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Proximity classes of uniformities
by
W. Kulpa (Katowice)

Abstract. If a uniformity U on a set X is such that there exists a uniformly diserete
subset of X of an infinite cardinality m, then there exist at least expexpm uniformities
below UL belonging to distinet proximity classes and each of the proximity classes has
at least expexpm distinct uniformities. In a case if the uniform space (X,9L) has
a dense subspace of the cardinality m, then there exist exactly expexpm such uniformities.
If uniformities U and U on sets X and ¥ are such that there exist uniformly discrete
sets in X and Y of an infinite dardinality m then there exist at least expexpm uniform-
ities U, and U, belonging to the proximity classes of U, and A, respectively, such
that the proximity classes of the products Uy, X U, are distinet for distinet indices a.

1. The uniformities considered in this paper are of the covering
type (see [2]). All the topological spaces are completely regular. If we
consider a family of uniformities on a set, then we understand that the
uniformities of this family are compatible with a given topology.

Let W be a uniformity on a set X. A filter ¥ on X is said to be a Cauchy
filter in U, iff for every covering P e U, we have P n § # @. Every Cauchy
filter & is contained in a unique minimal Cauchy filter, whieh is induced
by a base {st(4,P): A5, P W} If two minimal Cauchy filters have
a common limit, then they are equal. This enables us to construct a com-
pletion 4: (X, W) C (X, 91), where the set X is the set of all minimal
Cauchy filters in U and the uniformity 90 is induced by a base {P:Peal},
where P = {i: ue P} and % = {F ¢ X: 4 5}, The uniform dense em-
bedding ¢ is defined by a condition i(z) = F iff # = lim¥ (see [1]). The
minimal Cauchy filters having empty limits form the remainder X—ix
of the completion of the space (X, U).

A uniformity U on a set X induces a proximity relation 6(L); for
every 4,BC X, A5(W)B iff for every Pe, st(4,P)nB # . Let
pW = {PeU: P has a finite refinement belonging to U}. The family
pW is the greatest totally bounded uniformity contained in U and for
every A, BCX

Ad(W)B it Ad(pW)B.
Let us call [U] = {V: pU = pU} the proximity class of the uniformity U.

Let P be a covering. A set D is said to be P-discrete iff for d # a,
d,d’ «D we have st(d, P) ~ st(d', P) = ©. A set D is said to be uniformly
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diserete iff there exists a P € U such that D is P-discrete. A uniformity
has no base consisting of coverings of power less than m iff there exists
a uniformly discrete set of power m ([3], pp. 24-25). We write bW >m
iff there exists a uniformly discrete set of power m. If a space X is metriz-
able and the weightX = mt, then there exists a uniformity with a count-
able base compatible with the topology on X, and for each such uni-
formity there exists a uniformly diserete set of power m, because such
uniformity does not have a base consisting of coverings of power less
than m.

Symbols < and < stand for refinement and star refinement.

The idea of the paper arises from Reed and Thron [7] and Reed [6].

2. In this paper we shall utilize a lemma proved by Pospiiil [5] (see
also [4] and [2], Theorem 9.2):

Levpia 1. If D ds an infinite sei, then there exist expexp|D| wlira-
filters on D having empty limits.

Levya 2. Let W be @ uniformity on a set X with a uniformly diserete
set DC X of power m = %,. Then there ewists a sét =, |m| = expexpm, of
ultrafilters on D having empty limits in the topological space (X, Bq)) and
such that for every F em a filter ¥ generated by o base

{st(4,P): A eF,Pepil}

48 the minimal Cauchy filter in pUs, F is not Cauchy filter in W and F # F'
iff F # 5.

Proof. Let DC X be a uniformly discrete set in U of power m.
From Lemma 1 it follows that there exist expexpm ultrafilters on D
having empty limits on D. Let us denote the family of ultrafilters by =.
For every & ex let & be a filter generated by a base {st(4,P): 4 ¢ F,
PepUl}.

Let P e be a covering such that D is P-discrete and let 5 .
Sinee for every 4 € ¥, [A| = ¥, there are no 4 ¢ P such that 4 C st(u, P)
for some A4 ¢ F. Thus & is not a Cauchy filter in U and so F.

To show that ¥ is a minimal Cauchy filter in p2Us it suffices to show
that a filter in X generated by & is a Cauchy filter in pQU. Let P be a finite
covering belonging to pW. Put Pp = {u ~ D: u ¢ P}. Since Py, is a finite
covering of D and ¥ is an ultrafilter on D, we have w ~ D e & and in
consequence % e F for some u e P.

If § # ', then An A= for some A ¢ F and A’ ¢ . Tet P eUs

be such that P < P, and D is P, -discrete. A covering
Q= {st(4,P), U{ueP: st(u, P) ~ 4 0}, st(4’, P),
UfueP: st(u, P)n A" £ 0}, U {ueP: st(u, P) ~ (4 v A')=0}}
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belongs o pU and st(4, @) ~st(4', Q) = @ because st(4, Q) C st(4, P,)

and st(4’,Q)Cst(4’, P,). Thus F % 7.
Since every element of a ﬁltg_r F em is closed in the space X we have
ImF =@ in X and hence im¥ = @ in X. This completes the proof.

Notice that the Lemma can be deduced also from two facts; if a D is
an infinite uniformly discrete set, then the closure of D is 8D and |D|
= expexp |D|.

TuEoREM 1 (Reed). Let AU be o uniformity on a set X with b > m > Ry
Then the promimity class [] contains ai least expexpm distinct unifor-
mities.

TErOREM 2. Lét W be a uniformity on o set X with bW = m = x.

Then there ewist at least expexpm uniformities U contained in U with
U =m =N, and‘belong'mg to distinct prozimity classes.

Remark. If a topological space X has a dense set of power 11, then
there exist no more than expexpm uniformities on X.

Proof of Theorems 1 and 2. Let Dbe a uniformly discrete set
of power m and let = be a family of ultrafilters on D having empty limits.
From Lemma 1 it follows that |n} = expexpm.

For every & em let Ug be a uniformity induced by & subbase con-
sisting of coverings belonging to p<U or of coverings of the form

Po={0: V=st(4,P) or v=uecP if unAd =0},

where A €5 and P eW. To verify that the subbase is well defined it
suffices to show that for every P4 there exists a P’ ¢ U such that P, P 4
Let us take P’ < P, P’ e

Let u’ e Py. Then o' = st(4, P') or w' ¢ P’. It u' = st(4, P’), then

st(u/, P) = st[st(4, P), P\
= {st(u, P'): st(u,PYn A0, ueP}Cst(4,P)ePy,

If o' e P’y and «' ¢ P’, then u' ~st(4d,P’) #0 or 4’ ~st{d, P')=@; if
uw' ~st(4, P') # @, then st(w, P’) n A # @ and st(v', P)) = st(4,P) v
vst(u, P)Cst(d, P)ePy; it o nst{d,P)=@, then st(uw',P))
= st(w', P') e v e P << P4. Thus the subbase is well defined.

Notice that pUg = pU because pU C Ug C U,

Now we show that if ¥ # F" then Ug # Usg. . There exist infinite
sets A eF and A’ eF’ which are subsets of D such that 4~ A" =0.
From the construction of the uniformities Ug and Ug it follows that
A i3 uniformly discrete in Ug and A is not uniformly discrete in Usg.
Hence Wy # g
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For every two filters § # &', F,F em, let us define a uniformity
Uy, 5+ induced by a subbase consisting of coverings of the form

Py go={v:o=st(dv 4, P)or v=ueP if un(dvwd)=0},

where A ¢ F, A’ ¢ 5 and PeU.

Let P eU be a covering such that D is P-discrete, [D] = m > x,.
There exist three disjoint sets 4,, A,, 4; such that |4 = |4, = [4y|=m
and D = A, u 4, v A,. Then, at most, two sets 4; and 4, from 4,, 4,, 4,
belong to F, F' and hence the set A, is P, 4, -discrete, 4 5 4, 4,. Hence
b‘l.l;a g = . ’

Let &, # F;, F,, F, exm be two filters such that Fy # &, 5 and
F1# §,5" . Notice that the filters F,, F; have distinct minimal Cauchy
filters in pAg g and they have a common minimal Cauchy filter in
PUg, 5. Hence pUg, 5 # pUg, 51 ‘

The uniformity Uy g is compatible with the topology induced
by U. Let W be an open neighbourhood of & point # ¢« X. It may be as-
sumed that W = st(z, P), P ¢ . Since the filters § and 5’ have empty
limits, there exists a P’ ¢ U such that st(z, P') n A =st(z, P)nA'=0
for some 4 ¢ and A’ e F'. Let P’ ¢ U be such that D is P’'-discrete
and P E P, P Z P, Then st(z, Py 4)Cst(z, Py )= W. This com-
pletes the proof.

Proof of the remark. Let 4 be a dense subset of X of power m.
There are no more than expexpm families of subsets of A X A containing
the diagonal of 4 X A; thus there are no more uniformities on X than
exp expi.

THEEOREM 3. Let W and VU be uniformities on sets X and Y, respectively.
If bW =m= N, and bV =m, then there ewist at least expexpm uni-
formities U.g belonging to [W] and there exist at least expexpm uniformities
Uy belonging to [U] such that if & # F', then p(Ug X VUg) # D (Uge X Ugr).

Proof. Let DC X Dbe a uniformly discrete set in U and let 0C Y
be a uniformly discrete set in U such that |D| = |C]| = m. Let ¢: D—C
be a 1-1 map. Let i, and o, be families of all the ultrafilters on D and ¢
having emptby limits. There exists a 1-1 map y: n,—>n, defined By w(5F)
= {p(4): 4 eF}. Let WUy and Vg = Vg be uniformities defined as in
the proof of Theorems 2 and 3. Assume that & # §' and ¥, F' e . There
exists a set 4 ¢ F such that A ~ 4’ = O for some A’e F'. The set A’ is
uniformly discrete in Uy but not in Ug..

Let us consider the sets

B, = {(a, p(a)): acA},
By={(a', p(a)): a # &', 0, aed}.
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Let 85 and 8z mean the proximity relations induced by e XU,

and Ugr X Vg, respectively. Let P e U, @ € U be such that D is P- ddl:scretger
and O is @-discrete. Then st(B,, P, x Quay) "By =10 (the covering
P, is defined in the proof of Theorems 2 and 3), because 4 is P, - discrete
and @(4) 18 Qu4y-discrete. Thus B, nondg B,. But B, 85 B, holds. In
fact, since every basic covering P’ ¢ Uyg is a form P’ = PL A APEA
AQy Ao NQm, where PPe W, A;e F and Q; € pU, there ezzists a 1y e’P'
which contains at least ¥, elements of 4. For the same reasons for every
Q e Ug there exists a v, € @ which contains at least X, elements of p(u, ~ 4)
C 0. Hence there exist some a s o’ such that a,a’ ¢ 70y A pluy ~ A)].
The points (@, (a)) and (a', p(a)) belong to 1y X ,. Thus sb(B;, Px Q) ~
N B, # 0, for every P ¢ Ug, @ ¢ Ugz. Hence B, 65 B

-

CoROLLARY. If the spaces X and ¥ are not pseudocompact, then there
ewist at least 2° compactifications of the product X x ¥ finer than BX x Y.
If, in eddition, X and Y are metric with weight X = weight ¥ = m, m is
rogular, then the set of the compactifications of X x Y finer than X x BY
is equal to expexpm.

Proof. If X and Y are not pseudocompact then the finest unifor-
mities W on X and U on ¥ compatible with the topologies are not tot-
ally bounded. This means that bW = ¥, and 5V > ¥,. The completion of
(X, pU) leads to fX, the completion of (¥, p°U) to Y and the completion
of pUXpVU to X x Y. By Theorem 3, there exist at least 2° uni-
formities Ug X Vg on X X Y such that all the uniformities p(Ug X Us)
are different from one another and finer than pU X pU. The compactifi-
cations of X X ¥ corresponding to p(UsXUg) are different from one
another and each of them majorizes X x fY¥.

- If X and Y are metric, then there are no more than expexpm eom-
pactifications of X x Y, because X XY has a dense set of power n. And
there exist at least expexpm compactifications of X X ¥ finer than
BX X BY because the finest uniformities on X and ¥ have uniformly
discrete sets of power m.
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Ideals in subalgebras of C(X)
by
William E. Dietrich, Jr. (Austin, Texas)

Abstract. For a k-space X let O(X) denote the continuous real or complex-valued
functions on X; consider a uniformly closed subalgebra 4 of O(X). If B = {x ¢ X: |f(x)]
= sup|f()]} for some f ¢ 4, and if p ¢ B is isolated in the boundary of B or if X is first

teX
countable, then C(Ny) (Neo == the one point compactification of the natural numbers)
is a homomorphic image of A so that 1) the maximal ideal I, = {f ¢ 4: f(p)= 0} con-
tains 2¢ mutually disjoint infinite chains of prime ideals of 4; 2) I, is not countably
generated; 3) if 4 has a peak point nonisolated in X, then 4 has a finitely generated
ideal whieh is not principal and krull dim 4 = co.

Under further restrictions on X and 4, countably generated ideals and chains of
ideals of A are discussed. Applications to generalizations of the disc algebra are con-
sidered.

Let C(X) denote the algebra of complex-valued continuous funetions
on a space X. The relationship between X and C(X) has been studied
for a long time; it is known that if X is nontrivial in almost any sense,
0(X) has an intricate ideal structure with an abundance of prime ideals
in particular. For fixed X what aspects of this ideal structure do various
subalgebras A of C(X) share? We discover, roughly speaking, that when
A is uniformly closed and X has a modicum of compact parts, the al-
gebra of all continuous functions on the one point compactification N,
of the natural numbers is a homomorphic image of 4 and from known
properties of O (N.,), we deduce that 4 and O(X) share many qualitative
aspects (2.1 f). For example both will contain chains of prime ideals of
arbitrary length.

Tven more can be said about a class of subalgebras (§ 1) which
generalize to noncompact spaces the familiar notion of uniform algebra
[15]. Here a Silov boundary can be introduced and as with C(X) a elosed
countably generated ideal has a hull which meets this boundary in an.
open-closed get (3.6). Under further restrictions on X, chains of arbitrary
ideals are also discussed (§ 4). Our results generalize theorems in [10],
[11] and [13], and bear on the problem of characterizing C(X) among its
subalgebras discussed in [5] and [18].

The coneept of peak point (§ 1) serves as our motif. It is sueh point.;s,
together with uniform closure, which breed the intricacies which -dis-
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