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Some finitely generated subsemigroups of 8(x)
by
Saraswathi Subbiah (Amherst, N. Y.)

Abstract. S(X) is the semigroup, under composition, of all continuous selfmaps
of the topological space X and the topology on §(X) is the compact-open topology.
It is shown that there are a large number of spaces with the property that the corre-
sponding semigroup contains a dense semigroup generated by either two or three fune-
tions. Monothetic subsemigroups of 8(X) are also investigated. However, thess cannot
coincide with S(X) if X has more than one point.

1. Introduction. The symbol S8(X) denotes the semigroup, under
composition, of all continuous selfmaps of a topological space X. We
equip S(X) with the compact-open topology. Our primary interest is
in finding the least number of functions in §(X) which will generate
2 dense subsemigroup of §(X). Sierpinski [8] has shown that there exist
four functions in S(I) which generate a dense subsemigroup of S(I),
where I is the closed unit interval. Jarnik and Knichal [4] produced two
functions which generate a dense subsemigroup of §(I). Young [10]showed
by a completely different approach, that there exist dense two-generator
subsemigroups of the family of all continuous onto selfmaps of I.

We first study cyclic subsemigroups of §(X) and their closures to
see how large these can be when X is discrete, the reals or the interval I.
When X is discrete, S(X) is just the full transformation semigroup on X
and for this, we use the notation Bx. We then prove that for a large
class of spaces X, there exist dense two-gemerator or three-generator
subsemigroups of S(X).

As a corollary to one of our theorems we obtain the well-known
result of Evans [3] that any countable semigronp can be embedded in
a semigroup with two generators.

2. Monothetic subsemigroups of Gx. We first recall some notation
from the literature on general topological semigroups. Let § be a to-
pological semigroup and let @< S. Then Cl({a"}7.,) is called the mono-
thetic subsemigroup of § generated by o and it is denoted by I'(a). We
denote the set of cluster points of {a"}, by K(a). It is clear that I'(a)
is commutative.

When we topologize 8(X), it will be with the compact-open topology.
We recall that a typical subbasic open set is of the form (K, G>
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= {f e §(X): f(K)C G} where K is compact and @ is open. For By thig

icm

. coincides with the topology of pointwise convergence and results in

3 topological semigroup. In this section we consider I'(f) and E(f)
for feBz.

DEerFINITION (2.1). For fe Gx and ze¢X, we define the orbit of&:m
under f to be the set {f(x): » ¢ N} and denote it by Oy(x).

THEEOREM (2.2). I'(f) is compact if and only if the orbits under f are
all finite.

Proof. Bince X is discrete, we see that if g e I'(f) then for any given
xeX there is an ne N such that g(z)=f"(z). Hence I'(f)(x) = O(z)
for each z ¢ X. If I'(f) is compact then so is I'(f)(x) because the evalu-
ation map at z is a continuous map from By inte X; so Of(w) = I'(f)(z)
is finite for each # ¢ X. On the other hand, if Ox(z) is finite for each z ¢ X,
then I'(f) is a closed subset of the compact space II{Oy(w): 2 e X}.

THEOREM (2.3). I'(f) is an infinite compact semigroup if and only if
Of(@) is finite for each x < X and {Card Os(z): = ¢ X} is unbounded.

Proof. We know by the previous theorem that I'(f) is compact if
and only if each Of(z) is finite. Now suppose {Card Os(z): # ¢ X} is bounded.
Let Card O/(z) <k for all # ¢ X. Then we have f*% = f% 5o that {f*}2
is a repeating sequence and henee I'(f) = {f"}2, is a finite set.

On the other hand, if {Card Os(x): #€ X} is unbounded, then given
any 7 ¢ N, we can find # « X such that Card Os(z) >, so that fl@), f4=), ...
-, [™{(@) are all different. Hence {f™}7_, is & non-repeating sequence, 0
T'(f) is infinite. Thus if each Ox(x) is finite and {Card Os(z): @ « X} is un-
bounded we see that I'(f) is an infinite compact semigroup.

THEOREM (2.4). If Of(x) is infinite for some x ¢ X, then K (f) is empty
and I'(f) is an infinite cyclic semigroup.

Proof. If Of#) is infinite for some @ e X, then f(z) # f™x) for
7 # m. Suppose K (f) is nonempty. Let & be in K(f). Then Aa}, {k(z)}>
is a subbasic open set containing %, so we have f*e ({z} y {k(z)}> for
infinitely many . That is, f*(z) = k(z) for infinitely many = which is
impossible because f*(z) # f™(x) for n # m. Hence K (f) is empty and
I'(f) = {f*}7, an infinite eyclic semigroup.

We see that K(f) is either empty or a compact monothetic group.
If all the Of(w) are finite then I'(f) is compact and so K (f) is a compact
group [7, p. 109]; in fact K (f) = I'(fe) where e is the identity of K (f).
So K (f) is also monothetic. If some Oy(z) is infinite, then by the above
theorem K (f) is empty.

We can say something more about K (f). The set

{Card 0s(2): € Of(w)} u {1}
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completely characterizes K (f). Before we prove this, we first establish
a lemma.

LmMmA (2.5). Let ¥ be a discrote space and let {4;: j ¢ J} be a partition
of ¥ into finite subsets such that Card d; # Card 4; for k # j. Let p « Gy
be such that p is o cyclic permutation of each A;, j eJ. Then I'(p) = K{p)
and is infinite if and only if {Card.d;: jed} is unbounded.

Proof. Now the identity map ¢ is in K (p) and henece is the identity
of the group K (p). We have K(p) = I'(pi) = I'(p) and by Theorem (2.3),
it is infinite if and only if {Card 4;: j € J} is unbounded because the A,'s
are precisely the orbits under p.

THEOREM (2.6). Let f and g be any elemenis of Bx such that all their
orbits are finite. Then K(f) is isomorphic to K(g) if and only if

{1} v {Card Os(2): @ € Os()} = {1} v {Card O,(x): & € O ()} .

Proof. We first consider K(f). If ¢ is the identity of K (f), we
observe that for each @ ¢ X there is an n ¢ N such that e(z) = f™(«) since
we have the topology of pointwise convergence and X is discrete. Let us
denote the range of ¢ by V. Now 2 ¢ V if and only if e(2) = # since e is an
idempotent. But e(x) = # if and only if f(x) = e(x) = , that is, if and
only if z ¢ Of(x). Hence V = {z: & e Of(x)}.

Algo, for a,beV either Os(a) = Ox{b) or Osa) ~ Oxb) = @. Hence
there exists a partition {Ds: iel} of ¥ such that each D; is the orbit of
some element of V. Now let ¥ be a discrete space with a partition {4s: j eJ}
such that Card4; # Card4; for k # j, and such that

{Card 4;: jeJ} = {CardD;: ieI}v {1}.

As in Lemma (2.5), we define p ¢ By such that p is a cyclic permutation
of each A4;. We shall show that K (p) is isomorphie to K (f)-

Let ¢ be any element of K(p). Then there exists a subsequence
{p™2., of {p™}=_, which converges to ¢. This implies that for each j eJ
there exists I; e N such that p™ = g on A; for all i> I;, which means
ns = nymod(Card 4,) for all 4,t>1§;. On the other hand, if {ngde, is
a strictly increasing sequence of positive integers such that for each j eJ
there exists I; e ¥ with the property n; = nsmod (Card.4;) for all 4,1 > 1y,
then {p™}%, converges to the function ¢ e K (p) given by g(z) = p™(x)
for all @ ¢ A; where ¢ is any integer such that >l

We define a map @: K(p)—~E(f) as follows. Let g E(p) so that
there is a sequence {p™}%, converging to g. We shall show that {f™ 0 e},
converges and then define @(g) = Hm(f™ - e). Given any « ¢ X we have
e(x) e D, for some D, in the partition of V. Now Card D, = Card 4; for
some j eJ, so there exists l; in ¥ such that ns = nsmod(CardD,) for all

oo

i,t> ;. Hence f™(e()) = f™(e(x)) for all ,t>1l;. That is, {f™(e(=))}
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becomes stationary from a certain point on and so is convergent. Sinee
our topology is that of pointwise convergence, this shows that {f™ . e,
converges. Also

E(f) = CL{(f > &)"}ums) = CL{f" o e}is) -
go Lim (f™ o ¢) € K (f).

Next we show that @ is one-to-one. If ¢, 7 are in K (p) and q # b
then there is a y ¢ ¥ such that g(y) # h(y). Suppose y ¢ 4; and let z he
any point in some D, such that CardD,= Oard4;. Let {p™}2 and
{p™}%., be any two subsequences of {p"}7.; converging to ¢ and h, re-
spectively. Then there exists an l; ¢ N such that ¢(y) = p™(y) and h(y)
= p™(y) for any i ¢ N, i > 1;. This means n; & mymod (Card 4;) for any
ie N, i=1; because ¢(y) # A(y). But this implies that @ (q)(z) # & (k) (@)
because @(g)(z) = f™(z) and @ (h)(z)= f™(x) for any ieN, i>1; and
ni 5= mymod (Card D). Hence @ (q) # @ (h), so D is one-to-one.

To see that it is onto, we observe that if {f™e}3, is a convergent
subsequence of {f"e};,, then {n;};2, is a strictly increasing sequence of
positive integers such that for each D, we have n; = nsmod(Card.D,) for
all sufficiently large ¢ and ¢, so that for each j ¢J there exists I; ¢ N such
that ny = nsmod(Card 4;) for all %, ¢ > I;. This is precisely what we need
for {p™}7L; to converge. If limp™ = ¢ it is clear that ®(g) = lim(f™e).
Hence @ is onto K (f).

Finally, if limp™ = ¢ and limp™ = h then Lmp™*™) = g+ h and so

®(g o h) = lim (f™*™ o ¢) = Hm[(f™ o £) o (f™ o €)]
= [lm (/™ o ¢)] o [ (f™ o )] = B (q) o B(h)
and so @ is a homomorphism.

We have shown that K (f) is isomorphic to K(p). Similarly K (g) is
isomorphic to K(p). Hence K (f)=~XK(g).

3. Monothetic subsemigroups of S (I) and §(R). The behaviour of mono-
thetic subsemigroups of §(X) when X is an arbitrary topological space
is not so easy to determine. We consider only the special cases when X is
the unit interval I or the reals R. Now Boyce [1, p. 96] has completely
determined when I'(f) is compact, for fe§(I) or § (R). We first state
some of the results he has obtained. A map [ is precompact if it has fixed
points, f(z) >« for all z smaller than the smallest fixed point of f and
J(#) < = for all  larger than the largest fixed point of f. All the functions
in 8(I) are precompact because I is compact, A map f is called I'-compact
if I'(f) is compact.

TaEOREM (3.1) (Boyce) [1, p. 96]. Let f be an element of either S(I)
or 8(R). Then f is I'-compact if and only if f o f is precompact and the fized
point set of fof is conmected.

icm°
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Our aim is to show that if I'(f) is not compact then it has to be
discrete.

THEOREM (3.2). Let f be an element of either S(I) or S(R). If the fiwed
point set of f is mot connected then K (f) is empty and I'(f) is an infinite
eyclic semigroup.

Proof. Suppose the fixed point set of f is not connected. Then there
exist a, b ¢ B such that f(a) = a, f(b) = b and f(z) # = for all z in (a, b).
It is clear that either f(#) > for all z in (a, d) or f(z)<a for all ¢ in
(@, b). We shall assume f(z) < # for all z in (a, b). (The proof for the other
case is similar to this.)

If f(#) >a for all « in (a,d), we see that {f*(z)}y_, is monotonic
strictly decreasing, bounded below by 4 and so converges to some y.
But then f(y) =y and so y has to be a. Hence limf™(z) = a for all z in
[a,b) and limf"(b) = b. Hence {f"};; has no cluster points; that is,
K(f) is empty and I'(f) = {f"}»., an infinite cyelic semigroup.

If f(#) < a for some % in (a, b), then f(z) = o for some x in (a, b).
We let ¢, = Sup{z: f(z) = a, z € (a, b)}. We have a<< ¢, <b and f
maps [e;, b] onto [a,b]. We see that there exists an = in (e, b) such
that f(z) = ¢;; that is, fiz) = a. We let ¢ = Sup{=: ‘fz(m) =a,s
e (a, b)}. Proceeding in this manner we get a strictly inereasing sequence
{cx} bounded above by b, such that e, = Sup{z: f'(z)= a,ze(a, b}
Let lime, = c.

Suppose {f*}&°_, has a cluster point k. Then we have k(c)=a, 50
c+#b since k(b)=1>b. We have a< 6, <0< e < Cp o< €< D. Choo‘se
any &< ¢,—a. Then there is an n such that | f™(e)—k(e)] < & that is,
f™e) < a+¢ because k(c) = a. But ate<< a, s0 fHe)< & ].E[enge there
is an @ in (e, b) such that f*(z) = ¢, because f*(b) = b. This implies that
™Y =2) = f(¢,) = @ which is a eontradjctiqn because & > Chyq- He:ce
{f™_, has no cluster points; that is, K (f) is empty and I'( = {Mn1s
and infinite cyelic semigroup.

Remark. The converse of Theorem (3.2) is not true. If fis any homeo-
morphism from I onto I such that f(0)=1, fy=0and fof is not thz
identity map then the fixed point set of f is eonntacted 'bu_t f;he ﬁxgd poin
set of f o f is not, hence K (f) is empty and I'(f) is an infinite eyelie semi-
group.

COROLLARY (3.3). If the fimed point set of f ° f is mot conmected then
E(f) is empty and I'(f) is an infinite eyclic semigroup. ‘

Proof. If k is a cluster point of f then & o.k is a cluster point 2of
(f o Fyo,. But {(fof)"}3, has no cluster points by Theorem (3.2).

n=1"*
COROLLARY (3.4). Let f be an element of either S(I) or S(R). Then I'(f)
is either compact or is an infinite cyclic semigroup.


GUEST


296 8. Subbiah

Proof. If feS(I) and I'(f) is not compact then by Theorem (3.1)
the fixed point set of fof is not connected and so by Corollary (3.3)
T'(f) is an infinite cyclic semigroup. ‘

If feS(R) and I'(f) is not compact then either the fixed point set
of fof is not connected, in which case again by Corollary (3.3) I'(f) is
an infinite eyclic semigroup, or f is not precompact. If the fixed point
set J of f o f is connected but f is not precompact then either J is empty
or f(z) < x for all x less than the least element of J or f(z) >« for all
greater than the greatest element of J, and in all three cases {f"}>>,
diverges. So in any ease I'(f) is an infinite eyelic semigroup since K (f)
is empty. .

We see that in S(I) and 8(R), K (f) is either empty or is a group of
one or two elements. This follows from Theorem 3 of Boyce [1, p. 91]
which states that if I'(f) is a compact semigroup then K (f) is either {e}
or {k, ¢} where ¢ is the identity on the fixed point set J of fof and & is
a sense-reversing self-inverse homeomorphism of J onto J. .

4. Dense subsemigroups of S (X). Now §(X) is monothetic if and only
if X has only one element. This follows from the fact that monothetic
semigroups are commutative. In the special case of the unit interval I,
‘we kmow that there exists a countable family {fu}o., dense in 8(I), because
S(I) is separable. Sierpiiski [8] showed that, given any countable family
{fa¥2_, of S(I), there exist four functions in §(I) which actually generate
{f.y2_, under composition; Jarnik and Knichal [4] produced two functions
which generate Sierpinski’s four functions. Hence there do exist two
functions in §(I) which generate a dense subsemigroup of S(I) and we
know this result cannot be improved upon.

We obtain similar results for two classes of spaces which, between
them, include all Euclidean spaces, all closed unit cubes in Euclidean
spaces, the countable discrete space and the Cantor discontinuum.

DEFINITION (4.1). A space X is said to have the internal extension
property if any continuous function from a closed subset F of X into X
can be extended continuously to all of X.

THEOREM (4.2). Let X be a space with the internal extension property.
Suppose there exists a countable family {A.: n e N} of mutually disjoint
closed subsets of X such that each A, is homeomorphic to X and each Ay is
open in ) {4da: n e N}. Suppose further that

(1) there eists @, in S(X) such that &y, = b, o by, for n >1 where,
for each m, hy is the homeomorphism mapping A, onto X;

(2) there exists a homeomorphism @, € §(X) mapping X onto a closed
subset of X such that @y, = hy};ohy and @y X) N 4, = O;

(3) any map ¥ which maps each A into Ay, and is continuous on
each A, can be continuously ewtended to all of X.
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Then given any countable family {f.)=, of 8(X), we can find two func-
tions ¥y, ¥, such that {f, )y, is contained in the semigroup generated by P,
and ¥,. .

Proof. First we produee five functions which will generate all the Tas
We take @3 to bé any continuous extension of h, to all of X. We take
@, = hi, so that &, maps X homeomorphically onto 4,. We take P, to
be the function in §(X) whose restriction to each Ay is A7 o fn o 5. Such
a function exists by (3).

We observe that @7, 7 can be expressed in terms of the fune-
tions hn. We have
Py t="h"eh, on 4y for mn>1,
and
Py t=Ttoh, on 4.
It is easily verified that
o=@y e Ol o By o 315 D,

‘We next produce two functions which generate these five functions.
We take our first function ¥; to be @,. Before we define our second fune-
tion we need to define some sets. We let

By = @;'(diz(X)) for ¢=1,2,3,4,5,
and
B, = OYX).
Since @,, ®, are homeomorphisms and P,(X)C X—A4,;, we have B:
C Pi(X)— Di(A4,); that is,
B, COIY4,)—PY4,) for i=1,..,5
and
B, = 9i(4,) .
The B;'s are clearly disjoint. They are also closed because D,(X) is closed
and @, is a homeomorphism of X onto the closed set 4,.
Now we are ready to define ¥,. We let ¥, be the function in §(X)
whose restrictions to the B’s are as follows:
B, 0 O° on By,
2“{@,. od7le &7t on By, i=1,2,3,4,5.
Such a function exists because X has the internal extension property.
It is again verified that

G,=WyoWioP,o W) for i=1,2,3,4,5.
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So we see that {f,}3, is contained in the semigroup generated by the
two elements ¥; and ¥,.

THROREM (4.3). Let X be the m-dimensional closed wnit cube I™. Then,
given any countable family { fJ2., of 8(X) there exist two functions in 8(X)
which generale a semigroup containing {fatnes-

Proof. For each n e N, let A, denote the product of m copies of the

1 1 .
closed interval [ﬁﬁ’m] for n=1,2,.. and let ks, be given by

(o0 0 h) (2) = 22 'm—1 for  d=1,..,m.
Let @, be any function in S(X) such thab
(1 o @) (z) = 4wy  whenever @4 ¢ [0, 311 for i=1,..,m.

With some caleulation, one shows that @il =k ;o hs for all nel.
We let @, be the function given by (m o $y)(2) = 1z for all @ ¢ X. The
space X has the internal extension property and the sets 4, and the
functions @,, D, satisfy the conditions of Theorem (4.2). Hence there
exist two functions in § (X) which generate a semigroup containing {f,}7.,.

THEOREM (4.4). Let X be the Cantor set K. Then given any countable
family {f)2., of 8(X), there ewist two functions in 8 (X) which generate
a semigroup containing {fytme:.

Proof. Here again X has the internal extension property [5, p. 281].

2 1
We let An=[ :lmK for n e N and see that all the conditions

of Theorem (4.1) are satisfied. The conclusion follows.

LeEMMA (4.5). Let X be any 0-dimensional separable metric space which
is the countable union of clopen sets each homeomorphic to X. Then given
any countable family {f,}o., of S(X), there exist two functions in S(X)
which generate a subsemigroup containing {f,}o_,.

Proof. The space X has the internal extension property [5, p. 281].
Conditions (2) and (3) of Theorem (4.2) are certainly satisfied because

X = {J 4, and so there are no extensions involved. Condition (1) of
n=1 o

Theorem (4.2) is also satisfied because | ] 4, is a clopen subset of X and
=2

x n=
50 any function continuous on { J 4, can be extended to all of X. Hence
n=2
the conclusion of Theorem (4.2) follows.
THEEOREM (4.6). Let X be the rationals, the irrationals or the countable
discrete space. Then, given any countable family {f,}x., of S(X) there ewist
two functions in 8{X) which generate a semigroup containing {f,}to.
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Proof. Bach of these spaces is 0-dimensional and is the countable
nnion of clopen sets each homeomorphie to the whole space. Hence the
conclusion follows by Lemma (4.5).

Since every countable semigroup can be embedded in the semigroup
of all selfmaps of a countably infinite set, we immediately get a well-
known theorem of T. Evans as a corollary to our previous theorem.

THEOREM (4.7) [Bvans [3]]. Every countcble semigroup can be em-
bedded in a semigroup with two generators.

If one is interested only in getting Evans’ theorem this is not the
most. efficient way to do it. A very short proof based on similar ideas is
given in [9].

THEOREM (4.8). Let X be the m-dimensional closed unit cube I™, the ir-
rationals, the rationals, the Canmior set or the countable discrete space and
let 8(X) have the compaci-open topology. Then there is a subsemigroup of
8(X), generated by two functions, which is dense in 8(X).

Proof. We know that §(X) is separable [6, p. 9211 If {f,};., is the
family that is dense in S(X), then by Theorems (4.3), (4.4) and (4.6}
there exist two functions which generate a subsemigroup of §(X) con-
taining {f,}>,. Clearly this subsemigroup is dense in S§(X).

We now look at another class of spaces such that for any space X in
the class S(X) has a dense subsemigroup which is generated by three
functions.

LEMvA (4.9). Let X be any space coniaining a countable collection of
mutually disjoint sets An, each homeomorphic to X, such thai each Ay i
clopen in | J {An: m e N}. Suppose further that there exists & function D, in
8(X) such that &, ,, = hy}y o ha for each n, where hy is the homeomorphism
mapping A, onto X. Finally, let {f}o, be any subfomily of 8(X) such
that fla, = fa o ba for each n and some f 8 (X). Then there are three func-
tions ¥, W, and Wy such that {f Yo, is contained in the semigroup generated
by ¥, ¥, and ¥,.

Proof. Welet ¥, = &;, ¥, = hi* and ¥ = f. Then ¥77%|,, = Bilohy
and we obtain

Jo="¥, c PP W,

We shall denote by C(X, Y) the space of all continuous functions
from X into Y where C(X, Y) has the compact-open topology.

LEMMA (4.10). Let J™ be the product of m copies of the open unit interval
and let p be any point of J™. Then there exists a countable collection F of
fumctions in S(J™) and a countable collection {B)o., of compact subsets
of J™ such that

(1) each compact subset of J™ is contained in some Bn,
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(2) for each By the family F* of restrictions of members of F to B, is
dense in C(Bag,J™), and

(3) for each f < F, there is a compact subset Ky of J™ such that f(z) = p
for @ eJ™— Ky,

Proof. For each positive integer n take B, to be the product of m

copies of the closed interval l;;%'_—i, 1— 7—1'——1Fi:| Since C(Bn,J™) is separ-
able, there exists a countable collection {g,;}%-; of functions which is
dense in G(Bn,J™). Extend g,, continuously over Ay v B, to a func-
tion g, , by defining g, (#) = p for  in A, where A =J,,— B,.,. Since
An v By, 8 closed and J™ is an absolute retract, each §,; can be continu-
ously extended to a function f,, in S(J™). Take F = {f,,: n,keN}
and the proof is complete.

THEOREM (4.11). Let X be any Euclidean m-space and let S(X) have
the compact-open topology. Then there exist three fumctions in S(X) which
generate a dense subsemigroup.

Proof. It will be convenient for us to take X to be one of the
spaces J™. Take 4, to be the product of m copies of the open interval

1 1
(?;;_—1, W) and let k, be the homeomorphism from A, onto J™ which

is given by
(me o hn)(m) = 2" 4—1 for i=1,..,m.
Let @, be the function in §(J™) which is given by '
(w0 P)(@)=1%2; for i=1,..,m.

One easily checks that @, satisfies the condition required in Lemma (4.8).
That is, @y, = ki, o by for each n. Let {f,)2, be the family & of
Lemma (4.9) and define a function f in S(J™) as follows: for 2 in 4, let

F(@) = falba(x)) and for @ in J™— {J 4,, let f(z) = p. Because of con-
n=1 -

dition (3) of Lemma (4.10) the function f is continuous. Moreover it
satisfies the condition of Lemma (4.9) that f| 4, = Jn o ha for each m.
Thus Lemma (4.9) assures us that there are three functions in S (J™)
which generate a subsemigroup that contains the family &. The proof
will be. complete when we show this family is dense in §(J ™).

Let H = (K, 0> .o Ky, Ge> be a nonempty basic open sub-
set of §(J™). Aceording to condition (1) of Lemma (4.10) some By contains
U {E}ims,....- Then H is a nonempty basic open subset of ¢ (Bu,J™)
and hence contains one of the functions gn,x- The corresponding function
Jax of F then belongs to H and the theorem is proved.
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We cannot apply Theorem (4.2) to S(E™) in order to get a dense
gubsemigroup of S(E™) generated by two functions because E™ is not
homeomorphic to a closed subset of ™. We have obtained a three gener-
ator dense subsemigroup of S{E™) but it is still an open question whether
this result can be improved upon.

These results are part of the author’s Ph. D. thesis written under -‘
Prof. K. D. Magill, Jr. at the State University of New York at Buffalo.
The author wishes to thank Prof. Magill for his guidance.
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