

Proximity classes of uniformities

by

W. Kulpa (Katowice)

Abstract. If a uniformity $\mathfrak U$ on a set X is such that there exists a uniformly discrete subset of X of an infinite cardinality $\mathfrak m$, then there exist at least $\exp \exp \mathfrak m$ uniformities below $\mathfrak U$ belonging to distinct proximity classes and each of the proximity classes has at least $\exp \exp \mathfrak m$ distinct uniformities. In a case if the uniform space $(X, \mathfrak U)$ has a dense subspace of the cardinality $\mathfrak m$, then there exist exactly $\exp \exp \mathfrak m$ such uniformities. If uniformities $\mathfrak U$ and $\mathfrak V$ on sets X and Y are such that there exist uniformly discrete sets in X and Y of an infinite cardinality $\mathfrak m$ then there exist at least $\exp \exp \mathfrak m$ uniformities $\mathfrak U_a$ and $\mathfrak V_a$ belonging to the proximity classes of $\mathfrak U$ and $\mathfrak V$, respectively, such that the proximity classes of the products $\mathfrak U_a \times \mathfrak V_a$ are distinct for distinct indices a.

1. The uniformities considered in this paper are of the covering type (see [2]). All the topological spaces are completely regular. If we consider a family of uniformities on a set, then we understand that the uniformities of this family are compatible with a given topology.

Let $\mathfrak U$ be a uniformity on a set X. A filter $\mathcal F$ on X is said to be a *Cauchy filter* in $\mathfrak U$ iff for every covering $P \in \mathfrak U$ we have $P \cap \mathcal F \neq \emptyset$. Every Cauchy filter $\mathcal F$ is contained in a unique minimal Cauchy filter, which is induced by a base $\{\operatorname{st}(A,P)\colon A\in\mathcal F, P\in\mathfrak U\}$. If two minimal Cauchy filters have a common limit, then they are equal. This enables us to construct a completion $i\colon (X,\mathfrak U)\subset (\widetilde X,\widetilde U)$, where the set $\widetilde X$ is the set of all minimal Cauchy filters in $\mathfrak U$ and the uniformity $\widetilde U$ is induced by a base $\{\widetilde P\colon P\in\mathfrak U\}$, where $\check P=\{\hat u\colon u\in P\}$ and $\tilde u=\{\mathcal F\in X\colon u\in \mathcal F\}$. The uniform dense embedding i is defined by a condition $i(x)=\mathcal F$ iff $x=\lim \mathcal F$ (see [1]). The minimal Cauchy filters having empty limits form the remainder $\widetilde X-i(X)$ of the completion of the space $(X,\mathfrak U)$.

A uniformity $\mathfrak U$ on a set X induces a proximity relation $\delta(\mathfrak U)$; for every $A,B\subset X$, $A\delta(\mathfrak U)B$ iff for every $P\in \mathfrak U$, $\operatorname{st}(A,P)\cap B\neq\emptyset$. Let $p\mathfrak U=\{P\in \mathfrak U\colon P\text{ has a finite refinement belonging to }\mathfrak U\}$. The family $p\mathfrak U$ is the greatest totally bounded uniformity contained in $\mathfrak U$ and for every $A,B\subset X$

 $A\delta(U)B$ iff $A\delta(pU)B$.

Let us call $[\mathfrak{A}] = \{V \colon p\mathfrak{A} = p\mathfrak{A}\}$ the proximity class of the uniformity \mathfrak{A} . Let P be a covering. A set D is said to be P-discrete iff for $d \neq d'$, d, $d' \in D$ we have $\operatorname{st}(d, P) \cap \operatorname{st}(d', P) = \emptyset$. A set D is said to be uniformly 1—Fundamenta Mathematicae, T. LXXXVI

discrete iff there exists a $P \in \mathbb{N}$ such that D is P-discrete. A uniformity \mathbb{N} has no base consisting of coverings of power less than \mathbb{N} iff there exists a uniformly discrete set of power \mathbb{N} ([3], pp. 24–25). We write $\mathbb{N} = \mathbb{N}$ iff there exists a uniformly discrete set of power \mathbb{N} . If a space \mathbb{N} is metrizable and the weight $\mathbb{N} = \mathbb{N}$, then there exists a uniformity with a countable base compatible with the topology on \mathbb{N} , and for each such uniformity there exists a uniformly discrete set of power \mathbb{N} , because such uniformity does not have a base consisting of coverings of power less than \mathbb{N} .

Symbols < and $\stackrel{*}{<}$ stand for refinement and star refinement.

The idea of the paper arises from Reed and Thron [7] and Reed [6].

2. In this paper we shall utilize a lemma proved by Pospíšil [5] (see also [4] and [2], Theorem 9.2):

LEMMA 1. If D is an infinite set, then there exist $\exp \exp |D|$ ultrafilters on D having empty limits.

LEMMA 2. Let U be a uniformity on a set X with a uniformly discrete set $D \subset X$ of power $m \geqslant \aleph_0$. Then there exists a set π , $|\pi| = \exp \exp m$, of ultrafilters on D having empty limits in the topological space $(X, \mathfrak{G}_{\text{U}})$ and such that for every $\mathcal{F} \in \pi$ a filter $\overline{\mathcal{F}}$ generated by a base

$$\{\operatorname{st}(A,P)\colon A\in\mathcal{F}, P\in p\mathbb{U}\}$$

is the minimal Cauchy filter in pU, \overline{F} is not Cauchy filter in U and $\overline{F} \neq \overline{F}'$ iff $F \neq F'$.

Proof. Let $D \subseteq X$ be a uniformly discrete set in $\mathfrak U$ of power $\mathfrak m$. From Lemma 1 it follows that there exist expexp $\mathfrak m$ ultrafilters on D having empty limits on D. Let us denote the family of ultrafilters by π . For every $\mathcal F \in \pi$ let $\overline{\mathcal F}$ be a filter generated by a base $\{\operatorname{st}(A,P)\colon A\in \mathcal F, P\in P\mathfrak U\}$.

Let $P \in \mathcal{U}$ be a covering such that D is P-discrete and let $\mathcal{F} \in \pi$. Since for every $A \in \mathcal{F}$, $|A| \geqslant \aleph_0$, there are no $u \in P$ such that $A \subset \operatorname{st}(u, P)$ for some $A \in \mathcal{F}$. Thus \mathcal{F} is not a Cauchy filter in \mathcal{U} and so $\overline{\mathcal{F}}$.

To show that $\overline{\mathcal{F}}$ is a minimal Cauchy filter in $p\mathfrak{A}$ it suffices to show that a filter in X generated by \mathcal{F} is a Cauchy filter in $p\mathfrak{A}$. Let P be a finite covering belonging to $p\mathfrak{A}$. Put $P_D = \{u \cap D \colon u \in P\}$. Since P_D is a finite covering of D and \mathcal{F} is an ultrafilter on D, we have $u \cap D \in \mathcal{F}$ and in consequence $u \in \mathcal{F}$ for some $u \in P$.

If $\mathcal{F} \neq \mathcal{F}'$, then $A \cap A' = \emptyset$ for some $A \in \mathcal{F}$ and $A' \in \mathcal{F}'$. Let $P \in \mathcal{U}$ be such that $P \stackrel{*}{\leqslant} P_1$ and D is P_1 -discrete. A covering

$$Q = \{\operatorname{st}(A, P), \ \bigcup \{u \in P \colon \operatorname{st}(u, P) \cap A \neq \emptyset\}, \ \operatorname{st}(A', P), \\ \bigcup \{u \in P \colon \operatorname{st}(u, P) \cap A' \neq \emptyset\}, \ \bigcup \{u \in P \colon \operatorname{st}(u, P) \cap (A \cup A') = \emptyset\}\}$$

belongs to pU and $\operatorname{st}(A,Q) \cap \operatorname{st}(A',Q) = \emptyset$ because $\operatorname{st}(A,Q) \subset \operatorname{st}(A,P_1)$ and $\operatorname{st}(A',Q) \subset \operatorname{st}(A',P_1)$. Thus $\overline{F} \neq \overline{F}'$.

Since every element of a filter $\mathcal{F} \in \pi$ is closed in the space X we have $\lim \mathcal{F} = \emptyset$ in X and hence $\lim \overline{\mathcal{F}} = \emptyset$ in X. This completes the proof.

Notice that the Lemma can be deduced also from two facts; if a D is an infinite uniformly discrete set, then the closure of D is βD and $|\beta D|$ = $\exp \exp |D|$.

THEOREM 1 (Reed). Let U be a uniformity on a set X with bU $\geqslant m \geqslant \aleph_0$. Then the proximity class [U] contains at least expexpm distinct uniformities.

THEOREM 2. Let U be a uniformity on a set X with bU $\geqslant m \geqslant \aleph_0$. Then there exist at least expexpm uniformities U contained in U with bU $\geqslant m \geqslant \aleph_0$ and belonging to distinct proximity classes.

Remark. If a topological space X has a dense set of power m, then there exist no more than expexpm uniformities on X.

Proof of Theorems 1 and 2. Let D be a uniformly discrete set of power m and let π be a family of ultrafilters on D having empty limits. From Lemma 1 it follows that $|\pi| = \exp \exp m$.

For every $\mathcal{F} \in \pi$ let $\mathfrak{U}_{\mathcal{F}}$ be a uniformity induced by a subbase consisting of coverings belonging to $p\mathfrak{U}$ or of coverings of the form

$$P_A = \{v: V = \operatorname{st}(A, P) \text{ or } v = u \in P \text{ if } u \cap A = \emptyset\},$$

where $A \in \mathcal{F}$ and $P \in \mathcal{U}$. To verify that the subbase is well defined it suffices to show that for every P_A there exists a $P' \in \mathcal{U}$ such that $P'_A \stackrel{*}{<} P_A$. Let us take $P' \stackrel{*}{<} P$, $P' \in \mathcal{U}$.

Let $u' \in P'_A$. Then $u' = \operatorname{st}(A, P')$ or $u' \in P'$. If $u' = \operatorname{st}(A, P')$, then

$$\operatorname{st}(u', P'_{A}) = \operatorname{st}[\operatorname{st}(A, P'), P'_{A}]$$

$$=\bigcup\left\{\operatorname{st}(u,P')\colon\operatorname{st}(u,P')\cap A\neq\emptyset,\ u\in P'\right\}\subset\operatorname{st}(A,P)\in P_A,$$

If $u' \in P'_A$ and $u' \in P'$, then $u' \cap \operatorname{st}(A, P') \neq \emptyset$ or $u' \cap \operatorname{st}(A, P') = \emptyset$; if $u' \cap \operatorname{st}(A, P') \neq \emptyset$, then $\operatorname{st}(u', P') \cap A \neq \emptyset$ and $\operatorname{st}(u', P'_A) = \operatorname{st}(A, P') \cup \operatorname{st}(u', P') \subset \operatorname{st}(A, P) \in P_A$; if $u' \cap \operatorname{st}(A, P') = \emptyset$, then $\operatorname{st}(u', P'_A) = \operatorname{st}(u', P') \in v \in P < P_A$. Thus the subbase is well defined.

Notice that $p \mathfrak{U}_{\mathcal{F}} = p \mathfrak{U}$ because $p \mathfrak{U} \subset \mathfrak{U}_{\mathcal{F}} \subset \mathfrak{U}$.

Now we show that if $\mathcal{F} \neq \mathcal{F}'$ then $\mathfrak{U}_{\mathcal{F}'} \neq \mathfrak{U}_{\mathcal{F}'}$. There exist infinite sets $A \in \mathcal{F}$ and $A' \in \mathcal{F}'$ which are subsets of D such that $A \cap A' = \emptyset$. From the construction of the uniformities $\mathfrak{U}_{\mathcal{F}}$ and $\mathfrak{U}_{\mathcal{F}'}$ it follows that A is uniformly discrete in $\mathfrak{U}_{\mathcal{F}'}$ and A is not uniformly discrete in $\mathfrak{U}_{\mathcal{F}}$. Hence $\mathfrak{U}_{\mathcal{F}'} \neq \mathfrak{U}_{\mathcal{F}'}$.

For every two filters $\mathcal{F} \neq \mathcal{F}'$, \mathcal{F} , $\mathcal{F}' \in \pi$, let us define a uniformity $\mathfrak{A}_{\mathcal{F},\mathcal{F}'}$ induced by a subbase consisting of coverings of the form

$$P_{A,\,A'} = \{v\colon v = \operatorname{st}(A \cup A',\,P) \text{ or } v = u \in P \text{ if } u \cap (A \cup A') = \emptyset\} \;,$$

where $A \in \mathcal{F}$, $A' \in \mathcal{F}'$ and $P \in \mathcal{U}$.

Let $P \in \mathbb{Q}$ be a covering such that D is P-discrete, $|D| = \mathfrak{m} \geqslant \aleph_0$. There exist three disjoint sets A_1, A_2, A_3 such that $|A_1| = |A_2| = |A_3| = \mathfrak{m}$ and $D = A_1 \cup A_2 \cup A_3$. Then, at most, two sets A_{i_1} and A_{i_2} from A_1, A_2, A_3 belong to $\mathcal{F}, \mathcal{F}'$ and hence the set A_{i_3} is $P_{A_{i_1}A_{i_2}}$ -discrete, $i_3 \neq i_1, i_2$. Hence $b\mathfrak{Q}_{\mathcal{F}, \mathcal{F}'} \geqslant \mathfrak{m}$.

Let $\mathcal{F}_1 \neq \mathcal{F}_1'$, \mathcal{F}_1 , $\mathcal{F}_1' \in \pi$ be two filters such that $\mathcal{F}_1 \neq \mathcal{F}$, \mathcal{F}' and $\mathcal{F}_1' \neq \mathcal{F}$, \mathcal{F}' . Notice that the filters $\overline{\mathcal{F}}_1$, $\overline{\mathcal{F}}_1'$ have distinct minimal Cauchy filters in $p \oplus_{\mathcal{F}_1, \mathcal{F}'}$ and they have a common minimal Cauchy filter in $p \oplus_{\mathcal{F}_1, \mathcal{F}'}$. Hence $p \oplus_{\mathcal{F}_1, \mathcal{F}'} \neq p \oplus_{\mathcal{F}_1, \mathcal{F}'}$.

The uniformity $\mathfrak{U}_{\mathcal{F},\mathcal{F}'}$ is compatible with the topology induced by \mathfrak{U} . Let W be an open neighbourhood of a point $x \in X$. It may be assumed that $W = \operatorname{st}(x,P)$, $P \in \mathfrak{U}$. Since the filters \mathcal{F} and \mathcal{F}' have empty limits, there exists a $P' \in \mathfrak{U}$ such that $\operatorname{st}(x,P') \cap A = \operatorname{st}(x,P') \cap A' = \emptyset$ for some $A \in \mathcal{F}$ and $A' \in \mathcal{F}'$. Let $P'' \in \mathfrak{U}$ be such that D is P''-discrete and $P'' \stackrel{**}{\leqslant} P$, $P'' \stackrel{**}{\leqslant} P'$. Then $\operatorname{st}(x,P'_{A,A'}) \subset \operatorname{st}(x,P_{A,A'}) = W$. This completes the proof.

Proof of the remark. Let A be a dense subset of X of power m. There are no more than expexpm families of subsets of $A \times A$ containing the diagonal of $A \times A$; thus there are no more uniformities on X than expexpm.

THEOREM 3. Let $\mathfrak U$ and $\mathfrak V$ be uniformities on sets X and Y, respectively. If $b\mathfrak U \geqslant \mathfrak m \geqslant \mathfrak s_0$ and $b\mathfrak V \geqslant \mathfrak m$, then there exist at least $\exp \exp \mathfrak m$ uniformities $\mathfrak U_{\mathcal F}$ belonging to $[\mathfrak U]$ and there exist at least $\exp \exp \mathfrak m$ uniformities $\mathfrak V_{\mathcal F}$ belonging to $[\mathfrak V]$ such that if $\mathcal F \neq \mathcal F'$, then $p(\mathfrak U_{\mathcal F} \times \mathfrak V_{\mathcal F}) \neq p(\mathfrak U_{\mathcal F} \times \mathfrak V_{\mathcal F'})$.

Proof. Let $D \subset X$ be a uniformly discrete set in $\mathbb U$ and let $C \subset Y$ be a uniformly discrete set in $\mathbb V$ such that $|D| = |C| = \mathfrak m$. Let $\varphi \colon D \to C$ be a 1-1 map. Let π_D and π_C be families of all the ultrafilters on D and C having empty limits. There exists a 1-1 map $\psi \colon \pi_D \to \pi_C$ defined by $\psi(\mathcal F) = \{\varphi(A) \colon A \in \mathcal F\}$. Let $\mathbb U_{\mathcal F}$ and $\mathbb V_{\mathcal F} = \mathbb V_{\psi(\mathcal F)}$ be uniformities defined as in the proof of Theorems 2 and 3. Assume that $\mathcal F \neq \mathcal F'$ and $\mathcal F$, $\mathcal F' \in \pi$. There exists a set $A \in \mathcal F$ such that $A \cap A' = \emptyset$ for some $A' \in \mathcal F'$. The set A' is uniformly discrete in $\mathbb U_{\mathcal F}$ but not in $\mathbb U_{\mathcal F'}$.

Let us consider the sets

$$\begin{split} B_1 &= \{(a, \varphi(a)) \colon \ a \in A\} \ , \\ B_2 &= \{(a', \varphi(a)) \colon \ a \neq a', \ a', \ a \in A\} \ . \end{split}$$

COROLLARY. If the spaces X and Y are not pseudocompact, then there exist at least 2^c compactifications of the product $X \times Y$ finer than $\beta X \times \beta Y$. If, in addition, X and Y are metric with weight $X = \text{weight } Y = \mathfrak{m}, \ \mathfrak{m}$ is regular, then the set of the compactifications of $X \times Y$ finer than $\beta X \times \beta Y$ is equal to $\exp \exp \mathfrak{m}$.

The points $(a, \varphi(a))$ and $(a', \varphi(a))$ belong to $u_0 \times v_0$. Thus st $(B_1, P \times Q)$

 $\cap B_2 \neq \emptyset$, for every $P \in \mathcal{U}_{\mathfrak{F}}$, $Q \in \mathcal{V}_{\mathfrak{F}}$. Hence $B_1 \delta_{\mathfrak{F}} B_2$.

Proof. If X and Y are not pseudocompact then the finest uniformities $\mathfrak U$ on X and $\mathfrak V$ on Y compatible with the topologies are not totally bounded. This means that $b\mathfrak U\geqslant\aleph_0$ and $b\mathfrak V\geqslant\aleph_0$. The completion of $(X,p\mathfrak U)$ leads to βX , the completion of $(Y,p\mathfrak V)$ to βY and the completion of $p\mathfrak U\times p\mathfrak V$ to $\beta X\times\beta Y$. By Theorem 3, there exist at least 2^c uniformities $\mathfrak U_{\mathcal F}\times\mathfrak V_{\mathcal F}$ on $X\times Y$ such that all the uniformities $p(\mathfrak U_{\mathcal F}\times\mathfrak V_{\mathcal F})$ are different from one another and finer than $p\mathfrak U\times p\mathfrak V$. The compactifications of $X\times Y$ corresponding to $p(\mathfrak U_{\mathcal F}\times\mathfrak V_{\mathcal F})$ are different from one another and each of them majorizes $\beta X\times\beta Y$.

If X and Y are metric, then there are no more than expexpm compactifications of $X \times Y$, because $X \times Y$ has a dense set of power m. And there exist at least expexpm compactifications of $X \times Y$ finer than $\beta X \times \beta Y$ because the finest uniformities on X and Y have uniformly discrete sets of power m.

References

[1] N. Bourbaki, Topologie genéralé, Paris 1948.

[2] L. Gillman and M. Jerison, Rings of Continuous Functions, New York 1960.

[3] J. R. Isbell, Uniform Spaces, Providence 1964.

[4] S. Mrówka, On the potency of subsets of βN , Colloq. Math. 7 (1959–1960), pp. 23–25.

[5] B. Pospíšil, Remark on bicompact spaces, Ann. of Math. 38 (1937), pp. 845-846.

[6] E. E. Reed, Uniformities obtained from filter spaces, Port. Math. 30 (1971), pp. 29-40. W. Kulpa

[7] E. E. Reed — and W. J. Thron, m-bounded uniformities between two given uniformities, Trans. Amer. Soc. 141 (1969), pp. 71-77.

UNIWERSYTET ŠLĄSKI Katowice

Reçu par la Rédaction le 16. 2. 1973

Ideals in subalgebras of C(X)

by

William E. Dietrich, Jr. (Austin, Texas)

Abstract. For a k-space X let C(X) denote the continuous real or complex-valued functions on X; consider a uniformly closed subalgebra A of C(X). If $E = \{x \in X : |f(x)| = \sup|f(t)|\}$ for some $f \in A$, and if $p \in E$ is isolated in the boundary of E or if X is first $t \in X$ countable, then $C(N_{\infty})$ (N_{∞} = the one point compactification of the natural numbers) is a homomorphic image of A so that 1) the maximal ideal $I_p = \{f \in A : f(p) = 0\}$ contains 2^{∞} mutually disjoint infinite chains of prime ideals of A; 2) I_p is not countably generated; 3) if A has a peak point nonisolated in X, then A has a finitely generated ideal which is not principal and krull $\dim A = \infty$.

Under further restrictions on X and A, countably generated ideals and chains of ideals of A are discussed. Applications to generalizations of the disc algebra are considered.

Let C(X) denote the algebra of complex-valued continuous functions on a space X. The relationship between X and C(X) has been studied for a long time; it is known that if X is nontrivial in almost any sense, C(X) has an intricate ideal structure with an abundance of prime ideals in particular. For fixed X what aspects of this ideal structure do various subalgebras A of C(X) share? We discover, roughly speaking, that when A is uniformly closed and X has a modicum of compact parts, the algebra of all continuous functions on the one point compactification N_{∞} of the natural numbers is a homomorphic image of A and from known properties of $C(N_{\infty})$, we deduce that A and C(X) share many qualitative aspects (2.1 ff). For example both will contain chains of prime ideals of arbitrary length.

Even more can be said about a class of subalgebras (§ 1) which generalize to noncompact spaces the familiar notion of uniform algebra [15]. Here a Silov boundary can be introduced and as with C(X) a closed countably generated ideal has a hull which meets this boundary in an open-closed set (3.6). Under further restrictions on X, chains of arbitrary ideals are also discussed (§ 4). Our results generalize theorems in [10], [11] and [13], and bear on the problem of characterizing C(X) among its subalgebras discussed in [5] and [18].

The concept of peak point (§ 1) serves as our motif. It is such points, together with uniform closure, which breed the intricacies which dis-