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XXVIIL (1975)

An asymptotic inequality concerning primes in confours
for the case of quadratic number fields

by
DoverAs Henstmy (Minneapolis, Minn.)

Introduction. Our main result is an extension to quadratic number
fields of the result that, assuming Schinzel’s Hypothesis H, w(z-+y)
sometimes exceeds () m(y) (ef. [6], [157.

To be concrete and definite, we will at first concentrate on the
Gaussian integers, Later we show what modifications are needed to ealry
over to other quadratic number fields.

For any “reasonable” bounded region § in the complex plane we
ask whether, ag S expands homothetmally, there must appear Gaussian
integers y Lor which the translate by ¥ of our region containg more prime
Gaussian integers than the region itself.

Let us temporarily assume Hypothesis F. We may then state our
prineiple result in- the following form:

THrOREM 1. If § is not “logarithmically conter ed on Fero” (defm1t1011
to follow), then

(1)  For ol sufficiently lm’go @ there exist arbitrarily large Gaussian
integers y for which the translate 8 -y contains more prime Gaussion
integers than 8.

Remark. Since on the average there will be fewer primes in o8-~
a8 |y| incroases, (1) states that there are exceptions to this average behavior,
and that thick clusters of primes will occur umhltrmrlly far from thc or:gm.
Of course, these clusters may be few and far between.

DuyewNirron. A logarithmio eenter of » region & is a complex number «
which minimizes f(a) == f log |2 ~aldaren; & iy logarithmically centered

i zero ig n logarithmic center of 8.

Remark. Tt is eagy to show that mllllmlmng fla)

maximizes (as
@00}, '

' 2 darea
(2) ) Lifw(S —a)] = — =
' P ) I
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" Now the “prime number theorem for Gaussian integers in contours” gives
the integral Li[xz{8 —a)] a8 a sharp estimate for #[x (8 —«)], the nwaber
of Gaussian primes in #(S —a). The form we use, which we shall eall (7),
is gtated in §3. Results of this type were known to Heeke {4], and Rade-
macher [12] and others have improved the error term.

Notation. We list here the symbols and terms we will be using. -

8 denotes the interior and boundary of a eontour which is piccowise €,
28 = {mz: 2« 8},
n{wq) is the number of prime Gausgian integers in @8, where the
associates p, —p, ip, —ip are counted as distinet.
) 2 daren
Li{@8) = — Toge

™

w8 nla|>2}
N(z) = #2: Note that if & iy a Gaussian integer,
number of distinct congruence clagses mod a.
An admigsible set B of Gaussian integers b;, 1 <4 <
satisfies the following condition:

N(a) equaly the

k, is a set which

(3) Tor every Gaussian prime p there existy some congruence cla,sé &
mod p such that b & amod p for any a,, 1<igh.

Remark. On the basis of Hypothesis H, if B is admissible then
there are infinitely many Gaussian y for which ¥4-b;, 1 {i <<k, are all
" Gaugsian primes. The reason is that from B we may construet rational
integer polynomials which satisfy the conditions of Hypothesis FL. Without
loss of generality we may assume that mo b; is real. The polynomials
(n-+b;)(n +b;) over the rational integers then satisfy the conditions of H.
Thus, there exist infinitely many » for which (n-+b)(n+8), 1< i<k
are all rational primes. For these =, for 1 <i <k, n-b; iy & Gaussian
prime.
Denote by ¢*(8) the largest N for which there exists an admissible
subset of § with I elements. . L
Remark, In our notation, (1) now read.a:l liim 7 (w8 - 9)
¥|—+0o

all sufficiently large z. On Iypothesis H, ¢*(#8) = hm (08 1-1). Aceor-
l47]~0a

dingly, we drop the Hypothesis, and restate (1) in a form which depends
on no conjecture. If 8§ is not logarithmically centared then:

= (w8 for

{1 For all Suiflelently large @, o"(x8) > :n:(mS)

1, The Gaussian mtegers Our goal is

TemoreM 1. If § i8 a finite, S@mply connected region in the admplem
plane with piecewise O boundary, and if 8 is not logarithmicolly ceniered,
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then there exists o> 0 for which as @ oo,

ca?

e (@8)—m{x8) > Toga)t

Proof. Seyveral ingredients go into the proof; they are laid out here
for the reader to inspect.

(4) I « iy a logarithmic center for § and g is not, then as #-> o,
e
{logm)®

¢ depends on e, #, and 8, but not # (cf. (2) above and §3 below).

Li ((8 ~ )} —~ Li(o (8 — §)) ~ for some ¢ > 0;

(5) A Chinese Remainder Theorem. holds for guadratic number fields.
%

Py, Py, ..., Ppare distinet prime ideals, @ == [] P,, and a, mod P;,
i

1 < i << k are congruence clagses, then there exists a unique a mod @
guch Lhat b= amon if and only l.f b =aq modP for all 4,
1€i<k

{6) A Merters’ Theorem holds:

1 v
wimy) = onn 0

where &4 > 0 iz the regidue of the field’s Dedekind zeta function at 1.

NP)<w (

(The proof ig similar to the classieal one involving the Riemann
zeta funection {ef. [3]), and the medifications needed for the Dedekind
zeta function ean be found in [9].)

2. The logarithmic centell'.- We have defined a logarithmic center
of 8 as an o which minimizes f(5) = Sf logtz — B daren. Since the question

of existence and unigueness of logarithmic centers belongs more to potential
theory than to number theory, we shall not give an exhaustive treatment.
Rather we give examples. which illustrate the main possibilities, and '
establish o few bagie facts about f(5). The most important of these is
that there exists at least ome logarvithmic center.

Bxavrir 1. Let § be a dumbell-shaped region. Then there are two
logarithmic centers, one in each “weight”. '

o= @
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Examprm 2. Let 8 be the annulus {z: 1 < [2| < 2). Then any « such
that |a| < 1 ig a logarithmic center for 8.
ExampLe 3. Let § be a disk. Then S has a unigue logarithmic center
a; a is also the geometric center of §. The same applies to an ellipse, &
rectangle, or a regular polygon (cf. Propoesition 3).
Provosieion 1. Af least one logarithmic cenler ewists.
Proel, fis continuous and ag |f|-oce, J(f)—pcc.
PROPOSITION 2. f(f) is harmonic in &, and for fe S,
o2 de
27 gy ﬁ-%f;(ﬁ) = 2.

dgr

Proof (8ketch). Let 88 be the oriented boundary of 8. Then

af N
o P Higy () =i [logia—plde.
Call this integral g(p). Then '
dg A O e .
g B i () = szzmﬂ = —i [0 i §¢8,%m if Bes],

which proves the proposition.

PROPORITION 3. If 8 is convew and has an awis T of mirror symanelry,
8 has a unique logarithmic center a, and a s on L.

The proof will be published elsewhere (ef. [57]). Here we note the
easy results: Under the assumptions of Proposition 3, all logarithmic
centers lie on L. Hence, if there are two lines of mirror symmetry, then
their intersection forms the only possible logarithmic center. This applies
e.g. to the cases in Example 3 above. .

Propo8ITION 4. If theve arve two concentric disks 8, and S, such that
8, = 8 8,, and the radius of S, is 11/10 that of 8,, then 8 has o unique
logarithmic cenier. ‘ ‘

The proof, which is similar to that of Propogition 3, will appear in [B].

Cowigcrure. If § is convex then S has a uwique logarithmio eonter.

Remark. The author does not know whether the conjeeture holds
even for convex regions with central symmetry.

3. The prime number theorem. The following result is implieit in
the work of Hecke [4] and Rademacher [127; it has been adapted to it
our needs.

(7Y TreorEM. Let 8 be a region with piecewise (1 boundary. Then

7 (@8) = Li (28) + 0 (22~ V5% for some ¢ 0.
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Remark. Hecke [4] obtained 7 (28) ~ Area(z8)/logw. For circular
sectors K in ima,gina,_llr_ quadratic number fields, Kubilius [8] gives m(xK)
= Li (&) - O(w%‘“‘fl"gm), and for hyperbolic sectors K in real quadratic
number fields, Rademacher [12] gives the same type of estimate.

By partitioning =8 into several thin ‘wedges and balancing various
error terms, tho resnlt follows for a general region 8. The error term ig

0

larger; where for the ecivcular sectors e~oViose held, in our cage ¢ 2+°
i obtained. ‘

An immediate consequence of the prirae number theorem above ig the

L 1. If o is a logarithmic center of 8 and zero is not, them theve
ewists ¢ > 0 such that (w(8 —a)) —n(28) > w?/(logw)® Jor all sufficiently
large a. ‘

Proof. We consider aa:(m(ﬂ’ — ﬁ)) ay &' function of § and » (where
#-+ce and f varies over a bounded region containing & and zero). From (7)

Viogs

y 2 ) darea(z 5
i 1o o +o(1 ; z)
. a8 (te =2} & |z — fu| (logz)
g ldarea(z? o( o 2).
srtiio2jay 108 192 — B (log )
Bxpanding
1 1 logiz— |

log &2 — 8] = loge +o((loga)™) -

(loga)?
and integrating, we have

n(m(SHﬁ)‘)

2 % 2
= — Area () HE;__... _...._2..Wm_a}____
w logz = (logw)®

log |z — 8] da,reg (#) 4o ( (Iégm)“)’

Sev{[z]>2/z}
and the lemma iy proved.

4. Proof of the wain result., The proof procedes via a lemma to
roughly the opposite effect as our theorem. Consider C, ={a: N{a} < w}.
Let T'() bo tho least integer for which €, can be. covered, nsing only
prime ideals P, with N(P,) < T(x), and  only one congruence class
@ ol P (8o that for any a0, o = a;mod P, for some P; with N(P,)
< T' ().

Lumma 2. We have T(#) = o(a).

Notation. Yt mg(w) be the number of Gaussian prime ideals with
N(P) < o .
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Proof of Lemma 2, Fix a large positive M. For all P, such that

N(P)< M or exp{M)< N(P) < z/M, put a; = 0. Call the set of points

in ¢, not yet covered the residual set B. (B will act as a ma.lker, and shrink
ag sieving proceeds.

R is composed of:

(a) prime Gaussian integers p such that «/M < N(P)< », where P
denotes the prime ideal (p), and

(b) Gaussian integers all of whose prime factors p lie in the range
M < N{P) < exp(M).

As o increases, (b) becomes negligible compared to (a). Next wse the
prime ideals M < N(P)<C exp(M) in order of increasing norm (say).
At each successive prime idleal P;, delete from 2 that congruence class
a; mod P; which containg the maximal number of remaining points in E.
Tor each prime ideal P; nged, the chosen clags a; contains E\-r—%is-th

i
of the remaining points, since avery point of B is in one of the N(P)
- ¢lagses mod P;. This procedure veduces the size of B by a factor of at

least:
1
@“ww»

M{M by our Mertens’ theorem. Finally, cover

M<N(P)<exp (M)

which for large = is' < 21log
2log M
M

“the {at most).

next {at mosh) 0_§_[ fg{w) prime ideals. Fewer than 2 [mg(—]%—) -

"

n 2log M rig (w)] prilné ideals hawve been used, so
loe M : . log M

TReleasing M—»co, T () = o), and Lemma 2 is proved.

We now construct an admissible subset of (8 —a). Fix & = 0. Then
from @ (8 -— o) remove any number which has a prime ideal facbor P with
N(P) < sz?/loga, or which is 2 unit. The remaining set y,(x) will for large 2
.congigt of prirne Gaussian integers.

Luvma 3. For oll sufficiently large @ y,(®) s admissible.

Proof. (§—a) is contained in some disk D about zero. Let Q be
an arbitrary prime ideal, generated by ¢. We must show that there exmts
some congruence class amon such that y,(2)n{b: b = amod ¢} =

7g(m) remaining points one at a time, using the
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I N(Q) < ew*flogs, then 0 mod () works. There exists A such thafb
it ¥(@) > Aa*flogw, there are more classes mod @ than points in y,{z),

g0 again some congruence class is disjoint from Y.{=). Accordingly, we
consider the non-trivial case, when

st A.p?
Toza <N <

Togz

Tach congruence class ¢ mod @ interrects the disk zD in a lattice J. Now
there exists ¢, > 0 such that for all 2, for all non-trivial @, and all & such
that ¥ {e) < N(@), the disk of radivg ¢,# aboub ¢ containg J. The points
inside this larger disk for which b == & mod ¢ are all a¢-+n where n is
any element of @ with N (n) < ¢;0® This set, though, is exactly the image
under & translation (by a) and a multiplication (by ¢) of

_ {n: N(n) < 62/ N (Q)}.
Since N (¢}) > sa?/loge,

2

6@/ (Q) <-0—2~10gm.

We tupplv our sieving lemma to the glowly growing disk of a.lgebra.lc

radiug -w]ogw to find some combination of (a; modP :’s whick eovers,

and then use the Chinese Remainder Theorem to eonvert this into a proof
that the amod @ we seek exists, By Lemma 2, for sufficiently large @,

2
T(—af— logm) = ¢ (logx}.

It is therefore possible to choose ¢, mod P,, a,mod P, ...
such. that for each P, 1

y @, mod P,
i<k, N(P) =o(loga) and such that for

3
. . . € . , ;
any o with N(n) < ~2loge there is an ¢ <k for which n = a, mod P;.
P

Remark. This is the decisive step in the proof! A covering with
small primes for the inage of & congrurence class mod ¢ iy obtained. The
close relation vin the Chinege Remainder Theorem between image and
object is now used, We are ne’nmly done.

Hince N{P,) = o(log), [ ] N{(P) < &by a form of the prime number
theoren In furn, @ cfn'“’/logw )< N(Q). By ounr Chinese Remamder

Theorew, there existy some ay, N(ay) < HN (P,) << N(@), such that
_ : )

g -y = 0 mod Py (L <4< k), and we calculate that if ¥N(n) < Tz log =,

# =2 gy mod Py (fome 4) so ng = aqmod P; and a,-+ng = 0mod P;.
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Hence P, divides a,+ng. But since N {P;) < loga, 0 mod P; has already
been gieved from ¥.(#). Therefore a,-+ngéy,(x) for any n, as required.
¥, (®) i3 admissible, and Lemma 3 is proved.

We finish by combining Lemmas 1 and 3 to get (1'), the main regult.
From the construction of y,(x), it is clear that for ¢ small enough, the
loss of an amount asymptotic to '

Dex?

< { Him)< -2 }
: ) <
(logw)® ~ " ! loge
from the set of ¢fl prime points in 2(8—e) is not sufficient to counter
the excess (cf. Lemma 1)}

. : e mz
n(@(8 — o)} —m(w8) > L

(logz)*

Thus g*(x8) > 7(w8); the difference iz eventually greater than wome
constant multiple of o#/(logx)® Q.BE.D.

3. Modifications needed for other quadratic mumber fields. A given
quadratic number field # may be embedded in the oy plane by mapping
at+dad a—da

P) H
the algebraic axis. If # is an imaginary quadratic field, our embedding
in the ay plane i8 just the natural one associated with the complex. field.
Tf & is & rveal quadratic number field, the number 7, +r,Va (7, rational)

we F Go ( ) Thug the @ axig is the rational axis, the ¥ axis

is mapped to (ry, #,¥'n). Here the my plane is sectioned by two intersecting

lines of norm zero; # = ¥ and & = —y. The curves of constant norm A
are the hyperbolae z*—y* = K. _

In the real case, the argument of «, arce, i8 defined to be logla/al.
(This i5 consistent with the geometric definition for imaginary fields.)
When o = (e, b} and &> b >0, an equivalent expression for arca is
arce = 4.4, where 4 is the area enclosed by the # axis, the curve 22 — g% = 1,

- and the straight line between 0 and a. We note that sinh 4 = b, cosh.d = a.

Hecke [4] hag shown that this embedding of # may be extended
to represent non-principal ideals of # by specific points in the ay plane.
This extension has two basic properties: (i) the multiplicative group of
the set of points obtained is isomorphic to the group of fractional ideals
of #; (il) for each ideal class (" of &, the points correyponding to integral
ideals in O form a two dimensional lattice which faithfully reflects the
structure of ¢ ag an #-module. Thus we may talk of congruence elagses,
admissibility, etc. (When C is the class of prineipal ideals, we recover
the original embedding of # itiself.) The points repregenting prime ideals
we call prime points. For § a region'in the ay plane safistying the re-
strietions of Theorem 1, and ¢ any ideal class, p5(S) has the expected
meaning:
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" AN s VT ] * - H

_D]LIDINIJ‘I(..)N. 0(8) = the maximum number of elements’ belonging
to any adinisgible set 4 < S (the image of ¢ under Hecke’s embedding).

For the real quadratic case, :

DBFINITION. A logarithwic center o of 8.1s an a for which

f' log ¥ (z)davea

Ko
is mininal.

With the above definitions in mind, one way prove a prime mumber
theorem similar to that of §3 for the number of prime points in »8 which
represent; ideals of o given ideal clagy (cf. [41, [12]).

One ean now state and prove an extended version of Theorem 1';

- the proof for the most part follows that of Theorem 17,

- Tamsonmse 17 If 8 48 o bounded, stmply connected region in the zy
plane with piccewise ¢ boundory, and if 8 is not logarithmically centered,
then for each ideal olass C there emisls ¢ > 0 for which as a—s 00,

o

* /] ——— e
oo (@8) — mo(@8) > Toga)®

Bomark. The new complexities introduce unfavorable constant
factory into a “little o” argument, and so the basic line of reasoning is
unafiected. The technique gets megsier.

Wae now say how the proof of Theorem 1’ must be modified for
Theorem 1. For real quadratic fields, Lemma 2 must be restated as
Lemma 2’ below. For fields of clags number larger than one, the proof
of Temma 3 and the final argoment make use of Heeke's embedding.

Lemmag 2, 3 and the final argument must also be modified to adjust
to. the new geometry and to the larger class number.

For the case of real quadratic number fields, in place of Lemma 2
we have the following . ‘ :

Touvma 2'. Consider €, == {a: a is embedded in the zy plane s (ay, a,)
and @ af << o). Then T (%) defined as in Lemma 2, is o(x).

Remark. The number ol prime pointy in €, counting associates
ag distinet, is on the order of w/logs. This follows from the general case
of the prime number theorem for confours. Other than this, the proof
of Lemma 2' iy the same as that of Lemma 2,

The statement of Lommsa 8 for the general cage is unchanged, but
the ‘proof uses Fleclke’s extension of the embedding .

o a+d a—a
1 (o, @) = {7 —

and uses Lemma 2 for the real quadratic case. To prove Lemma 3:
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For any ideal I, let us denote by I a point where I iy embedded.
(I is unique up to unit multiples.) Let us denote by m(I) an ideal in the
game ideal elass as I which has minimal norm. Sinee the class number
of & is finite, supom(I) iy finite. Let N denote the set of & integers.
I
Ag before, let § be a non-trivial prime ideal. Untortunately ¢ may

not have a generator ¢. In place of ¢ we use g, defined by § = uld Im (@),
where % ig that unit which minimizes the Euclidean norm of §. T'o control
the position of generators & for congruence clagses mod ¢, we note that
there exists ¢, = 0 such that for any ideal I of &, {a: af | af << e, N (D)}
containg an element of each congruence eclags mod .

As Dbefore, there exists ¢, > 0 such that for all , for all non-trivial
Q, and all ¢ such that & -4 < e, N(Q), the disk of radius ¢ym about ¢
contains J. The points b inside this larger disk for whieh b = a mod §
are all a4+n where n is any element of @ for which #3 4 n; < ga’. This
set, though, i3 contained in (instead of, ag previously, equal to) the image
undér translation by ¢ and multiplication by g of {n: »] --ng < exa?/ N (Q)}
(where ¢z > ¢ by a factor depending on #). This iz because @ < 7%,
since if ae@, [a] = QT for some ideal T, so o = @1 u (v a unit) and
o = g(m(Q)Tw). But m(Q)TueXN.
: Now since N(Q) > sx*/logw,

Car 0®
NG~ |

The rest of the proot follows the lines of the earlier Lemma 3. At the
end Lemma.2’ covers {n: n]4+n2 < o2’ /N (Q)}, which then via CRT provides
the required empty congruence class in ¥,(x) mod ¢. _

Finally, at the point where the ORT is nsed to go back, we choose &,

[
from {n: n}-ni < G;l:{ N{(P;)}.

¢
£ loga. .

6. Further questions. Upper bounds for o*(#8). may be derived
from generalizations of large sieve results (ef. [7], [14], [17]). If # is
a field of clags number greater than one, and if €; and ¢p are distinet
ideal classes of &, what can one say about of (w8) compared to ep, (#8)?
If A4 ig an admissible subset of ¢y, then there exists an additive group
igomorphism of ¢, onto €, which mapy 4 to an admisgible subset of €y,
but the mapping depends on 4, and hence i3 not very helptul.

If # is a real quadratic number field, the function

f(g) = j log & (z — B) darea (2)
s -
has a minimum, but the geometric arguments of §2 fail, and the question
of when 8 has a unique logarithmic center remains completely open.
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Finally, we note the Conjecture of §2, about uniqueness of the loga-
rithmie center for convex regions in the complex plane. If true, it wounld
be a very nice result in its own right, as well a5 a useful number theoretic
tool. If false, any ecounterexample would certainly be ﬁoteworthy.
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