (o, s +1).
If w =0 and o> 1, then

(6.3) - G0, 5) mf wldn = 1f(s ~1);
this provides the analytic continuation of (0, s into the entire cornplex:
g-plane. If @ 5 0 and %> ¥, then an integration by parts vields for

large positive ¥ and o> 0

z
f glu; @, 8)du = (boj2mim) =" gtrivell |Z
. .

=T
= () (_{r_l..s_l.. 1”‘“’)
. o

z
+8(k/2miz) fu‘“ L giminsi gy,
‘ 4

Hence, G(w, 8) is a holomorphic function of s for o > 0 provided that.
@ % 0. Purthermore, if o £ 0 and 0 < o< 1,

o o

f glu; @, &) dy = f i LRl YR D(1 = 8) (2 || )" ghmiti ez

U

== I'(1 — 8) (2marfe) " g¥i=8),

where the principal value of (2ma/k)*~* is used. (See, for example, Titch--
margh’s book [41], pp. 107-108.) Hence, if # # 0 and 0 < o< 1,

(6.6)  G(w, ) = *fg (w; o, s)dec + (L ~8)( 27rm/k)"“1,3*"i<1—“)

AS the right side of (6.0) is ho]omorphlc for o << 1, we see that (6. 6) provides.
an analytic continuation for-G(»,s) into the half -plane o << 1, and since-
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we have previously observed that ¢ (z, s) is analytic for o > 0, we conclude
that for & = 0, G(x, §) is an entire function. .
The analytie continuations of H(z, s) and H{x, s +41) are a bit more

difficult to establish. As before, we use 3™ as an abbreviation for

N ) fm— 00
m 3 . From (4.3), we have for o> 1

N-roo t=—-N
(6.7)  H(w,8) = — [ glu;u,s) 2* (6 /2mim) b,, g it gy
' "rwo

= Hy(@, 8)-+Hy(w, 8),
where
{6.8) Hy(»,8) = _-f glu; z, 8) (/2 im) bneznin(u—a)/kdu

: ! ‘ 0<nl <]
= Y (Iof2min) by G (n 4@, 5).
0=<jnl=lw]

Since G(n+a,8), 0< in|< [z, has an analytic continuation to the
entire s-plane, it follows that H;(z, s) can be analytically continued to
the entire s-plane. Moreover, from (6.5) and (6.6), H,(w, §) is holomorphie
everywhere with the possible exception of a simple pole at s = 1. There
is a simple pole only if # is a non-zero integer and b_, 5 0 in which case
the residue of H, (2, 8) is (k/2miz)b__ 6>k,

For o > 1, we have :

Hy(w, 8) = — [ D7 (kf2minyb, e g (s m +w, 8)du,

1 |n|>lazl

and we wish to show that we can change the order of summation and
integration. By the remarks following Corollary 4.2, the inversion is
valid over a finite interval. Hence, for ¥ > 1,

T .
(6.9) [ 3% (kf2min)b,e ™oy (u; 0+, 8)du

L ni>iel _ ‘

= " (/2min)b, 6™ MG n + m, 5) —
fr| >l
4 ‘ & )
- 2 (% [27im) b, e~ 2riemik f g(u; n o, 8)du.
|nl [l ¥

We wish to show that the second sum on the right side of (8.9) tends
1o ¢ as ¥ tends to oo, Since |%| > |@|, this iz easily done upon an integration
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by parts. Thus, letting ¥—oo in (8.9), we conclude that for o > 1
(6.10) Hy(z, 8) = — Z* (76/27:?3%)1),‘6—2"""””“@(%+m, 8).

{nl >
(For a more complete discussion of the type of argument eonsidered
above, #ee [8], p. 406, by Berndt or Titchmarsh’s treatise [42], p. 15)
Morcover, by an integration by puarts, we eagily deduce that for | > Iaéi
and o = 0,

Gin-l-a, s = o("_w_ﬂ_____)‘
’ ol — )

Hence, I:lfu:r.' etcll o - 0, the series on the right side of (6.10) converges
uniformly for o= s> 0. Thus, H,y(w, 5) can be analytically continued. to
the half-plane ¢ > 0 and is analytic there. o

Thus, putting (6.8) and (6.10) into (6.7), we find that for o> 0 -

[’ .

Hiw,8) = — 3" (b/2nin)b,e kG n g 5.

e — oy

. n¥0
Moreover, H(#, ¢) i3 holomorphic for ¢ > 0 with the possible eiception
of a simple pole at s == 1; the pole exists only if # is a non-zero integer
and b_, # 0, and in this case H(x, s) hag the residue (k/2miz)b_,e* e,
Referring to (6.4), wo sec that ¢(x, @, #; 4) is holomorphic for ¢ = 0
with the possible exception of a simple pole at s = 1. The pole exists
if @ is an integen and b_, == 0, and the residue is b_,.

Let 0, = 1fw if » is a non-zero integer and let §, = 0 otherwise.
Then wsing (6.5) and (6.6), we find that (6.11) becomes for 0 << o< 1

(6.12)

(6.11)

Hm, 8) = 8,(k/2mi)b_, ™ }(s 1) —
1

w7 (Rj2min) by L [ g L, )i

w0 e 0O 0

il
+ (1 —8) {2m(n 4 2) [y il
0 L
= 3 (L f2mim) by~ [ g(usn -, &) du -
" v
____Iy(.l-_ms){2w/k).q—26-—nu;‘2 2* bﬂc-—ﬂm'anih(n -l—m)“"'"‘/n
Meryiod

1
= = [ Py(u—a, A)g(u; v, 8)du—
0

— P(L=g) @5/R) e 3T b o ),

ot — 00
N0, —3
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by (4.3), where the inversion in order of summation and integration is
justitied by the comments after Corollary 4.2. The far right side of (6.12)
is clearly holomorphie for all o < 1. Hence, H {#, $) has an analytic contin-
uation into the full s-plane where it is holomorphic with the possible
exception of a simple pole at s = 1. By (6.4), the same ig therefore true
of ¢(w, 4, 8; 4). (Observe that in (6.4) a possible pole of H(w, s+1) at
s =0 is canceled by a factor of s.) It remains to prove the funetional
equation of g(z, a, 83 4). :
Now let ¢ < 0. Then .(6.12) shows that

(2miz/l)H (x, 8)—sH(», 8-+1)

. (211:/76)8""11‘(1 _ 3)3"-“?361'2 Z* bng-z-‘nfan/k (n —{—m)a—l{'i:}l} (- m)}/n -

nE=—c0
gl —%

1
' —fPl(u*—a,A){(2m2m/k)g(u;m,s)——sg(u;m,smi-l)}d’fu

H) 7= DO
Ry~

=’.§(27!:/IG)5—'1T(1-—8) —igfs Z b 6--2rciaﬂlk(n_[_m a—1 __fpl,w —ty A)F (1)
by (6.3). On sphttmg the sum above and using (6.4), we get for o< 0
(6.18). €™ Bp(n, a, 55 4)
= B(s)+ P, (1—6, A)f(1)— f Pyt — 6, A)f () du+ by (o, 8) +
Fi(2mjky T T(L—s)e e

{ Z B, emzﬂanfk(%+m 8—1 + 2 b_.¢ amiamik ( m+ )~ }

f=l ==l
g My
If 2< 1, then for m ;éw and m =1 we have ¥ — m< 0. Thus,
(m m)s | |9.'? m|a—- mwie—1) — Bnia (m w)aw

Hence, for << 1 and o< 0, the last sum on the right side of (6.13) i

gt 2 b 2111:am/k (m— @)~ = — grieamiafk v b 2n¢mn[]r(% o e )
M=l o n—u
_ s — grietinialt e (01—, 1 —s3 BY).
So for a1 and o< 0,

{6.14) ™y (z, 0,55 A)

— Q —I—’&(Znﬂc)s 111( —8‘){ —migf2 2 b, G»znian,lk (n I_m)g._
Bl
. . /TI%&'('Z-!-ZTE‘ALLJ‘?G

ple,l—2,1—3 73:)}:
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where, for 0ta <1 and o< 0, (2.7) gives
Q = B(s)+ Py (1—a, A)f(1) f{b w—a) — B, (A)}f () du +

o lhy j Fiuw)du -+ boG (2, 5)
== i (8) +- Py (L~ a, A1) —{bo(1—a) — By (A)Mf(1) +
+ by f Fluydu -+ g {F(1) — f(a)} + b G (w, 8)

= B{8) = a0 (@) + {Py (L —a, 4) = bo(1 — @) + By(4) +ai} (1)
1 .
--|-b0{G‘-(m, 8) 4 fg(u;w, s)du} = bO{G(m, &)+ fg(u;m, s)du},..
& 0
regardless of whether & = 0 or 0 < @ < 1. Furthermore, from (6.5) and
(6.6), we get
p byi (2r (R (L —sye~™"2  if g 0,
It it =0
Thug, regardless of whether # =0 or o 0, we conclude from (6.14) -
that for 0La<<l, o<1, and o< 0
gt (w, a, 8; A) = 2n/k’ 1M1 —s){e ™ p({ —a,x,1—s; B)—
MBIZ.FMM/;C‘P(“’: 1—w,1—s; B;)}

By analytic continuation, the above equation holds for all s if 0L a1
and ;1. On replacing ¢ by 1—s we get the stated result.

JoroLrary 6.2 (Lerch’s functional equation). Let 0<a<<l and
0 < w< 1. Then @la, a, 8} has an analytic continuation into the full complen
s-plane and i8 on entire funchion of s. Furthermore, for oll 8,

Plwy 6y L g) o (2m) =% D(s) {e™ P20 —a, @, 8) - .
N 6—n.1f.9/2.-|-2n'ia(1-w)qg(a, 1—a, 8)}

Proof, Lecallthatif0 < a1 and 4 = I, then gz, &, 8; 4) = plo,a,8),

- Lereh’s function. ’]‘he result now is an immediate consequence of Theorem

6.1,
Corornary 6.3 (Hurwits's fommula If 0<a<l and o> 1, then

F(l—3, ) = 2(2m)"I'(s 8) > cos(ms(2 — 2mna)n

f=1
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Proof. In Theorem 6.1 set o =
it follows easily that

= 0. Then for 0 Lol and o= 1,

(6.18) I(l—s,0;4) =¢(0,0,1—s5;4)
(2] o
= (B/2m)" I'{s) |5t 2 b, ¢ Rk =8 | g misl 2’ b_nﬁzm'an/k,nl—-a} )

m=l Hoe= ]

Jf we now let A =T and % = 1, the result immediately follows.

Note that if we set ¢ == 1 in Corollary 6.3, we obtain the functional
equation of Z(s). ‘

CororLARY 6.4, Let'r = 2 be an integer and 0 = a < L. Then

(6.16) £l —F, 3 A) = (1" Nr —~1INP, (~a, 4)
and .
{6.17) f{l—r; 4) = —»%—B.,,(VA).

Procf, In (6.15) set s =+ and obtain

@(1 —7,a; .A) = i I'(!") Z (k/2rm)’ {bﬂefzmanﬂc R ( ____1)r b*’nﬁznmm‘]ﬂ}
Tl
= (=17 (nP(—a, 4),

by (4.3). This yields (6.16). Setting a == 0 in (6.16) and applying (2.12),
we gat (6.17). ‘
Note that if we let A = I, (6.16) and (6.17) reduce to the familiar
results {(1=-r, @) = —B,(a)/r and {(1—r) = —B,/r.
CororLaRY 6.5. The periodic zela-funciion ((s; 4) has an enalytic
continuation into the eniire s-plane where it is holomorphic with the possible

excepiion of o simple pole at s = 1 where the residue is by = B,(A). Further-
more, S _
E(L—s3 A) = (B[2m)F I'(5) {7 (55 B) + =™ £ (3 BY)}.
Proof. The result follows from (6.15) if we put a = 0.

CoROTLARY 6.6. If x is a primitive characier modulo k> 1 and
k-1 - ’

Gz) = 3 x(jye™,

Fral
then L(s, x) is an entive function, and for all s
L(1—s, ) = (k/2m)" T(s) b~ G {x) {x(—1) ™" + 7™ L(s, 7).
" Proof. Let a, = y(n) and note that

-1 *

1 _— 1
b, =—];2 x(jyetrinilk = S E(=n)E(x),

=1
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where we have employed the factorization theorem for Gaussian sums
agsociated with a primitive character; see Davenport’s book [18], p. 67.
It follows that by =b_, = 7(n)6 (x)/E. The result now follows from.
Corollary 6.5 ‘

We rexmrk. that the above proof of the functional equation for L(s, ¥)
is enfirely now. In [9] Berndt ossentially derived Theorem 6.1 when
n == () and g i primitive, However, in that paper he used the functional
equation of L(s, y) to derive Theorem 3.1 for @, = y(n) and 6 = 0.

The method used above for proving Theorem 6.1 is an extension
of o well-known method for proving the functional equation. of [(s).
(See, Tor oxample, Titchmarrgh’s ook [42], pp. 13-1B6.) The game method
hag been previously nsed by Berndt to obtain Corollary 6.2 {81 and
Jorollary 6.3 [7]. We remark that if 0 <o <1 and 0 < ¢<1, then by
assuming Corollary 6.2 and Covollary 6.3, we may prove a shghtly weaker
version of Theorem 6.1 with the aid of (6.1) and (4.2).

In the next section we shall employ periodic theta funetions to
derive tho functional equation. of another clags of Dirichlet series.

We next show how the periodic Fuler-Maclaurin formula can be
used to evalugte many pericdic zeta-functions at certain positive integral
arguaments. Tet

/T §
)= o

J=0

(6.18)

be the power sum associated with 4. (If r = 0, we shall understand that
My(A) = EBy(A).) In Theorem 3.1, lét ¢ = 0,d =k, & = 0, and f(a) =
We then obtain for r =1

(6.19)  ML(A) -} apk™ = Bo(A) K (r+1)+

r

+

jei

i
Y0, AP B —j 1) (— 17t [ Pole, A)de.
i

This lagt integral in zero by Proposition 2.1.
Fron Theorem 4.1, we have for jz= 2

o

V! (i’r,/Bnm Yot (—1)b_,)

—1)¢ (45 B}

i!

(6.20) 750, 4)

= MEW"' j{t (55 B)+(—
Using (2.8) and (6.20} in (6.19),‘we arrive at
(6.21) M, (A) = By(A) R+ (r +1) + Bo(A) I —

AV Al N ..L:.%TJ.);W-{Q( i B) _|_( 1)
2

T Y £(i; BN}
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if »=1. If r =1, the sum iy understood to be 0, and in this case (6.21)
is just (2.2). From (6.21), we see that we can evaluate [(j; B)--
+(—1Y¢(§; B*) recursively.

We may also note that (2.8), (2.11), and Theorem 4.1 give

(6.22) —By(d)—1ay = P1(0, 4)+ 4oy = }{Py(0—; A)-h-Py(0-}, 4)}

-3

n=1

k
— o e fE L B

with the last equation valid provided that a, = 0.
Suppose now that B is even or odd., If B is odd, then necessarily
A is odd; 8o @y =0, by, = 0, and (6.22) gives
)
(6.23) £(1; B) = %Blm).

For B even or odd, (6.21) may be written as

(6.24) M ,(A) = By(A)E+/(r 1)+ By (4) K —
Dy (—2mi) g
— g'u__b—ﬂ 1 —1Y :

From (6.24}, we see that if (—1)™y = 1, we can evaluate { (m; B) recursively
by taking ¢ = m, m—2, m—4,..

We give a few examples, Let A = I and r = 2; since B, = —1/2,
(6.24) reduces to 0 = 1/3 —1/2 +x~2£(2), or {(2) = =?/6. Let a, == x(n),
where y i3 even and non-principal, and r == 2. Then By(y) = 0, and from
(2.2),

1
By(x) =%2nx(n> =0,

which iz easily seen by replacing n by &k —mn. Since &, = 5( —n)}G(x)/k,
we find that (6.24) yields for even, primitive y modulo % > 1

k2
Ma() = ()L, 7).

Using (8.24), we can evaluate recursively L(2n, ¢}, # = 1, when y ig even
and primitive. If y is odd and primitive, then by (6.23) and (2.2)

L1, %) = —miB; (A)jG(x) = —mi My (x)/kG{x).

Using (6.24), we may then evaluate L{2n +1, ), # > 0, recurrively when y
is odd and primitive. For a slightly fuller discussion of the evaluation
of L-functions by this method, consult theé works of Ayoub [3], Berndt
[6], [9], or Rosser and Schoen,feld [407.

£(1; B,
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- In Corollaxy 6.4 we gave one connection between periodic Bernoulli
pumbery and the values of periodic zeta-functions. Another can be given
as follows. Tf (~1)"y =1 and r>'2, we find that if we combine (2.12)
and (6.20), '

(6.23) ' £y B) = (1) (20i [2)' B (A) [r!.

Lawtly, it iz well known that the ordinary Fuler-Maclanrin, formula
can be used to evaluate certain other infinite series. In the same way,
Theorein 3.1 can be used to evaluate analogous infinite series with periodic
cpefficients. For another method of summing infinite series with periodie
coelficienty, see Berndt’s paper [11]. )

7. Pexiodic theta-functions

Drmnron 4. Let g and & be real and o> 0. Then the periodic
theta-function 0(s, g, h; A) is defined by
0(&, gy b A) 2 a1,y 0~ ek eminblk

e - 00

Weo now derive a transformation formula for 0(s, g, 3 4). In the
case 4 = I, the theorem rednces to & famous result of P. Epstein [22].
TlL’[uORE]VL 7.1. We have

(7.1) 0(s, g, hy A) == (Tfs)® —2”‘9’*”‘9(1/8 k, —g; B),

where the principal bmmh of the square root is chosen.

Proof. In the periodic Poisson summation formula of Theorem 4.4
putb f(w) = exp{un -+ gy2 ks 4—2mmh/7ﬂ}, where s > 0 is real. As before,

we ghall write 3" for lim Z ‘We find. that

"1"“‘—00 . Nooo pm N
’D![f 9 . .
(7.2) 2 a,ﬂg"*ﬂ(ww) Jles - 2rinhik
Towa o I
[+ &0 .
e Z* b { f — f } 6““T'(Wl-ﬂ)2/168-!-21'::’9:(%-;—2»),’]; e
- 11 . -
T~ 00 =00 |ee| 5 .

We next wish to show that
oo* ) . ’
lim b, [ e i1 ganta(ni-B)fke gy = @,
M- o lon (@B

This is accomplished in a familiar fashion by two integrations by parts.
(Qee, e.g., Davenport’s book [181, p. 65.) Hence, letting M tend to oo

4 — Acta Arithmetlea XXVIIT.1
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in (7.2); we find that

o0 o0 .
2"’ bn f e-—n:(a:‘i-H)Zlks-J-znfm[n+h)/la d

R=—00 -0

(7.3)  O{lfs, g, b5 4) =

00 oo
=‘sew2n£yhﬂn Z* 'bﬂ g minglk f G—Wilzsﬂc-]—zniw(ﬂ-I—h)l]c dy,

= —0Q ~— 0

where we have put x-+g = ys. Now,

2] [+
. f e_uﬂyﬂsfk-f-ﬂmiys(ﬂ»l-—h)[kdy — e—ns(uﬁ-h)zﬂﬂ f e-wa(y—-i(w.-ph))ﬂ,')’a ay

—oo —00

[-<]
— 6-na(ﬂ+7a)2/.’c f 6—7:81;2/11: dy,

-

by an application of Cauchy’s theorem to exp(—wsy?(k) integrated over
the rectangle with vertices y = R and y = +R—i(n4k) with R
then tending to oe. Thus, (7.3} becomes

(7.4) 9(1/ g, h _A.) e g 2migh{E Z‘ b, 6-m(n+h)2,’k —aminglfe fewnsy /Iad,y

1=R — 00

=J (ks)m 6—2ﬁﬂ1afk 2 b, e—m(n-;-n)ﬂ,'ia_—zmcm,lfa’
ne=—ga
where

J= [ e dp =n"I(1/2).
. |
By letting k =¢ =1 and ¢ = = 0 in (7.4}, we find that J =1 (and
hence I'(1/2) = %), Theorem 7.1 for s > 0 now follows from (7.4) upon
replacing s by 1/s. By analytic continuation, (7.1) i8 valid for all s with
o> 0.
. For o> 1/2, define

( ,Q',h A Z{ @, eﬂﬂ‘inhﬂﬂlﬂ e gl—ﬁs

FLms v OO

where the prime on the summation sign indicates that if ¢ is an integer,
- then the term corregponding te n = —g is to be omitted. By appealing
to @ genmeral theorem of 3. Bochner [12], p. 338, we may with the help
of (7.1) deduce the functional equation of w(s, g, h; .4) glven below at
onee.
The proof is facilitated by defining
(s, gy by A) = DT a om0 (g g, Ty d) — 8,a_p6 O,

N=m=00
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where d, = 1 if g is an infeger and &, == 0 otherwise. Then (7.1) can be

- expressed as the “modular” relation

(2, g, h; A)

= (Bja)'P e M0, (1w, by —g; B+ Syb_y, (kfw) 2 — 6, 6._, e Pk,

Finally, the Mellin transform for o> 1/2
o

[ o= 0y(w, g, h; A)dar = (hfm) I'(s

0

(s, g, h; 4)

expresses the relationship between 6, and v and, énables Bochner’s Theorem
3 to be uged. Of course, the functional equation can also be proved directly
in o simple way by using the methods of Section 6.

CorOLLARY 7.2. The Dirichlet series y(s, g, h; A) possesses an analytic
contimuation inlo the entire s-plane where it is holomorphic with the possible
exception of @ simple pole ai 8 = 1[2; the pole exists only if h is an integer
and b_j 5 0 in which case the residue is b_,. Puﬂhmfmom, w(s, g, by A)
satisfies the fumational equation :

(e = BT R (G — ) (g —9, by —g; B).

In the case A = I, Corollary 7.2 rednces to another result of Epstein
(23]

We next give another proof, based upon Theorem 7. 1 cf the reci-
procity law, Theorem 5.1.

TueoreM 7.3. Let a and ¢ be inlegers such that ac =0, and let x
and y be real numbers such that ack-+2(x4y) 18 an even integer. Then,

T(8)yp(s, g, h; A)

[ofle—1
(7. 5) 2 o, grialn- m/a)ﬁfck»{-ZT‘:ﬂTWGk

N==(
jelk—1
= ‘Gk/a 1/3 --Emmy,‘aclc—| -imt sgm(ae) 2 b 6-~mc(n+y,‘c)2/ak—2mnm/a1c

[l

Although this result appears to be more general than Theorem 5.1,
it ig not. Tor if we put 2(@-+y) = b, (7.5) is transformed into (5.1).

G Landsberg [30] was evidently the first person to apply the theory
of theta-funetions to Goussian yumns when he derived the reciprocity law
for ordinary Goussian sums. His proof is reproduced in K. Bellman’s
book [47. M. Lerch [82] generalized Tandsberg’s method to obtain the
reciprocity theovem for a wlightly more general class of Gaussian sums
than the ordinary Gaussian sums. JHowever, in fact, Landsbherg [30],
equation (14), p. 242, obtains a version of Theorem 7.3 less explicit than
we do; also Lerch’s result is covered by Landsberg’s as well. A type of
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reciprocity law for some expressions which generalize Gaussian sums
has been proved by Bochner [13] using thefa-relations.
The proof given below does not differ in spirit from those mentjoned
above, and g0 some details will be omitted.

Proof of Theorem 7.3. If s == ks —iaje, &> 0, we have

oo
2 —mea{in )2 rden-g o) lok--amind i
@, 6

(7.6)  0(s, 9, h; A) =
. o — 00
lefe—1 0 b
. Sreirhil Y"' mna(mnk~\ma-+rr)z~|<mrz(ﬁwin~]‘r~|—rr)2,'nic~|~znimah
= 0.6 2 4 )
=0 e = 00

where we have put n = chm +r, —oo < m< 00, 051 lete 1. Let
g = wjo and kb = yfe. Using the iamt that aek-+2{z--v) is even, we find
that- (7.8) hecomes (

lelk~—1

(77) 6(8, 7, h; A 2 (.l. ema(r+mfa]2/cic+2mrw‘ck Z 6-m(mck-| )%
. Pa=l M= 00
felfo—1 '
~(1 /Ielksm ZI a, gl ck+2mﬂh’cfc
= .

a8 &0+, since the inside sum is just

B(e02k?, (r -+ g) ok, 05 I) ~o(lo] et®)~1
by (7.1). :
On the other hand, putbing » = £/(1

8(1/s,h, —g; B)-

+-icek/a), we obtain,

oo ., [><]
- Z’ b e-n(n+n)2n=(ks-'m;c)—zumg/ic _ Z b ea—nvi{n—]«h)zc;'a,km-rv(nq-h)%gnlaz—-zﬁw,’k
- n . - 3 . - :
fNe=—0a  Ms=—oo
laik~1 0o
— Z B g—twirdll _S" o~ T~ mak-+ v 1) 20l —r{—maleLr LYy o+ 2mimag
: r £ ’ 7
=0 : M=o 00

where we put % = —mak -+, —oo<lm<< o, 05 r< |ajk—1. Again,
using the fact that ack +2(z - y) is even, we find that the above simplifics
t0 : :

(7.8) O0(/s, b, —g; B)
|latk—1.
2 b 6—mc(r+m’c)2/m;' —Zretr)ak Z (,-n(ma1r—r—«w!c)2 ainfa®
re=0 Tz — 0
lalk~1
"‘*-'(1“0”08”2 2 b G~n:-50(r [—w]c)z,'ak—ﬂmrw,’afc
- op=0

as g->0 -,

(8.2)

Periodie anatogues of the Euler-Maclourin and Poisson swmmaiion formulas B3

We also have as e¢—0-,
(70/8)1/2 . (B—iﬂ,/(}k)‘-]/ﬂ" NE@/B]G|_1I2 6&71{5@(‘15).
If we now substitute (7.7)7.9) into (7.1), we deduce (7.5) forthwith.

8. The periodic Lipschitz sammation formula. We next derive a
periedie analogne of & classical sammation formula due to Lipgchitz {33].
For a, = x{n), where y(n) is primitive, a proof of the next theorem hag
been given in [9] by Berndt. .

Trmorem 8.1, Let Re(=) > 0 and o be real. If a is not om indeger or

if « 48 an inleger and b_, = 0, assume thot o > 0; otherwise assume thai
o= 1. Then :

(7.9)

(8.1) I'(s) 2 0, (@ +ni) " gl —

Iz 00

(Erfk) D' by (0t a)PTlem ik,

fe-Faz-0

where (2-4nd)™" has its principel value.
Proot. Apply Theorem 4.4 with f(u) = (z+ui) *exp (2niva/k)

where o > 1. Accordingly, we obtain '

00

2 b, f (& ui)"Fe “”(“'“’”"kdu

At e 0O

2.« n (z + ')‘b(i;)'_a azm:-n.rz/k n

where Z‘*

sz e 00

in that proof, and do two integrations by p’u‘ts to justify letting ¢~ — oo
and d—eco. Thus, lefting ¢—+—occ and d-»oo in (8.2), we get for o> 1

is defined as in the proof of Theorem 7.1. We proceed, as

=] 0o
(8.3) D e niyemn g S I(s, n+a),
Flm = 03 A=t—co
whare ' :
- 0, if oe<0,
(8.4) J(s,0) = | (2/k+vi) ™ qv = (2n)* .
? f } ( )__ a}swleaﬂnzalk’ it a>0

ne I'(s)

(The computation of J(s, o) is performed in very clear, ample detail in
EL Rademacher’s book [39], pp. 78-79.) If we use (8.4) in (8.3), we arrive
at (8.1) for ¢ > 1L since the * may be dropped from the sammation sign.

For fixed = with Re(2) > 0, the right side of (8.1) can clearly be
analytically eontinued to an entire function of . To prove our assertions
on the wvalidity of (8.1), we let M, N be positive integers a.nd set %
=mhtr, —ME<mEN~L, 1L<r<k to obtain

- Nk N-—-1

2wma,'k Z a, enmm,'k 2 Fmims

Sﬂf,N ]
: n;—«MIc—H el h=—I
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Now if « is not an integer, we easily deduce that

= kmax|a,| lese(ra)] = O(1)
Ll

ag N—oco, If a is an integer, then by (4.1) we have
(8.5) Ba = kb (M +N).

S0, if ais not an integer, or if @ ix an integer and b_, = 0, then Sy, » = 0(1)
as M, ¥->oco. From the general theory of Dirichlet series the left side of
(8.1) then converges for o > 0 and is analytic for ¢ > 0. Thus, by analytic
continuation, (8.1) is valid for ¢ > 0. {On the other hand, if ¢ is an integer
and b_, # 0, then (8.5) does not permit us to deduce that the left side
of (8.1) eanl be continued to the left of o == 1.} This completes the prook.

A glance at (8.1) shows that there iz an obvious connection with
the periodic Lerch function. Observe that in Definition 3, we could take
a to be complex and @ complex with Im(x) = 0. If Tm(z) > 0, then s

|8yl <

can be arbitrary. Tn the diseugsion below, we ghall assume these modi-

fications in the definition of ¢{a, @, s; 4).
Xf we replace a by @ and #z by e with Im(a) < 0, then (8.1) becomes

H=m— 00

(8.6) GHMSIZP(S) 2 aﬂ(n_i_a)uaﬁzninm/k
' w= (27\7/7& 2 b N |- '9"‘1 wma(n - a:)/]c

n+a;>ﬂ
The sum on the lefs side of (8.6) may be written as

2 &y

M=

—m—l+a)”sa“’2’“'(m"'1)m”‘—[~<p(w, o, 8; A)

= eﬂ't‘g—zmw’k‘?’( —w,l—a,s; AT +olz, a,5;4).
Hence, (8.6) becomes

(8.7)  D(s){gmst—milin( _ g, 1 —a, 85 AY) +6 " p(a, a, ; A))}

= k(2n/k)*
T~z
Ii we let m = n+[z] on the right side of (8.7) and define a sequence
B, by B, = Pni1payty o0 < n< oo, then the right side of (8.7) may
be expressed in terms of a periodie Lerch fanction associated with B,
or B,.,, depending upon whether @ is integral or non-integral.

b ( + w)e‘—l —2reiafmn4 m},’]ﬁ
"

9. Further properties of periodic Bernoulli numbers, functions, and
polynemials. In this section we derive a partial theory of periodic Bernoulli
nwmbers, periodic Bernoulli functions, and periodic Bernoulli polynomials,
which will be defined below. We ghall emphasize the analogics between
our results and the corresponding properties of the ordinary Bernoulli
numbers, functions, and polynomials.

icm
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In the cage in which e, = y(n), a primitive character modulo %,
the associated periodic Bernoulli numbers were originally defined by
Ankeny, Artin and Chowla [2] and Leopoldt [31]. These numbers, which
are called generalized Bernoulll numbers, were, in fact, defined by the
aforementioned authors by equation (9.2) below for a, = y(n). Many
of the arithmetical properties proved below have been proved by Carlitz
[16], Loopoldt [31] and others in the case a, = x(n). Teopoldt [317 has
also proven special cases of (6.17) and (6.25),

With £ defined by (4.11) and g, by (4.12), we recall that Corollary
4.3 gave for all real x and » =1

(o.1) (Ppie, AY) <5 gy

Provogurron 9.1, For |y| < 2wk,

k~1
9 2 ()Lﬂﬁ"y

(=5
O B(A4) B
= == o B)
 — _j> Pyt = o

. where the last expression uses the wmbral convention according to which after

the formal copansion into power series, the ewpression {B(A
by By(A).

Troof. In Corollary 3.4 put M =0, N =1, and f(@) = exp(zy),
where 0 << |y} < 2n/k. Accordingly, we obtain

)Y is to be roplaced

Jomt r '
e NE) yis 1) 4500, 4,
=0 J'*l 7
where, by (9.1),
I :
|B,(0, ) < g, [ ly"e™|do< o lyI™ (e —
0

For 0« |y| << 2n/k, the definition (4.12) shows that E,.(0, 4} tends to 0
a8 ¢ tends to oo, Letting » tend to coin (9.3), we arrive at (9.2) after a little
TeALraL e et Umng the delinition. of BD(A), we lastly note that (9.2)
i3 valid for ¥ - 0 ay woll.

When A = I, (9.2) gives the well-kmown generating function for

" the ordingy Bernon]li numbers ag given in Fort’s book [24], p. 5_7,

= It
For A == I, the next result reduces to the familiar result ([24], p. 31,
or [28], p. 188)

(B+1p—B" =0, 22,

" where we again use the umbral convention.
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Prorosrrron 9.2, Hor n = 1,
(9.4) (B(A) LR —B(AY* =aM,. (4),

where M, (A) iz defined by (6.18).
Proof. Rewrite (9.2) as

w1 -

o S = SEDy SIS ) miare

Je0 Jus0 =]

If we expand ¢ in a power series and then equate coefficients of like
powers of ¥ on each side, we obtain for » = l

JrT n—
1 N pn 1 3 -
(fifb—l)!24a'jjl ET_J'(j)Bj(A)TG ’
i=0 [

i=
which, is plainly equivalent to {9.4).

DerinttroN 5. The w-th periodic Bernowlli polynomial B, (x, 4). is
defined for 0 L2 <1 by B,(m 4) = nlP,(x, 4). By the remarks after
(2.6), or immediately below, B, (%, 4) ig, indeed, a polynomial, and the
degree is at most n. For values of  outiside of [0, 1), B,(», 4) is defined
by analytic continuation, i.e., by the polynomial itgelf. '

Bince for 0 << 1, »!P,(x) = B,{x), the nth ovdinary Bemoulli
polynomial, by Corollary 4.2 for n =1

f

t—1

. " L Jedm
(9.5) By, A) =k 1Za_mBn( - )

'
me=0

- By analytic continuation, (9.5) is valid for all 2; (9.5) also holds for n = 0.

Since B, () hag degree n, B, (s, A) is a polynomial with degree at most #.
: By (2.12) we have B;(0, A) = (—1)/B;(4) if j 5= 1; and from (2.8),
B0, 4) = —B,(A4)—a,. Furthermore, by (2.6) we have for 0 < <1
cand 0<isn

1 1 )
"?;!"B(T{)(m-s 4) = PP(w, A) = P (@) A) = "(TE::“T)“E"BqL—j(m) A).
Congequently, the above holds for all #, so that for 2ll # and 0 = 3\ 7
. 1
9.6) . —B‘”) Bt s
( ) . . n! n (a" —'1) (n ) ——J(m -A-)

‘The next proposition generalizes a well-known formula ([24], p. 28,
or [28], p. 525) to which it redunces When A = I. (In the formula in Fort’s
text {24], read B,_,(z} for B,.,.) ‘

icm
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Proposmion 9.3. Hor nz0 and all  and v,
R

(9.7} By(@+y, 4) = 2(?)Bj(y,f1)w“—f = {# -+ B(y, A"

=)

Proof. By Taylor’s theorem and (9.6),
n
NALB, (g, 4) 5

5 By, 4)
Bulwty 4) = NS Y e,

d==0 ) F=0
which is just (9.7). " _
On faking ¥ = 0 in (9.7) and wsing the values of B (0, 4) obtained
below Definition &, we see that if o> 1

(9.8) B0, 4) = 33} (—17B,(4)0" — oz
7=1
= {@—B{A)}* —na,a" . .
The next proposition reduces to the well-known generating func_tion'
for the Bernouili polynomials B, (®) when 4 = I ([24], p: BT).
Provogreron 9.4. For |y < 2n/k,

ol

(R-a)y
() ®..n ad
Yot B e
¢ —1 Ld it
= e

" Proof. Multiplying both sides of (9.2) by exp( —oy) and subsequently
using (9.8), we get for |y| << 2=k,

forl
Y (T2 0
iR JPS o YIS
[T - t
6’:‘” 1 = () Jepmmn ‘7 e
(o) (5) (— 1B,y
,% ,,%

o
Z B,, A —agye~,

o )

=2

on

N (n—a)y
?Jk_%ljim = %.___B “(m’_ﬂ(_ ).

T !
e —1 e n!
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icm

Replacing —y by y and then # by k—n in the above, we find that

k& k-1
—(r—ay b

o —Y @y, & u @_
2 Bj {@, 'A}Mi _ n§1 " _ )

3 : —Tc
41 ! ek __q v -1 ’

M-yt
m 8(

i=0

and we are done.
The next result shows that a periodic Bernonlli number can be written
a3 a linear combination of ordinary Bernoulli numbers.

Prorog1nIon 9.5, For n == 0 and »n 2 2,

B,(4) = (_1)"2_(?) By LM, (A*) = S — 1) {RE -+ M (A")",

J=b

Proof. The result iz trivial for n = 0. For n = 2, we find that from
{9.5) and (9.7)

b
|
—

Bn(O’A-) =k @ :r‘Bn(j/k)

o ,Z( | B, = Z( )BT

= res0 rou
and the result follows from. (2.12) and Definition 5.

The next proposition is analogous to the well-known fact [24], p. 26,
that for 22> 0 ' .

EM

R‘

— k'n—l

[

(9.9) B, (®+1) — By (#) = na""
ProrogirioNn 9.6. For n= 0, |
_ =1
By(w-+h, A)—By(@, 4) =n > ay@-+j
j=0

Proof. For n =0, the result is trwml For "=z
{9.5) and (9.9},

> 1, we have from

fowl

=10 S ) (<)

J=0

B,(w+k, 4)

-1

e AL
=k”"12a_m(m7|c‘,) ;

j=0

and the proposition follows.
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Recall the multiplication theorem for the ordinary Bernoulli poly— ‘
nomials 247, p. 35,

1:3“—1-1
D Balor+j

=i

(9.10) fm) = m'~" B, (ma),

where 2= L and g 3 0. We now show that we can replace B, (2) by P,(z)

in (9.10). Let
mﬁ-l
i) == ),; Lol bjjm)  and  hiz) = m""P,(ma).
Fanll
Tt is eanily seen thut g{@) and h(z) both have period 1/m. If 0 < z < 1/m,
we have from (9.10),
o
g(@) w3 By -+jjm) = m""B,(m) = mi~"P,(me)
Faadd

By periodicity, we then have for all z,

-1

P AT

Jei)

(9.11) J/m ) = mr P, (ma).
‘Wonow prove s multiplieation theorem for periodic Bernoulh [unctmns
]’Jammm'rmm 9.7. For m, nz1,

i

D) Pylw-jfm, A) = bBy(4)m* " P, (ma).

Jwnd

Proof. From Corollary 4.2 and (9.11),

i1 k~1  mk--1
p) Py(w-+jim, 4) = 1t N a4, D) Py (wfk4-j/mk—r{k)
[T T fed
CE—d
gyt 2 a, P, (m@ —~ mr)
P )

and the proposition follows immediately. ‘

The remaining msu] i permm to the gpecial cases when A iy even
or odd. Recall that ¢ == 1 if A is even, 'nd that y = —1 if 4 is odd.
The next two 1)1.'01){mi:tio:rm genoralize the facts, obvious from (4.3), that

(9.42)  Py(L-—w) = (~L)"P, (@) and B,(l-—a)=(-1)"B,(»),

where n == 0 or # = 2.

Prorosrrion 9.8, If Qy =
Py (k—u, )

Yb_gy Uhen for m 2z 2
= (— 1)y, (@, A).
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If, in oddition, 0= a< 1, then

Sl
{(l—-mnya; A} = ”"“%'?’Bn(ma 4).

Proof. From Corollm'y 4.2 and (9.12), for n ;‘32,
lo—

e 1 - WY 1 @
( =&, A) _‘th va’—m n( Tk"l m‘) """ ]ﬂ'— ‘> Uy .'n u (] "‘”‘]1‘“‘?"")

(.'r

,

m::o , i 1
I3 © [—‘7
= (—1)9"7611_1 ;“:S'a"‘ “qu (T) = (— 1)L (2, A).

The second conclusion follows from Corollary 6.4 and Definition 5.
In o similar fashion, one can use (%.5), {9.12) and (9.9) to prove
Prorosrrion 9.9, If ¢ = ya_j, then for w 2= 2,

B (—&, A) = (=1)"yB, (2, 4) -+~

= (—1)"y [Bu( QS

. ‘ Jeul

The second conclusion follows from the Lirgt ox wsing Proposition. 4.6
and the fact that (y—1)a, = 0 in both cases.

Hence, if @, = 0 and ( —1)*y =1, then B,(#, A) s even; if gy == 0
and (—1)*y = —1, then B, (v, 4) is odd.

The following resulL is a generalization of a formula known in the
case A = J in which case £(s; 4) = £(s). (See the handbook of Abra-
mowitz and Stegun [1], p. 807.) The result also complements (6.25).

ProPoSITION 9.10. If =2 and {—1)"y = —1, then

)“ ayna~
and

" B, (k—x,4) (@ — J)nml}

I
(9.13) £(n; B) = %(2@/?&;)” j P, (&, A)cot (me/k)de
"Proof. On integrating the second formula of Corollary 4.5 ter mwme,
we find that

(9.14) j P, (z, A)cot(xa/k)dn

= —2i > (h/2mij)"b; [ sin(2njm /) cot (mw/k) di.
F el 0 .
Now for j =1
¥ ‘
2' cos (2mra /).
. p=efll
If we integrate both sides of (9.15) over [0, k], we obtain the value k.
SBubgtituting this valne in (9.14), we arrive at (9.13) forthwith. '

(9.1B) . sin(?mjw/]a).cot (k) =

icm

© (9.16)
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Our last result gives an integral representation of the periodic Ber-
noulli pumbers when 4 is even or odd.

ProPOSITION 9.11. For m, n =1,
( . 1)‘JL+]

1 .
f-PmUG{X;‘, ‘A-)l:)n( )dqf' T ;J
&

i oyt B (4)-

Proof. We shail give the proof when (—1)"y = —1 and =.is odd.
The proofs in the three remaining cases are analogous exeept thai when

(=)™ e =1 we use Corollary 4.6 as well.

From Corollary 4.5 and an jnversion in order of summation and
integration,

1 .

[ P, (w, A)P,(2)dn

0
Do
>1 -~
=PI

=1 weal

f sin (2mpr)sin (2mvn) de

45" 3‘31 s 1
= (27.;,& v b.u f 51112(2-:-:#'0)@1
fax=l 0
s);le ) ( _1)m+n
.m o Llm--m; B) = Wom L)l min {4}y

by (6.25). This is plainly equivalent to (9.16) gince (—1)™ = —u.

10¢. Applications to irigonometric fanctioms. Some of the results
obtained here bear a strong resemblance to Proposition 9.1 and could,
ihdeed, be obtained from it Uy suitable speeialization and manipulation.
Nevertheless, we proceed directly. : ‘

Provosmrron 101, Let y and 2 be complex navinbers with ¥} < 2w/k.
Then

Tr 1
(10.1) ¥ a,,,,cos(ng/ 1| &)
B (A
= {8in(ky --2) - Zj ) R
Fumald
O (1 By () o
- {eos (ky +2) —coaz}z 1)

= {sin (ky - #) méinz} €08 {B(4)y} 4 {cos(ky +z) —eosatsin{B{4)y}.
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In particular, if A is even,

It.
y > a,c08(ny +2)

W)
(10.2) cos{B{4)y} = sin (kY - 2) —sing
k
y né’u 1, COB (m; +2) y Ty
.. . — @y cot —=
sin (ky + #) —sin 22
B
cos(ny +2
=yﬂé‘lan (yk)_%alj—cotﬂ
sin(ky - &) —sine "2 2"’

whé%e the prime ' on the summation sign indicates that the 'f'irst and last
terms of the sum are to be holved. And, if 4 is odd,

Fpel
y 3 a,cos(ny +e)

. _ nn_:ﬂ‘ .
sin{B(d)y} = cos (ky +2) —cosz

(10.3)

Proof. In Corollary 3.4, put M =0, ¥ =1, and f(#) = cos{wy +2),
where ¥ and # are real. As in the proof of Proposition 9.1, H,(0, 4) tends
to 0 as r tends to oo, provided that |y| < 2r/k. Since

@) = (—1Y¥yYcos(ay +2) and  FU (@) = (—1Yy¥sin(ay + 2),

(10.1) follows very easily from (3.10) for y and 2 real with |y| < 2n/k.
By analytic continuation, (10.1) holds for complex. y and 2 with |y << 2x=/F.
The special case (10.3) follows from (10.1) and Corollary 4.6. For even 4,
the first equation in (10.2) is also obtained by using Corollary 4.6. The
remaining equations are obtained after observing that the terms correspond-
ing to » =0 and.to » =k in the second expression of (10.2) contribute
to this a total of :

y cof (ky +2) +cosz Y 2e08(4ky +2)cos Sy
"2 sin(ky +e)—sine 2 2cos(kky--2)8in thy

= ao—'g- cotid .

* Tt is obvious that (10.1), (10.2) and (10.3) can be written in a variety
~of forms by. changing z For example, if 2 is replaced by 2 —n/2, then
every term of the kind qos(ny +-2) Is replaced by sin(sy --2), and every
term of the kind sin(ky +#) is replaced by — cos (ky +2). All of the equations
asswme & particularly simple form wheh & = 0. :

It is remarkable that all of the expressions in (10.2) and (10.3) ave
independent of =. As a.consequence of this, and the remarks in the preceding

icm
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paragraph, we obtain for even 4

i : -
MZ;” @, C08(nY -21) 3" 6,008 (ny --2,)
(10.4) T = M0

sin(ky --21) —siney  sin(ky -2,) —sine,

7 k
! . .
Zo ", sin(ng +2,) 2" &, sin ny -+ 2,)
o= Frm

conzy—cos(ky +2) | 008z, Gos (ky +2,)

where the " on the summation signs means that the range of summation
is either [0, ] with the first and last terms halved, or is [0, k] or [1, B —1T '
without this restriction; however, the identical interpretation is to be
used in all four sumg. The result (10.4) is valid for arbitrary complex
21y %2y & and 2, a9 well as for arbitrary y, since the range of y can be
extended by analytic continuation. Similarly, for all complex B1y %py 2g, B,
and y, wo get for odd A ' :

Jown 1 B—1
Y @, 008 (Ry +2) 3 a,co8{ny +2,)
( - ) 1=l - Ryses{)
COS (hy -+2y) —coBRy  coS (kY +2,) —cose,
k-1 k-1
. 2 Gy Sin(ny 4-24) a,8in(ny +2,)
Re=i} e

= sin (ky - 2y) -~ Binz, - sin(ky +2,) —sing,

Furthermore, we may replace y by iy and 2 by 4 in (10.1) to obtain
the following result for hyperbolic functions:

Teme X
{10.6) w Z ay,cosh {ny --2)

Hheo)

[
Byy(A
= {sinh (Ty - 2) — ink 2} 2 mfzf%% y ot

Fox aae

' B (A
oot -onne 32
=0 it

= {ginh (ky f+ &) ginh 2} eosh {B{A)y} + {cosh (ky +z)—coshe}sinh {B (4)y},

provided that |y| < 2n/k. Of course, (10.8) can also be proved directly
from. Corollary 3.4. The same snbstitutions convert (10.2) into the following
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result for even A:

(10.7) . cosh{B(4A)y}
13 )]
N sh{ny 2 O, COSTL (M - 2
=yné,n @, 008 (my - )mymz; (ny )_ Yo W
ginh(ky +2)—sinhz  sinh(ky+2) ~ginhe 2 2
k-1 '
1 .
yné'l a1y, 6051 (mgy +- 2) y TMJ
I g — COTIL —=~
 sinh{ky +2) —sinhz 2, g’

. which iz wvalid if |y| < 2=/E. For the same %, (10.3) yields for odd A

k=1 _ _
¥ ¥ a,cosh (ny --2)
Y 2 Oy

sinh{B(4)y} = -2

(10.8) “cosh (ky +2) —coshz

El

We can gpecialize {10.2) by setting 4 =1 and therebv obtain 1:11@
well-known expansion {[28], p. 204)

(=] .
¥y oy T (=1)'By; :
g coty = > "72'3-‘)7*21?"” = 08 (By),
. mo "

provided that |y| < 2w Similarly, (10.7) vields for |y] < 2=

=Z )]

The formulas (10.4), (10.5) and their analogues for the hyperbolie
functions can all be proved by elementary methods. We illugtrate this
by proving the following consequence of (10.4) for even A4,

m|<s:2
w|<ﬁ

% = cosh.(By).

¥ I
: > 6,008 (ny) D) a,8in ()
(10 9) n={ et n:zu
’ sin (%y) 1 — cos {Ty)

To prove this, we note that since 4 is even

k.
D 6,008 (ny) Zameos k—m)y
Reml) T )
. .
= Z ty, {008 (B} 008 (my) + sin (ky) sin (my)} .
M=}

A glight rearrangement of the above yields {10.9).

icm
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11. Formulas for mumerical integration. Tt is well known that the
trapezoidal rule can be derived from the ordinary Euler-Maclaurin fotmula,
See, for example, Munro’s paper [36]. In this section, we indicate how
the Newton-COotes guadrature formulas and various other quadrature
formulay can be derived from special cases of our periodic Buler-Maclaurin
formula, though we ghall work out the detaily in only a few cages.

Trmorey 111 (Simpson’s pavabolic rule).

ORK Let f< G0, 2], where
v d oand N is o positive integer. Then,

LN

(11.1) ff(m)dw = o () 1A ()4 20(2) 4 4(8) +.. + 2 (2 —2) +
J

AN 1)+ FE)} +

_1___2 T 4y J {f(:—-l) (2N) — fU=D(0 (0O +

2) ~ 2P ({20} fO (@) do.

r
The result also holds for v =1, 2, 3 provided that the sum 3 is imter-
preted to bo 0, ‘ It

Proof. Let a, = 2 if n is even and let a,, = 4 if 15 0dd. Thus, k = 2,
y =1, By(4) == 8, By (4) = —1. Applying Oorollary 3.4, we find that

(11.2) 3ff

= 2f(0) - 47 (1) -+ 2f{2) -+ 4f(3) +--.- +2f(2N —2)+ 47 (2N —1)+

e f{0)} o 2 _____ .[f(j B¢ 2N)

- fem®
Now from Oorollary 4.2 and (9.11), for n 3= 1,

(L1.3) By (e, A) = 222D, (0/2) + 4P, ({51} [2)) = 4P, ()
It followy from (L1.3) and (2.12) that for 2 >3,

By (4)
n!

4- {f(2N) — FUR0)) — B, (0, 4).

~20P, (/2).

B
= (1) (4= 2P (0) = (—1)" (4 —2") —

Hence, if n = 2 or it n > 3 ig odd, then B,(4) = 0. (The latter fact algo-
follows from Corolary 4.6.) 1f we use (11.3) and (11.4) in (11.2), we arrive
b (11.1).

5 — Acta Arfthmellca XXVIIL1
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. TomoreM 11.2 (Simpson’s or Newton’s composite three-sighths
rule).’ Let feCU[0, 8N, where » > 4 and N is a posilive integer. Then,

+2f(3N —8) -+ 3f (3N —2) +

3N
[ Fo)do = §{7(0)+37(1)+3f(2) +2f(8) +...
’ +BFBN —1)+F(BN)} -

=8 @) T 0

! 'f 3N
T f (8P, (@) — 3", {/31}10(«) do

The resulf olso’ holds for r = 1,2, 3 with the understanding thot the

sum 2 8 zero.
i=4 ,
Proof. Let ¢, =3 it # =1, 2 (mod 3} and o, = 2 if n = 0 (mod 3).
Thus, k = 3, y = 1, By(4) = 8/3, and B,(4) = —~1. From Corollary 4.2
and (9.11), for n =1,
Po(w, A) = 3712, (2/3) + 3P, ({n + 1}/3) + 3P, ({v-+2}/3)}
= 3P, (2) — 3" 1P, (%/3).
Hence, using (2.12), we have for n > 2,

B,(A)
n!

Thus, if » = 2 or if # >3 is odd, B,(4) = 0. The result now follows as
before by using Corollary 3.4.

TrmorEM 11.3 (Weddle’s composite rule).
=6 and N iz a positive mtege?. Then,

B,
= (~1)"(8=8"")P,{0) = (~1)*(3 3" PYR

Let f<C")[0, 657, wkm‘e

6N
[ #@)dn = == (0 1570072+ 67(8) +04)-+55) +
FOF(B) .+ F(BN —2) 4 Bf (BN — 1) | F(6N)) —
_-ﬁﬁ\; (371 9+ 15 f.!i..{f(f"“l)(ﬁN) —FU=R(0)} -

Y= 2P, (2/2) - 3’“119 (@/3)}f7 () d.

3 (1) P
+ BT uf {82, (2

The result also holds Jor L<r < B on sciling the sum 4\: equal to 0.

1<%

icm
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Proof, Let a, =2 if n =0 (mod6), a, =5 if n = +1 (mod 6),
p=11f # = +£2 (mod 6), and a, =6 if #» =3 (mod 6). Fow % = 6,
and B;{4) = —1. On using Corollary 4.2 and
applying (9.11) several times, we get for w3z 1

Pn(m: A) = 5Pn( )"“2%{ an( /“) "l'Bn—l-P.fn(ﬂ;/g)
and ‘
B, (4)

—— == {

n!

We note that By(4) = By(4) = 0 and B,(4) = 0 if » is odd. Proceeding
as before, we reach lthe degived resnlt. C

Of cowrse, many other formulas for numerical integration, besides

the Newton-Cotes forinulag, can he developed from the periodic Fuler—

Maclaurin formuala. For example, if we know that the main contribution

to an integral avises from a cerfain subinterval of integration, then we

_27b+1 . 391—-1} Eji'
o n!

~can chooge the sequence 4 to veflect this.

Added iu proof. Tov applications to quadratic residues and Bessel funetions,
gee Brueo C. Beyndt, Perdodic Bernowlli numbers, summation formules and applications,
Advanced Seminar on Special Funetions (to appear).
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An asymptotic inequality concerning primes in confours
for the case of quadratic number fields

by
DoverAs Henstmy (Minneapolis, Minn.)

Introduction. Our main result is an extension to quadratic number
fields of the result that, assuming Schinzel’s Hypothesis H, w(z-+y)
sometimes exceeds () m(y) (ef. [6], [157.

To be concrete and definite, we will at first concentrate on the
Gaussian integers, Later we show what modifications are needed to ealry
over to other quadratic number fields.

For any “reasonable” bounded region § in the complex plane we
ask whether, ag S expands homothetmally, there must appear Gaussian
integers y Lor which the translate by ¥ of our region containg more prime
Gaussian integers than the region itself.

Let us temporarily assume Hypothesis F. We may then state our
prineiple result in- the following form:

THrOREM 1. If § is not “logarithmically conter ed on Fero” (defm1t1011
to follow), then

(1)  For ol sufficiently lm’go @ there exist arbitrarily large Gaussian
integers y for which the translate 8 -y contains more prime Gaussion
integers than 8.

Remark. Since on the average there will be fewer primes in o8-~
a8 |y| incroases, (1) states that there are exceptions to this average behavior,
and that thick clusters of primes will occur umhltrmrlly far from thc or:gm.
Of course, these clusters may be few and far between.

DuyewNirron. A logarithmio eenter of » region & is a complex number «
which minimizes f(a) == f log |2 ~aldaren; & iy logarithmically centered

i zero ig n logarithmic center of 8.

Remark. Tt is eagy to show that mllllmlmng fla)

maximizes (as
@00}, '

' 2 darea
(2) ) Lifw(S —a)] = — =
' P ) I



