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On Eisenstein series with characters and
the values of Dirichlet L-functions
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1. Introduction. Throughout the sequel, let y denote a primitive
character of modulus % As usual, the Dirichlet L-function L(s, y) is
defined for ¢ = Re(s) > 0 by

Lis, ) = D g(m)n=>.
7=l
I » is a positive integer, the values L(2n, y), when y is even, and
L(2n—1, y), when y iz odd, are easily calenlated [3], [4], [B], [6], [9],

- [14]. In faet, at the end of Section 5 below, we derive an infinite number

of closed. form expressions for (2%, x), when y is even, and L(2n—1, ¥),
when y is odd. One of these is the familiar closed form expression found
in [6] and [14]. However, nothing arifhmetically is known about the
values L(2n, ¥), when y is odd, and L{2x 41, ), when y i even. The situ-
ation i analogous to that of the Riemann zeta-funection £(s); the arithmeti-
cal nature of {{2n-+1) iz completely unknown. ‘

E. Grosswald [11] recently discussed the arithmefical nature of a
certain series @, (¢, y) defined below in Section 3. This series is a character
analogue of a series which oceurs in a formmula for £(2n--1) that is found
in Ramanujan’s notebooks ([16]; vol. I, p. 259, no. 15; vol. IT, p. 177,
no. 21): if a> 0, then

=
(11) ( . l)n o X szn_l-(?)e—:?.ﬂr/n
=

= Z O (7)€ ,;;(1_ (—1)*a™) {(2n4-1) -+
Pl 1 ‘”’i%
+ ;j_i (=17 (2k) £ (20 +2 —2k) o7,
=0

—
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300 B. (. Berndt

where

g, (r) = E a.
‘dir

CGrosswald [10], [12] and J. R. Smart [17] have recently given proofs of
Ramanujan’s formula. For references to several other proofs of Ramanujan’s
formula, see [8]. The expressions ¢, (1, x) do not actually oceur in formulas
for L(n, ). However, K. Katayama [13] has recently proven character
analfogues of Ramanujan’s formula.

In this paper, we develop transformation formulae for amalytie
Eisenstein series with characters. By the use of the Lipschitz summation
formula or a character analogue of the Lipschitz sumumation formula, the
theorems may be converted into theorems giving transformation formulae
for certain Lambert series with characters or certain character generaliza-
tions of the elassical Dedekind eta-function. The Bisenstein series considered
here are very similar to those considered by the author in [7]. Throughout
the gequel, the transformations under counsideration are the niodular
transformations Ve = V(2) = (ez+b)/(ez +d), wheve a, b, ¢, zmd d are
rational integers such that ¢> 0 and ad-—be = 1.

The transformation formulae yield immediately formulae for L-func-
tions or certain generalizations thereotf. Grosswald’s result on &7, ¥) is an
immediate consequence of one of our theorems and & very special cage

of a large class of such results. Katayama’s analogues of Ramanuian’s
3 g yi

formula are seen to be special cases of an infinite clags of similar formuiae.
. Appearing in the fransformation formulae are certain generalizations
of the clagsical Dedekind sums. These new sums involve characters and
generalized Bernoulli functions. In the simplest cases involving the first
Bernoulli function and/or the first generalized Bernoulli funetion, we
prove reciprocity theorems for these sums. It will be clear, however, that
one can prove reciprocity theorews for the character analogues of Dedekind
sums involving higher order Bernoulli funetions.
We emphasize that there are essentially no new ideas in thiy paper.
. The method used to derive the transformation formulae is precively the
method developed by the author in [7]. For this reagon, proofs in Sections 3
and 4 will not be given in detail; only the necessary changes from the
proofs in [7] will be indicated. The reader familiar with [7], pp. 12-17,
will be able to fill in the details with no difficulty whatsoover.

2. Notation and preliminary results. Let o = {z: Im(z)
the nupper half-plane. We write e(¢) for &2 Unlebs otherwise stated, we
choose that branch of logz with —n < arge < = As customary, the frac-
tional part of » is denoted by {2}, and the wrmteqt 1nteger legs than or
equal to » is denoted by [a"]

) = 0} denote
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Let
Fo—

Gz, 2) z Ve (ha k)

denote the classical Gauss sum. Put G(y) = G{1, ). We shall need the
fundamental properby of Gaunssian sums ([2], p. 313),

{2.1) . GG(F) = 2( =1}k A
For ze s and o> 1, the Lipsehitz smmmation formula ([187], p. 77}
oo [~
o 1 UYL Soal S, ._( ..__2_1371)_ \j e 8-1
(2.2) ng{” (n42)"" = ) J;::; &(ne)n

.a.nd the character analogue of the Lipschitz summation formula ([6],

BExample 3, [7], equation {(2.5))

oo

_ ¢ omifh) <
(2.3) 51 a(n) (n-+2)"8 ) (I’(s) i) >1Z(%)6(ﬂz/70)%8“1
Tz~ 00 =]

are valid.
The Bernoulli polynomials B, (2}, — oo < w < o0, 0 = 0, are generated
by ([1], p. 804)

2e™" o~ '
(2.4) 1 _-_‘, B, ( oz! (lu] < 2m).

The Bernoulli numbem B, ,n = 0,are defined by B, == B, (). The Bernoulli
polynomials satisfy fhe multiplication theorem ([1], p. 804)
M1

(2.5) © Byima) = w7t Y B(w-+hjm).

=]
The Bernouwlli functions #,(#) are defined for all real o by
) B, (@) = By(a—[x]),
except when n == 1 and @ is an integer m in which ease we define &, (%) = 0.
The generalized Bernoulli fonetions #, (s, ¢), 05 %< o0, are functions
with, period & that muay be defined for ull real @ by ([6], Theorem 5.1,
[7], equation (2.4))

k=1

AN, D4k
(2'6) . !ﬁn‘(mﬂ z) = k" 1'2:, X(I_”)_"@n (T“)
-

The generalized Bernoulli numbers B, (x), 0< 2 < oo, are defined by

o . 'B'u.(x) == ﬂgl.i(ol X)‘
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Unfortunately, our notation conflicts with that of LeopOldt [14].
More precisely, B, () = B}, where B denotes the nth generalized Bernoull
number in Leopoldt’s nosation. .

3. Transformation formulae for the first class of Fisenstein seriea,
Let y; and y, be primitive character, each of modulus k. Let r, and y be
arbitrary real numbers. For ¢ > 2 and ze #, define

{2"’ . Xl('m)Xa(W)

((m o)zt n-r)

G2, 85 21y Laj T1y Tg) =
M= —00

where the dash / on the summation sign means that if 7, and », are both
integers, then the pair m = —¥y o= 7y i8 t0 be omitted from the
summation. Hxtend the definition of x, to the set of all real numbery
by defining y,(r) = 0 if r iy not an integer. Define for ¢ > ¢ and o real,

Lis,g,8) = Y y(n)(nta),

8o that L(s, j;, 0) = L(s, ). Tt is easily shown that L{s, x, @) can he
analytically continued to an entire funcfion of ¢ ([7], equation {2.8)).
Let '

L (8 x,a) == L(s, x, a’)+%(‘"1)3(2|:3/2)L(S‘: Xy —a).

Lastly, for 2z # and s complex, define

=)

Ales 55 s 25 P = 3 jalm) 3 ga(m)e(n((m+ry)apry) fHjns=?

M~y n=1
“and

H(2y 85 %1y K25 ¥as Ta) _ -
= A (2,85 ¥1s a; 7'1:"'2)+X1(—1)Z2(“‘1)'3(3/2)A(z; 83 X1y Xe; —Fa, —T).

Proceeding as in [7], pp. 12, 13, we find with the use of (2.3) that for
¢> 32 and ze 7,
{3.1) (2, 53 K1y Xe5 T, Ta)

. Glx) (—BmiEy
= 2. Ts) Hi{z,s; X1is Zas Ty "’2)+751(_7°1)$+(5': Zar ¥2),

which gives the analytic continuation of G (2, 8; 31y xa3 74, re) into the
entire complex s-plane. '
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Iet @ ={z=wo+iy: 0> —dle,y>0}. Define Ry = ary +or,,
By = bry+drg, and o = o(Ry, By, 0, d) = {fy}e — {R}d. For non-negative

integers 7, u and », and for ze@, let :

flz, 8570y 703 5, 5y )
- exp( —({op +§ —{B.}) jek) (e -+ d) 7 )
J e _"&15(: {cz 4 d)'imr)k:"i_—“ X
exp {{{» -+ {(d) -+o)/e}) ) o)
X e A . du
exp (ku)—1

Here, we choose the branch of «° with 0 < argu < 2m. Also, € is a loop
beginning at -+ oo, proceeding.in #, encircling the origin in the pogitive
ditection so that w = 0 is the only sero of (exp(—(oz+a) k) —1) x
K (exp(ku)——l) Lying “inside” the loop, and then returning to 4-oco in
the lower half-plane. If s = —%, where ¥ is a non-negative integer,
then, by (2.4) and the residue theorem, we get

(3.2)  fley —~Njyry, 755, 45, %)

= —2mik® ( —-1)’”Bm( ep+J— {8} ) Bﬂ( ¥ +-{{df @) Je} ) y
=42 ¢k k
(OZ-{—CZ)'""""I
min!

With the above representation, f(z, —N;r,, T3 §,.465 ¥) canl be analytically
continued in z to all of # .
 We are now at last ablé to state the transformation formulae for
H{(z, 85 15 223 715 7)y OF equivalently, for Gz, &5 71, 125 12y 7)-
Tumorey 1. (i) Suppose that a == d = 0(modk). Then for 2<Q and
all s, '

(8.3)  (ez-+ @)™ (—2mi kY G (1) H( Ve, 85 12, Ta3 71y 72) +
() (024 &) (8L (8, 2oy 1)
= u{ — ) ga( —D) {( -~ 2ri (B G () H (2, §; Zz.: T1j By, By) 4
+ Zal f"Iﬂl)I‘("")-g)— (85 x1y Bo) -+

e k-l -1

Frl=Dga(~1)e(—s/2) 31 3 M p([Be-+d(j—{Be})je] ) x

F=1 pe= ye=i
X ga(ops =+ + L83 1F (2, 8575 703§y 2, )}

§ — Acta Arithmetica XX VIIL3
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(il) Suppose that b = ¢ = 0(modk). Then Jor ze @ and all s

(8.4)  (ez+a)%( —2mi kY G () H (Vz, 85 2oy Tas 71 Tk +

+ g (—ry) (ce+d) 2 L(8) 2
= 1 (@) 7a (@) {( — 2/ R) G () H (2, 85 22, 70 By Ba)
oy (—By) D(8)2 (85 2oy Ba) +

e k-—-1Fk—1

(1) gl ~1)e( 5 [2) ;22;“ J+[Ral) %

=l g=a #=0
% ([ s+ 4 a—{Rl}weJ-l-dwv)ﬂz, 837y 723§ 4 ¥} -

Furthermore, if 8 = —N s & mon-positive integer, {3.3) and (3.4)
are valid for ze # upon the evaluation of f(z, —Njry, 7554, p, ) by (3.2).

Proof. The proof follows exactly along the same lines as that of
Theorem. 2 in [7], where y, = x and g, = 7. (In [T], p . 16, line 8b,
hag been omitted after the last parventhesis before du.) Upon Obmmmo“
the transformation formulae for & (Ve, 83 x1, 723 1) Ta); use (3.1) to routinely
convert the transformation formulae into the desired resnlts involving
H(V2, 85 %ay %23 F10 T2

One could assume in the above work that x, and y, do not neeebsafnly
have the same moduli, but the regulting formulae would be more cum-
bersome. .

TFormulas (3.3) and (3.4) yield a multitude of interesting formulas
for L-functions when at least one of the values y;(ry), x1 (R4}, and wa(Ry)
is not zero, and especially when s = —N. There are other interesting
deduetions. xamine (3.3) when s = —N, Ve = —1/z, and 2z = 1. If, in
addition, x,(r) = zu(rs) = 0, we see from (3.2) that

(—T/2m) WG () H (1, —N5 gas Tas "1 Py) —
“Zz( —1) { —k/27i) NG(%I)H(. — N %2y T P2y —T1)

lies in the cyclotomie field over the rational numbers generated by 7 and
the values of y, and g,. If efther x,(r1) or x.(r;) is not zero, then this is
not necessarily the case. Indeed, it appears very unlikely that for all
values of the parameters r, and vy, the aforementioned expression does
belong to the cyclotomic field generated by ¢ and the values of x, and x,.
Analogous remarks can be made for the results obtained by taking deriva-
tives with respect to 2 on both sides of (3.3). In particular, if § = —N
and Vz = —1Jz, we find that after taking M = N -1 derivatives, for
all values of the parameters 7, and ., the Mth derivative of

(“';""3/2T°"':)NG(%2)H( —1/z, —N; 21, Fos Py Fo) —
e —1) (—k[2mi)N G {y) H (s, —N; Zos K1 Moo ~71)

(8 x2s ¥a)
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evaluated at z = ¢ belongs to the cyclotomic field over the rationals
generated by ¢ and the values of y, and y,.

The result of Grosswald [11] on G,({¢, x), fio which we referred in
the Introduetion, is a special case of the above considerations. First,
in (3.3), put s = —2N, where ¥ is a non-negative integer, ¥z = —1/z,
g oumd, yy = yp =y, and 1, =1, = 0. Now,

H{i, —2N; x,7;0,0) =24, —2N; 5, %:; 0,0

=2 x(m)%(,n)6—27:7):91/};%—-2N--1

e
e

[
=

H

\p)

=2 %(T)O'-—-iN—l(T: X)e_zmlkr

]
F

Lid

a(r ) = 3 &7 ()

-l

where

Thus, with the help of (3.2}, equation (3.3) becomes

Togv—\Ty X ) gl

(3.5)  (B/2m)V G () %

= x(—1) (—1)¥(k 2=/ 6 (1) }

O a1 :Z) MTM“"

IN. E—1 it—12N-42

7k
aN+2 +1

“aFmr D D D et () 3 ()

p=0 v=0 =0

P\
X BZN+2—'m ('};)Q‘ 1-

From (2.6), '

=1
(3.6) 2 (W Bu(hjk) = ETB,(3).

) =0

Suppose that x(~1) (~1)Y = —1. Applying (3.6) wn‘,h o= m and with
% = 2N -2 —m, we find fhat we may write (3.5) a

el

(3.7) Z 2(7Y 0 gprna(7y x) e

el

_ 7 —'1)G( )@ fTop N+ 3N+ ]
- 4(2N +2)! (=" (23;;[ 2) B,,.(7) Boysz-nlX)4™s

M=

upon the use of (2.1).
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Sinee ([61, quollary 3.4)

(3.8) By} =10

(y even, % = 0)
and _
(3.9) _ By(x) =0 (x odd, n>0),

equation (8.7) may be further simplified.

Secondly, in (3.3), put & = 2N, where N is o non-negative integer,
Vz = —1/z, 4, = 34 = g, 80d 7, = ¥, = 0. Differentiate both sides with
regpect 10 # and then put # = 4. Supposing now that g( ~1) (—1L)¥ = .11,
we get after using (3.6) and simplifying

[o53

(310) Y 4(1)o_syslr, 2) (V +2mrfk) o~
‘;i:;‘ aN-—1L
~1)&(F) (2r k¥ G -
x( 1(2(?;2){ ) 2 (—1)™ (2NJ2)B-m(?_ﬂ)BQNq-L-m(Z) (m— 1),

By using (3.8) and (3.9), the right side of (3.10) may Dbe simplified.
The left sides of (3.7) and (3.10) are rational integral multiples of
o 4,(@, %) in Grosswald’s notation. Put @ =1 if y iz even and o =4
if 7 is odd. Thus, we have shown Grosswald’s resnlt.

THEOREM 2 (Grosswald [11], p. 227). We have
Wy 1 (i, 2) = VTG (F)r(2N 41, ),

where r(2N +1, 1) 48 an algebraic number in the eyclotomic field over the
rational field generaied by the valuss of y.

As we have seen, the above is just one of an infinitude of similar
conclusions that one ecan . infer from Theorem 1.

4. Transformation formulae for the second class of Eisenstein scrics.
Ag before, let y be a primitive character of modulus %, and let ry and r
denote arbitrary real numbers, For o> 2 and ze #, define

Gy(2, 852571, 1g) = Z’ ((m-]-r;g(m)

IPTRT)
. T, HPs — o0 n }?2)
and
. ()
Go(2y 850570, 7s) = >
1 X3 mﬁ'fJ rm,+71 z+%4—7‘3)
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where the dash ’ on the summation sign hag the same meaning as in the
previous section. For ze # and s complex, define

00

Ar(2, 85 9574, 1) = Z 29( ((n+r)z-tr, )) ',

M -y nw=1

A2y 85 2574, T3) = 2 2 X(%)e(ﬂ(('m‘ -+ 7’1)ﬁ+'3"2)/15)%a“1,

W ogy el
(1) Hy(e, 8525 74y 79)

= Aq (2, 85 %5 71, 7o) -F % ~1)e(s/2) 4,(2, 8; x5 ~1y, —7a),

and
(42)  Hal2, 8 1571, 72)
== sl 85 1571, 1a) + x4 —

Furthermore, for a real and o > 1, let

Z(s,0) = > (nta)®

Ll

1)e(s/2)4

2l 8585 —F1, —7y).

and
Zy(8ya) = Z(8, a}+e{+s8/2}Z (s, —a).

Both Z(s, a) and Z (s, a) have analytic continnations into the entire
complex plane, for they are easily expressed in terms of the Flurwitz
zeta-function. '

Proceeding as in [7], pp. 12, 13, but using (2. 2) rather than (2 3),
we deduce that

( —27mi)*

(4.3)  Giley 852571, 70) = —W— Hi(e, 85 2574, 72) Fx(—r)Z (s, 9’@)-
Let 2(r) denote the characteristic function of the integers. Proceeding

ag in [7], pp. 12, 13, we find with the use of (2.3) that

(4.4) Gl 85 15715 70)
Gl ( lm/io)
‘”’“"1,(8) 1[53('“:":%:7"11 o) A1) &
Tovmulas (4.3) and (4.4) provide analytie continuations of Gl(z 835 %5 P1y Fa)
and @y(=, 8; x; 11, ), respoctively, into the whole complex s-plane.
For non-negative integers § and g and for zeQ, define

085 %5 7o)

I (= s 85904 P30y )
~ [”8- . cxp( ~((6u -+ j—{lﬁl} fele){cz -|- )kn) exp ({(#% + o) /c}u)
B exp (— (e -+ d) fout) ~ exp (%) — 1

du.

&
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Again, we choose the branch of «° with ¢ < argu < 2m, and € is a loop
beginning at - oc, proceeding in #’, encircling the orvigin in the positive

direction 8o that » =0 iy the only zero of ;

(exp (—(ez+d) k) ——1) (exp () 1)

lying ‘“nside” the loop, and then returning to -+ oo in the lower half-plane.
If s = —XN is & non-positive integer, then by (2.4) and the vesidue theoren,
we have

(4.5) e, =Ny, ra5d, 0)
' (ow

- . Q m op -4 “{Rl}; ur gy VORI
= —2n ,}_{ ('“‘“1) Bm( (;'is} . -Bn({(dj '| Q)/G})IG . ’rﬁ;!f‘?;l .
mAn=N--2

B

 With the above representation, f*(2, —N'; 71, #2355, p} can be analytically
eontinued in 2z to all of 4.
" We now state the transformation formulao involving H,(#, 8; 13 71, s)

and Hy(z, 8; 1371, o)-
THEOREM 3. Liet ze Q and suppose that s is an arbitrary complex number.
(i) If a = 0(modk), then
(4.8)  (ez+a)™°(—2mi[k)°G () HolVe, 85 75 71y 72} +
' ' FA(ry) (e 4-A)" T (8).2 1. (8, X5 T2
= 2 (=) (—2mi) Hy (2, 85 15 B,y o) + 5 (0B2) D(8)Z.. (8, Ba)

¢ k-1

+(Bye(~8(2) 3 3 xlom+i+ R (28511, 70365 )

j=1 =0
(i) If b = O(modF), then
(A7) {08+ &) ~2miBP G H, (Ve 83 F; 13, Ta) -
| | | A (e D) TET(S) L (s, 15 1)
= y(a) (—2ni[k)*G{x) Hyl2, 85 7; By, Bo) +-A(By) g (@} ()L (8, x5 Bo) -

¢ k=1 k=1

Fa(—aje(—s/2) 3 3 3 g({Ro-+alj—{T})e]--dp—r) %

J=1 p={ =l
K2y 8500 Py gy By )
{iii) If ¢ = 0(modk), then
(4.8) (Gz'f_‘_z)ms( .~—27r7:)‘9H1(sz, R ARETRDY, + x{ =ty (e +-d) "L (8) 2 (s, 1)
= () (—2ni)°Hy(2, $; 45 By, Bo) -y —~dR1) I'(8)Z_ (8, Rp} -+

¢ k-1

e —52) 3 3 ylenti+ Baf (e, 857 72555 )
) F=1 = '
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(iv) If 4 = d(lﬂ(}dk), then
(4.9) {ce —P'-d)“"( —2mi) H (Ve,8; 370, 7s) + x( —ry) (2 + A8 Z, (s,7,)
= g — o) (—2mt /Ry G (x} Hy(2, 85 %5 Byy Bo) +A(By) g ( —6) ()L (8, 2, Ra) -+

. ¢ Bl k-1
.\ . .
da(ere(—5/2) D] 7 D y{[Be+d(F—{Ri}H61—2) F(z, 8570, 703 4, 1y 9)
Jeal grws) =i
- Purthermore, if 8 = N 8 @ non-positive integer, upon the evaluation
of fley =Niryy a3 Js 4, 2) and I, ~Niry, ra3dy p) by (3.2) and (4.8),
respectively, (4.6)-(4.9) are valid for ze 2.
Proof. For ze #, 0 > 8%, M = ma+ne, and ¥ = mb+nd, we have

: Sl MA4R)z-+N+R,) -
Ga(Ve, 85 %571, 7a) = L x(%){( Ay )e o+ N A 2}
M, R=—00

ez--d

o

. 0 / ) .
= > -x(Na—Mb){‘(11[+1ﬂ1)"+N+R2}
Mo ce-d
E?WI (m-R)z+n+ By~
= (=1 et Botnd B\
%{ ))”“%mx(m){ e d } (¢ = ¢{mod k)

{m+Ry)z-+n+ By |~ (b = 0(modFk))

991,
i x(aa) A}.J x('n) { oot +d J .

Ty HFT = 0

To prove (4.6) and (4.7), we follow precisely the method of proot of Theorem
2 in [7], except for one difference. For the proof of (4.6), we make one less
change of index of summation. To be precise, in [7], p. 16, line 6b, we
puta’ = ak-4-r 0= n< oo, 0 <L vl k—1. To prove (4.6), the introdnction
of »' is unnecessary. .

To prove (4.8) and (4.9), we follow the method outlined above, but
we begin by oxamining @y (Vz, 8; x; 7y, vp) instead of Gy(Ve, 8; ;5 71, #3).
The proof of (4.8), like that of (4.6), does not need the introduction of
%' mentioned dbove.

Upon obtaining the fransformation formunlae involving &, and @,
wo Dow uxe (4.3) aud (4.4) to convert the transformation formulae to the
desired. formulue containing H, and H,.

By latting ¢ = N be a non-positive integer in Theorem 3, we can ob-
ity various interesting kormulae for- L-funetions or enrious arithmetical re-
sults. Comments analogous to those made after Theorem 1 can be made here.
Thug, for example, if § = —N, #, l8 not an integer, y(dry} =0, Ve = —1/fz,
and g =i, we conclude from (4.06) thati

(=B 2m) VG () Hy(t, ~Nyi; riy o) = (—2m8) "V H (6, ~ N 570, —13)
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lies in the cyclotomic field over the rafionaly generated by ¢ and the values
of . In the next section we shall see that some formulae for L-functions that
are analogous to Ramanujan's formula (1.1) for £(2n--1) and that are
due to Katayama [13] are particular instances of Theorem 3,

5. Character analogues of Ramanujan’s formmla for (25 --1). If
{—1) {—1¥W = 41, we have from (4.1) and (4.2), for j =1, 2,
=5 xh

say. We remark that 4; (2, —N; %), and more generally, Ayz, 8543 1y 7o),
are eagily written in terms of Lambert series. In passing, we might obrerve
from. (4.8) that for ¢ = 0{mod¥),

(81)  Hylz, —N;2;0, 0) = 24,0z, —N;%;0,0) =24,(z,

(62 + @Y (—2md) ™V A, (Va, —N; ) — z(d) (—2mi) "N A, (2, N )
is always a polynomial in (ez+d).

TuroreM 4 (Katayama [13]). Let N denole o non-negabive integer
and Tet o be an arbifrary positive number. '

If N =0 and y is even, then

= (e

(5.2)  LEN+1, ) % 'r,/i’m, 2N} 7) —

~24,(ike, ’_‘)-Na X)+ >~1

mmﬂ

m+1c(2m) (21\7 D 20m,, X) g2l

If N=1 and y is odd, then

2%
(6.3)  L(2N, z) = - — (=17 ™ G () Ay (§/ha, —2N +1; 7)—
N
Y g o2 . ,
~% 44 {iha, ——)N—{—l;x)_[...;r_z (— )m-l £(2m) L(2N - l L --2m, %) gt

=0

Proof. From the functional aqu(\.tum of L{s, ) ([2], p. 371)., W
have :

(5.4) Sliix}vr(s)&(s, 7, 0) = ‘J.im\‘TI’(s)L(.s', 20 {L-F g —1)e(s2))

= 2(=1) e R (y) (kj2=)VL(N 1, 7).

Similarly, we find that
(5.5) HnI(s) & _(8, x, 0) = &N2Q(y) B2V L(N

o N

+1 ,x)..

(5.10)
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We find. from Theorem 3, (4.5), and (5.4) that for a = 0(modk),
(5.6)  2(ez+d)(—2mifl) VG (y) Ay(Va, —N; 7)+
(0 A (k2mi) g (~ 1)@ () LN +1, 7)

e 2 () ~-~2nf£>“”zu(z B ) —
2 mx(b 5 kﬁ% NI:; ‘
M2y
- (N i 2) ‘J}J‘_\_J:J 1) ( w )X((’Iu‘_l"j)x

Je=l =) =g

><I?m( Iu(,'f ?) By s (G )Y B (02 4 @)™t

We deduee from Theorem 3, (3.2), and (B.3) that for d = 0(modFk),

(8.7) e+ (—2nmi) VA (Ve, ~N; )
= 2y () (—2mi [B)V G (2) Aale, —N; 7) +
»l~x(~a)(w2wz/ia)-NG( VLAN 1, %) —
(o) (Y X i"% 2
A (¢) ( — N AN N+2 .
o (N ! 2 21 AE;“I“" M= ( " )J([dj/f}}_”)%
eptil g v - {djf¢ m
XBM( ek )JE'N%Z i (—-}'C })(Gz‘i“d) L

Suppose first that yx is even. Them because y(—1) (FI)N = 41,
N is even, Ience, in (5.6), veplace N by 2N, replace 4 by ¥, let Ve = —1/z,
and put # == i/ka, where a> 0. Using (3.6), we find that (5.6) yields
(6.8)  2(2ma) V@ (g) Aolika, —2N; 2) +(2n0) "V F (D) LEN+1, 1)

= 2 1YW (2m) N A, (3ka, ~2N; 7) - '

SN2
P12 Y 2N42 . , -
TN 2yt 2.: (Ml)m( m+ )B’“(X)BzNw—m(""/ka)m g
" el

=1 and g even ([6], equation (4.7)),

. 2( 1Y 6 (F) (zw)
5.4 . b L LI T (2 )
( ) ‘)) “B-H(X) lc(z?f/]fr)ln ( n! X)

Using Kuler’s formula for ¢(2n) and the fact that {{0) = —1/2, we have
for w0, ,

Now Lor »

2 =1y (zn)
Bz::, A

(2,“:)2'”

‘ - {2n).

By (3.8), we can replace m by 2m on the right side of (5.8). Algo, note
tha, trivially, By(y) = 0 for alt y. Using (2.1), (5.9) and (5.10), we find
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that (5.8) Decomes
Ag{thka, —2N; x)+L(2ZN +1, z)

2
27‘;(%1)” VG () Ay (ifka, —2N; 7) +
AT il T E
~|— —- (2m, g){(2N -2 - 2m) N 0L

Bﬁ‘ 'ﬂL JJ
m= 1

which is equivalent to (5.2).

Alternatively, we can derive (5.2) by letting Ve = ~1L/z, putting
# = ika, replacing N by 2N, and replacing y by 7 in (5.7), The only essen-
tial difference in the ealeulation is that now (2.5) must be alzo ewployed.

Secondly, suppose that y is odd. Then ¥ is odd. Thus, in (5.6) replace
N by 2N —1, veplace y by %, let Vz = —1/¢, and put 2 == i/ka, where
a > 6. Using (3.6), we obtain from (5.6)
(8.11)  —2(2ma) " G(F) 4, (ika, —2N +1; 1) —(2ma) NG (5) L

== —2?3(m].)N(zr:)‘EN‘”AI(i/ica, —2N-1; %)~
ZN k1

i) - | |
( ON -1 )l E (—1y™ (21‘;: ) o (L) B pr 1o (4 [ o0)™

(2N, %)

For odd y and # =1 ({6], equation (4.8)),

2( —1)* 4G () (20 ~1)!
]6(2%”6)2“—1 - L(z’ﬂ' "'"11 x)'

(5.12) By, 1) =
By (3.9), we may replace m by 2m-~1 on the right gide of (5.11
(2.1}, (5.10) and (5.12), we deduce from (5.11) that
—24,(ika, 2N +1; y)— L(2N, z)
2

=—]{—;(

). Using

=1V NG () Ay (dfkea, —2N 15 57) +

L 20T \’ LY L(2m 41, ) BN - 2m) a2 2L

™
'm.==u

which is equivalent to (5.3).

Alternatively, we can derive (6.3) from (5.7),

Theorem 4 iy just one of an infinite clasy of guch formulae that can
be deduced from Theorem 3 when § = —N and ¥ =ry = 0. SBimilay
formulae may be derived by applying any modwlar transformation with
one of the entries congruent to zero modulo % and then specifying 2 The
most interesting results arise from those ¥ which are elliptic and by then

icm
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Jetting 2 be a fixed point of V. We examine one more such example. A cor-
responding regult for the Rismann zeta-fanetion is indicated by Smart [17].

TrmorpM b, Let N denole anon-w,egwiﬂ}w integer and let o = (=1 +r£1/3_) 2.
Then, of N =0 and y is cven,
{o/b)N 6 (y) 41 (e, ~2N; 7)

—24,(¢,

2
( i

N

2% v
N Em) LN -2 —2m, x) (/)™

o
If N=% and y ie odd, then _ .
N 2 o 9 A em
L2, ) =5 (e/by T () 4,

(5.14) (6, =2N+1;7)—

'

2 f(QWE)L(ZN 4-1 -—2%, x) (Q/k)zm—l .

m={

Y

(1
24, (0, ~2N 415 1)+ =

Proof. In (5.7), let Vz = —(2-+1)/z and # = ¢. Observe that ¢ is
fized by V. .
Suppose Hrst that x is even, Replace N by 2N and y by ¥ to find that

{1 (Snmfo) N A {0, —2N3 %)
= 9 —1)¥(2m/B) G (7)Aol 0y —2N; ) +(—1) (2 /E) "“"G( LN +1,7)—

Jeewl Jomm1 212
ikt \“'\ ‘h“I KW ; 2N--2Y : (M +1 ) LA
e s __1 ki ( ) » .B qu _ r Q )
(BN 1)1 £y £y L (=117, 20) B [ Bavsem {5

Using (2.1), (2.5), {8.6) and (3.8), we obtain

2 (o BN G0 Axlo, —2N3 ) = BAule, ~255 )+ DN +1,7)—
[

2mi( - 'L)J_“T’zv_r/k i >Vw (2N I—Z)B Bugrvnoam () ™7
- (ZN m DN —dan

Using (5.9) and (5.10) in the wbuve, we deduce (6.13)"forﬁh'with. _
Assunie vexd that g s odd. Replacing N by 24 -1 and x by ¥ in
(8.7), we find, with the aid of (2.5) and (3.4), that
28 ( 1)V (Bmef )N Ay (o, — 2N 115 7)
2 20— 1) (2 ) VI GHE) Agle, —2N 15 )
i~ L)N(zn/frr'”*’er) LN, %)+

.zm )1

ﬁN i _1 (2N[ ) Bm B“N-{«l—m(%) Qm_-l'
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Replacing m by 2m and using (5.10) and (5.12), we get (h.14) alter some
routine manipulation.

We remark that Theorem 3 also yields the values of L(¥ -1 s 7}
when (—1)Y y(—1) = —1. Put fy=fy =0 and § = N in (4.1) and
(4£.2). Then if (—1)Vy(—1) = —1,

Hy(z, =N52;0,0) =0 = Hylz, ~N; 4350, 0).
Thus, with the aid of (4.5) and (5.4}, equation (4.6) veduces to

(e dy x(—1) (k/2mi)¥ G () L(N -1, 7)
¢ k=1 N4-2

= - %}w 20 2 D = ateug) (M)

Jeal p=0 =0

(5.15)

i -
X Bm (_ﬁcz—'?") “BN-}-B—m({dj/G}) hmul(ﬁz -+ d)m’—l .
Although the above is valid under the provision that @ = (mod k),
@ does not explicitly appear in (5.15). Rimilar formulae for L(N+1,%)
may be deduced from (4.7) and (4.9). Thus, we obtain throe infinite classes
of closed form. expressions for L(N +1, 7). It is rather interesting that,
upon. the division of hoth sides of (5.15) by (ee-- d)Y, the right side of
(0.16) 15 independent of z.
Formulas (5.9) and (5.12) result by letting V2 = —1/2 and ¢ =i
in (515} ¥ N =2n~1, n>1, and x 18 even, then (5.15) yieldy (5.9)
after a brief calenlation; if ¥ = n—2, nz1, and y is odd, then {5.15)
easily gives (5.12). Thus, we have another, albeit not the most straightior-
ward, proof of the familiar closed form evaluations of -L(n, x) when
(~1y(~1) = 1. |

6. Dedel_u‘nd sums with characters. Let y be an oven, primitive character
of mo@ulus L, and let ¢ and 4 Dbe coprime, pogitive integers. Thon the two
Dedekind sums with characters 8i(d, ¢; x) and 8,(d, ¢; 1) are defined by

(6.1) Sudyei7) =" Y () By (nfek) B, (dn o)
nmodek ]

and

(6.2 Hald, 05 9) = 2 By (nfck) %, (dnfe, y).
nmodclk )

If we formally let y(m) ==1 in (6.1}, so that & = 1, then §,(d,¢; x)
= §(d, ¢), the clagsical Dedekind sum. If ¥ were odd, then & (d,af x)
=0, j =1,2. The objective of this section is to prove two reéipéoéﬂay
theorems for &, (d, ¢; ) and 8:(d, 0; 7). We first transcribe Theorem 3 fc;r
the case 8§ =, =5, = 0. ‘

icm
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THROREM 6. Let x be an even, primitive character of modulus &, Put
Az g) = Ag(2,057)  and  Ay(e; ) = A,(z, 0; ).

Assume that ze #'.
(i) If @ == 0(modk), then

(6.3) G0 Au(V257) = 2(8)Ayle; 1)~ L(L, 7)— |
_ =y (Bymi(24-@f6)By (%) + 1 (0)7i81(d, 05 %)
(it Lf b = 0(mod k), then
(64) G0 da(Va; 7) = 2 (@)@ () dy(2; 1) 4G () L, 7) +
FEa (@)@ (L, 7) + x(a)niS,(d, ¢; 7).
(i) If ¢ = 0(mod k), then
(6.5) Ay (Vs ) = x(d) Ay (25 1)~} (@) nd {2+ de) By(7) —

i
aE— - oy a 5 )
'20(02}.”;‘_&) B~(X)+x(d)m.@1( s € x) -

(iv) If d = 0Qmod k), then
(6.6) A (Vag x) = 2(a)G () (=3 1) +Ex (G () L(1, %) —

e é*g('(m By(7) -+ g (e)mily(d, ¢; 7).

- Proof ol (i), From (4.5) and (4.6), we see that we must caleulate

4

| » |
\ T . .
01 L= D) M leatif (e, 050,055, 4)

el peerl
[ 2N S . - '
o NTNT (e Dk (] Bu(fdi o) —
= 2w Jxl )D Hloped )7 Ba| ) s Balidiel)
of e 1o

— Bl(ﬂgg)Bl({deG})}-

Wiesh, patting ep-|J = n, then letting n == ok-fr, 0LrL o1,
Ol v b, and lastly using (2.5) and (2.6), we gel

o ke it
©8) NN oo 1) B, (f-ffii—) ==23 %(n) By (nfck)

hod L ol

Jom )l ()

el =1 _ ’“_—._‘11 .

- Ny o ) . -1 -
= N0t N Byofotrjo) — o Z 20r) Bolo [y = (6} By(7).-
C e i ) Tom ) .
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Seeondly, since (a,¢) =1 and & = 0(mod¥%), we have (e, k) =1
Thus, by summing on g first, we see thatb
¢ k-1

@9 33

F=1 p=i)

(op -+ J) By ({dj[c}} =
(In [7], p. 19, lines 12-14, the sentence beginning with “By summing”
should read ‘“By summing on » first, we observe that the contiribution,
of the first expression in f(z, 0; 0, 0) is zero; by smmm:ug on u firsk, we
observe that the contribution of the semml expression in. f(z, 0; 0, 0)
ix zero.")

Thirdly, sinee B,(0) = —1/2, and since

feim1

(6.10) D xWBy(hjk) =0,
Ty
we have '
e k-1l
+
(6.11 e
“ ) %Z xleu+5)B ( 7 ) ({djfe})
cj E—1 _ 4 1 Jomnd
_ . op +J T +1
-2 dentian (L) a3 xS, 1y, ()
=1 p=0 ] .
\ ]
= 1 (1) By (nck) By (dnfe) = 8.(d, ¢; 1)
nmodek *
by {6.1).
Putting (6.8), (6.9) and (6.11) in (6.7), we geb
(6.12) Ty, = —ni(z+d/je) )By(F) +2mil, (d, ¢; ).

Using (5.4) and (6.12) in (4.6), we arrive at (6.3).
.Proof of (ii). From (3.2) and (4.7), we must caloulate

¢ h—F k-1
: N , .
(613)  Tym 3 N N y([djfe) -+ au~n)f(z, 050, 035, 1, )
F=1 p=0 v=(
r:j fe—1 i.:—
. ) . o+ b g
= _ij;\u > x([dJ/@]_l_dMM_a,){f ‘)I* Bg(m.f'?) ok
= ,uno u=0 & ol )
1 v+ {dj/o} 0+ (@
+ T R, M ey vdgiel
- 2{ee ¥ d) ( ke ) Bl( ) Bl PR
By summing on » first, we seo that the contribution of the fivet ex-
pression in curly brackets is zero. Since b == (mod k) and (b, a) =1,

we have (d, k) = 1. Hence, by summing on g tirst, we sec that the contri-
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bution of the second expression in ewly brackets is zero. Next, using
(6.10) twice and (2.6}, we have

¢ k-1 k-1

al G a3
(6.14) _“_\_JL (Ldj/e] %d/u-—v)Bl( “;”)Bl(w{ 3/0})
gl pm@ P o &
@ fc\rg on+5\ 3 + du F dj|
- 2, [N g, (2R A
A.ﬁ.ﬁ .,5’1( ) 2 KB k
J=l fi=0 =y
¢ fo-1
VAT [ .
o *’_\_J A}_{ Wl("—"u';;};:‘-) 1(d.u’ “I'" d.?/cﬁ f)
Fenl premi) ‘
[
Z By (njck) By (dnfe, 7) = 8,{d, 0; 1),
Hpu==
by {8.2).

Putting (6.14) 111130 (6.13) and them (6.13) mto (4.7), we obtain (6.4)
with the aid of (5.4) and ({5.5).

Proof of (iii). TFrom (4.8) and (4.0}, we see that we must calenlate
{6.7) again. Thoe only differenge from the previous caleulation of {6.7) is
the caleulation of

¢ k=1 [
X D) lon-ti) Budife) =5 3 x(5) Baldjlo)
Jreal w0 F=1 .
702% () B (@ [0) = F( @)k D 2(J) Baljfo)
J=1 J=1

where twice we used the tact that ¢ = 0{mod%). In the last step, we also
used the faect that (¢, d) = 1. Now pul ¢ =mk and j =~ uk+v, 0 pu

si—1, 0=lvs k-1, Using (2.5) and (2.6), we find that the above
bwomes . _
Te1 Werd .
YT k& F(d)
1\_’ N g, (257 X ALYy
e > 2 B | e Zx 2(v/k) o Bal7)
wmu Heul viam [}
Uging (6.8), (6.11) and the caleulation abwe, we find that (6.7)
yvields
(615) Ty = ri(z- dje) Ba(g)— — D B 5yt amil(d, 5 1)
AD) kg s h\@ v (cz%d) TR €5 X

It we subgtitute (6.15) into (4.8), we arrive at (6.5).
Proof of (iv). By (4.9) and (3.2), we must calculate (6.13) again.
The coniributions of the first and third expressions in curly brackets
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on the right side of (6.13) are the same as before. Putting d = mk, using
the facts that (¢, m) = (¢, k) =1, and employing (2.5) and (2.6), we
deduce that :

e k-1 k-1
. v+{dj/(}
x{[djfe]+du—») B, ( T
J=1 p=0 r=0
“GT Y “1 k .
== kz /l x(v )%( »|l+mjfe) = kz % By (v k47 ]e)
Fj=1 w=0 ot o
k-1 P -
& BRe) Xy oo %(ﬂl .
== 0 () Ha(ev[k) = = 23{ v) By(v[k) , ‘Bz(%)-

Hence, with (6.14) and the above salculation, we find from (6.13) that

i (€) 7
Ty = — -2 B (7)) - 27i8,(d, €5 7).
2 (e d) 2 (%) +27i8,(d, r.%)
Using the above in (4.9) and. employing (5.5}, we arrive at (6.6).
Using Theorem 6, we shall derive the aforementioned reciprocity laws.
THEOREM 7. Let x be even and let ¢ and d be positive, coprime integers.
) If (¢, k) = (d, k) =1, then

d
(6.16) 84(d, 05 20 a(03 G5 ) = o Ba(g).
(iiy If ¢ == 0(mod k), then
) a ¥
OIT) Sy, 03 1)+ 80, 857) = 5 Bal) + 5 By ().

Proot of (i). For brevity, we write Tz = —1/z. Since (¢, d) = (¢, k)
=1, there exists & modular transformation V with & = 0(modZ%). Apply
(6.3) with # replaced by Ta. Letting V% = (bza—0)/(dz—¢), we have

(6.18) Q) Ax(V'2; %) = x(0)A(Te; 1) — 3G () L(L, 7)
= haB) (T dJe) By(7) (0 miSy (4, 65 7).
Now apply (6.4) to V* to obtain
(6.19) ) Aa (V725 %) = ()6 (1) 4o (23 7) —4GHp) L(L, 7) +
FhxOYE () L1, 7+ (D) wiSs( ~e, d; 7).
Lastly, apply (6.6} to T and get

1 i
(620)  4s(T5; 1) = Gl Ao(es 1) + 5 FD DL, 7= S Bul7)-
+miS4{0, 15 7)
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It is vory ensy to show that

(6.21) S0 L7 =0 (j =1,9)
and, Thai
(6.22) C NG dy ) = 8o, ds ) (5 =1, 9).

Now multiply (6.20) by »(b) and add this to the (.qll(l.LlUIl that one gets
by subtracting equation (6.19) from equation (6.18). Using (6.21) and
{6.22), wo Lind thed,
. d
2 (DYl (dhy 65 %) 4 x () wily(e, d; ¥) — (b)m By(%) == 0,
from whenee (6.16) in immediate since y(b) 5 0.

Alficrnatiively, we could proceed as follows, Since (¢, d) = (d, ) - i,

‘there exivty o modular transformation V such that b = O{mod k). Then

apply (6.4) to V with z replaced by T2, apply (6.3) to V¥, and lastly apply
(6.3} to T, Combining the results together in a manner like that above
and using (6.21) and (6.22), we arrive at (6.16), but with the roles of ¢ and
d interchanged. '

Proofl of (ii). Lot V be o modular transforination with ¢ = = ((modk).

Let V' == (bg - a)/(de - ¢). Apply (6.5) with 2 replaced by Tz to get
(6.23) A (V% 5) = y(d) Ay (To; 3) — 4y {d)mi( Tz + ai/o -
iz 2

~ Selde—e) By(7)+ 2(d)miS,(d, o; 7).
Apply (6.8) to V* and obtain
(6.24) Ay (V¥ 2) = 2(d)G(x) dal; D) +32(D) G L, 7)—

R - . o

- 2d(dz:~ﬂ) By(F) — x{d) mils{e, d; %),

by (6.22). Lastly, apply (6.6) 6o 2" and oblain

(625)  Ay(Tss 1) = () A1) -y GLO DL, D) — e Bal),
by (6.21), If we multiply (6.20) by x(d) and add the result to the equation
obtained by subtracting {6.24) from (6.23), we arrive at (6.17) at once.
Alternatively, we could have proved (i), with ¢ and d interchanged,
by applying (6.6) to V with 2 wpla,(,ul by L'z, applying (6.5) to V*, and. then
applying (6.3) to 1.
Many of the remarvks made in t]u\ paper have analogies to those that

can be made of &(%n-+1) [8).

7 — Acta Arithmelion XXV
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‘Qu‘un'ti‘tative versions of a result of Hecke
in the theory of uniform distribution mod 1
oy

1L Nmpgrrerrer* (Princeton, N.J.)

T \
L. Introduction. Let ¢ he an irrational number. Then the feguence
(na)y # == 0,1, .., is uniformly distributed mod1, and so we have

f F(tyt

for every Riemann-integrable funetion f on [0, 1], where {x} denotes
the fractional part of the real number #. Since the Abel snmmation method
Includes the sunimation method of arithmetic means, it follows that

linm 2‘ fl{na}) =

N»oo

(1) Lim {1 —7r) Z F({nai)e"

Forle 0 n=0

1
= [ fir)as.

I‘rmu this observation, Hecke [3] deduced casily that the power series

Z {nﬂ" "

n=0

generally, one can show by Tecke’s
o0

cannot be continued analytically across the unit cirele. More
method that fhe power series
2 y({na})}e” has the unit cirele as its natural boundary whenever g is

Rpe=i}
B H.u,ma,nn intograble function for which all but finitely many of the

integrals f g6 ™M dt, me Z, ave nonzero (seo (67, Ch, 1, Thecrem 2.4).

Ror 01.]101? m.sulm on noncontinuable power sevies of the above type, see
[67, Ch. 1, Bect. 2, and the survey artiele of Schwarz [17].

We remark that in the argwment leading to (1), the sequence (ne)
may, of eourse, be replaced Ty any sequence (#,), =0, 1, ..., of real
numbers that is uniformly distributed modl. Evidently, an analogous

* Thin rosearch wes initiated while the awthor was a participant of the 1973
Swiaer Regearch Tnstitute in Nurmher Theory ab the TTniversity of Michigan and was
also gupported by N8F Grant GP-36418X1.



