icm

On fundamental deformation retracts
and on some related notions
by

Karol Borsuk (Warszawa)

Abstract. The main result of this note is the following
TuporEM. If ¥, D ¥,2 ... is a sequence of fundamental deformation retracts of

o
a space X « FANR then the set ¥ = N Yn is o fundamental deformation retract of X.

M=y
Several notions, as the notion of the F-stability, of the FR-stability and of the
§-gtability of a compactum are introduced and also several problems formulated.

§ 1. Introduction. Among notions of the eclassical homotopy theory,
the notion of the stable space, due to H. Hopf and E. Pannwitz ([4],
p. 433) plays an essential role. A space X is said to be stable if for every
map f: X—X homotopic to the identity map ix: X—X, the relation
f(X)= X holds true. In particular all closed, compact manifolds are
stable.

A closed set ¥ C X is said to be a homotopy support (or an H-support)
of X if there exists a map f: X—X homotopic to ix and such that f (X)C Y.
Thus stable spaces are the same as spaces X without any H-support
different from X. In particular, every deformation retract of X is an
H-support of X, but not conversely. The question if every seb being
both a retract and an H-support of X is & deformation retract of X re-
maing open. It is clear that

(L1)  If Y is an H-support of X and Z is an H-support of ¥ then Z is
an H-support of X.

Tf X does not contain any deformation retract of X different from X,
then X is said to be R-stable. Notice that

(1.2)  Huvery stable space is R-stable.

But the converse is not true, even in the case of polyhedra, as it
follows by the following well-known example due to F. Hopf and
B. Pannwitz ([4], p. 435):

(1.3) BxampiE. Let L be an arc lying on a 2-sphere 8 and let a,b
denote its endpoints. Denote by Z the curvilinear polyhedron which one
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obtains from § by identifying the points ¢ and b. By this identification
the arc L passes onto a simple closed curve C lying in Z. Let 4 be a digk
with the boundary ¢ and with the interior disjoint to Z. Setting

P=AvZ,

one gets a curvilinear polyhedron and it is known ([4], p. 447) that Z ig
an H-support of P, hence P is not stable. However P is R -stable, because
none proper subset of P is a deformation retract of P.

The concepts of the stable and of R-stable spaces have in the case of
spaces with a rather regular local structure (as polyhedra, or as ANR-
spaces) a clear intuitive sense. However another situation is when one
considers spaces with a more complicated local structure. The aim of
this note is to apply the notions of the theory of shape in order to obtain
concepts which, for arbitrary compacta, seem to be reasonable substitutes
for the classical concepts of the stable and of R-stable spaces.

§ 2. F-stable and FR-stable spaces. Let X be a compactum lying in
a space M ¢ AR(IM). A compactum Y CX is said to be a fundamental
support (or an F-support) of X (in M) if there exists a fundamental ge-
quence

-f= {fus X, Y}y, such that {f,, X, Xar, 0 = x, 05

where iy denotes the fundamental identity sequence {i, X, X}, ..
Let us observe that the choice of the space M ¢ AR (IR) containing
X is immaterial, that is,

(2.1) If Y is an F-support of X in M and if X CN e AR (M), then Y is
an F-support of X in N.
In order to see it, consider two maps
a: M-»N and pB: N->M

such that a(x)= B(x) == for every point ze X. Setting ax = o and
fr=pfor k=1,2,.., we get two fundamental sequences

e={o, X, Xlyy and /_3:‘ {B4s X, -X}N,M .
It Y is an F-support of X in M, then there is a fundamental sequence
f={f X, Y}u, e such that {f,, X, Xy ix, 1. Setting

9(y) = ofiB(y) for every point g eN,

one gets a fundamen.tal sequence ¢ = {g,, X, ¥}y ». It remains to show
that {g,, X, X}y » is homotopic to ig,n. In order to do it, consider

a neighborhood W of X in . Since N € AR(M) and since af/X = i/X,
there exists a neighborhood W,C W of X in ¥ such that

(2.2) af[Wo W, in .

!
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Now we can select a neighborhood U of X in M such that
(2.3) : ' a(U)C W,.

Since {fz, X, X}z, = ix,3, there exists a neighborhood U,CU
of X in M such that

(2.4) Su/Us= i[Ty in U  for almost all k.

We can assign to U, a neighborhood V,C W, of X in N such that
B(Vy) C Uy. One infers by (2.2), (2.3) and (2.4) that

afefVo affVo= ¢V, in W for almost all %,
hence {gy, X, X}n,xv = {ofsf, X, X}y,x = ix . Thus the proof of propo-
gition (2.1) is finished.
It follows that in the definition of the F-support of X the words

“in M” are superfluous. We can speak shortly on F-supports of X.
If there does not exist any F'-support ¥ # X of X, then X is said

to be fundamenially stable (or F-stable). Let us notice that

(2.8) Bvery H-support of X is an F-support of X.

Infact, if f: X—X and f(X) C ¥ C X then there exists a map f: M—M
such that f(#) = f(x) for every point » ¢ X. Setting fx = f for k=1, 2, ...,
one gets two fundamental sequences

.fﬁ os Xy Yhprr  and  {fpy X, Xharpe -
If f~ iy then {f;, X, X}a, 2 = ix, 3 and consequently Y is an F-support
of X. It follows that
(2.6) If X is F-stable, then X is stable.
Let us observe that
2.1 IfX e ANR and Y + X is an F-support of X, then there is a com~
pactum Y’ £ X being an H-support of X.

In fact, if ¥ is an F-support of X then there exists a fundamental
sequence f= {fy, X, X}p,p such that {fi, X, X}py u iz Since
X < ANR, there exists an open neighborhood U of X (in M) and a re-
traction r: U—X. We infer by ¥ # X that there exists a neighborhood
VCUof Y in M such that »(V)  X. Moreover, there exists an index %,
such that

(2.8) fi/X~4X in U and fi(X)CV.

Setting f() = 7fy, (@) for every point @ ¢ X, we get a map f: XX
It follows by (2.8) that f= #fy, /X~ #/X =i/X in the set r(U)=1X.
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Moreover, f(X)= rf,(X)C»(V) # X. Hence the set ¥' = f(X) is a re-
quired H-support of X.
It follows by (2.6) and (2.7) that

(2.9) An ANR-space is stable if and only if it is F-stable.

A simple example of a continuum X which is stable but not F-stable
is the closure of the diagram of the function

1 .
9 = 08 = - co§ for O0<a<1.
@

1—a

Let us recall that a compactum ¥ C X is said to be a SFundamental de-
formation retract of X if there exists a fundamental sequence r
= {rz, X, Y}z, 5 such that 74/¥ = 4/¥ and that {r, X, Xag, ™ ix gy
Let us add that using the same standard argument as by the proof of
proposition (2.1), one shows that in the definition of the fundamental
deformation retracts of X the choice of the space M ¢ AR (M) containing
X i3 immaterial,

It is well known that

(2.10)  If Y is a fundamental deformation retract of X then Sh (X) = Sh(X).
Moreover

(2.11)  Boery fundamental deformation retract of X is an F-support of X,
but not conversely.

The question if every set being both a fundamental retract and an F-sup-
port of X is a fundamental deformation retract of X remains open.

If there does not exist any fundamental deformation retract ¥ # X

of X, then X is said to be fundamentally R-stable (or FR-stable). It is
clear that .

(2.12)  If X is FR-stable, then X is R-stable.
Moreover, (2.11) implies that
(213) If X is F-stable, then X is FR-stable.

The following problem remaing open:

(2.14) PrOBLEM. Does theré exist am R-stable ANR-space which is
not FR-stable?

§ 3. Some properties of F-supports. A preliminary information on shape

properties of F-supports gives the following

(8.1) TreoREM. If Y is an F-support of X then Sh(X)< Sh(Y).

Proof. Let I={f, X, By be a fundamental sequence such that
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{fiy Xy Xdar, e = Gz~ Setting g= {i, ¥, X}, 5 we get a fundamental
sequence g: Y->X satisfying the condition

_g_f= {ify, X, X}M,.M= oy Xy Xap = bxur -

Hence Sh(X) < Sh(Y).

(8.2) THEOREM. If Z is an F'-support of an ¥ -support ¥ of X, then Z
is an F-support of X. :

Proof. Let f= {fu, X, Y}y » and__q = {gp, ¥, Z}3, 3 be fundamental
sequences such that {fry Xy, X3pp = ix,pr and {g, Y,. Yiuu= i,y If
U is a neighborhood of X in M then there exists a neighborhood UC U
of X in M such that

(3.3) U~ 4|0 in U for almost all k. '
But U is also a neighborhood of ¥ in M. Consequently, there exists
a neighborhood VC U of ¥ in M such thab
(3.4) - gV~ 4V in U  for almost all k.

Moreover there exists a neighborhood U’ C U of X in M such that
(3.8) | " f(U")CV  for almost all k.

It follows by (3.4) and (3.5) that
(3.6) gifiu] U = ful U’ in U for almost all %. -
Since U’ C U, one infers by (3.3) that fo/ U =~ 4/U" in U f011 almost all k,
which together with the inclusion U/ C U and with the relation (3.6) gives

gefu/ U’ ~ 4T in T for almost all k.

Hence {gifs, X, X}s, 5 is & fundamental sequence homotopic to iz

Since {gxfi, X, Z}u = gf is & fundamental sequence, we conclude that
Z ig an F-support of X )
By a slight modification of the last proof, one gets the following
proposition:
i i Y and Y is o funda-
3.7y If Z is a fundamental deformation retr.act of i
e W{ental deformation retract of X, then Z is a fundamental deformation
retract of X. .

4. Decreasing sequences of fundamental deformation }‘etracts. Let us
reca:l? that a compictum X is said to be an FAN R‘spa.oe if for ev;ierg c(f)n;
pact space M containing X there exists a compact neighborhoo 065
in M such that X is a fundamental retract of U (com;parg [1],_1?.]]1 ).
The elags of all FANR - spaces is a shape invariant. It contains, in particular,

5 -- Pundamenta Mathematicae, T. LXXXVI
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all ANR-spaces and many other compacta, for instance all plane com-
pacta with finite Betti numbers.
Let us prove the following

(4.1) TErOREM. If ¥;D ¥Y,D ... 8 o sequence of fundamental defor-
mation retracts of a space X ¢ FANR, then the set ¥ = () Y is o funda-
m=1

mental deformation retract of X.

Proof. Assume that X lies in the Hilbert cube §. Then X has arhbi-
trary small neighborhoods in @ being ANR-sets. Consequently, there
exists a neighborhood U ¢ ANR of X in @ and a fundamental retraction

(4.2) s=1{81,U,X}gq-

Let 712 ¥, ... be a sequence of neighborhoods of ¥ in @, lying
in U and shrinking to Y. Replacing the sequence Y3, ¥,, ... by a suitably
selected subsequence, we may assume that

(43)  Vm is a neighborhood of ¥y, in @ for every m = 1,2, ..
Let - .

(4.4) f" ={ X, ¥,}0,0 be a fundamental deformation retraction;
hence

(4.5) X, Xg o~ ixe  for every m=1,2,...

By virtue of (4.4), one sees readﬂjr that there exists a decreasing
sequence U, O Uy D ... of neighborhoods of X in ¢, lying in U and
shrinking to X, such that

(4.6) For every m=1,2,... the inclusion +7(T,,)C V,, holds true for
almost all %.

Moreover, for every m=1,2, .. there is a neighborhood VuCViy
of ¥ in @ such that

(4.7) TV = 75 fVo in V,,  for almost all % .

It follows by (4.6) and (4.7) that there is an increasing sequence of
indices a (1) < a(2) < ... such that

(48) 7R(U,)CV,, and V! ~ amlVim 0V, for every k> a(m).

Since 15y/Y = i/ ¥, there exists a neighborhood VwCV, of ¥ in@Q
such that V., CV, and that

(4.9) oV =4[V, in ¥,  for every m=1,2, ...
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It follows by (4.8) and (4.9) (because V,, C V') that
(4.10) "V, iV, in V, for every k= a(m).

By virtue of (4.4) and (4.5) there exists for every m=1,2, ...
a neighborhood Upn C Un of X in @ such that ,,.,C U, and a sequence

of indices B(1)<< f(2)<< ... such that f(m)> a(m) for m =1, 2, ... and
that

(4.11) 77 ﬁm) - T7m and V’,Z‘_/ U, i U, inU, for every k> f(m).

Moreover, we infer by (4.2) that there exists a sequence of indices
y(1) < ¥(2) < ... such that y(m) = f(m) for every m = 1,2, ... and that

(4.12) Suf U =2 Symy/U im0 U, for every k> y(m).
Since sy/X = i/X for every k= 1,2, ..., we infer that

(4.18) {Syomyr Xy X0~ 85y X, X}g o ixg-

Setting

(4.14) T = TyimySyemy ~ TOT every m=1,2,..,

we get a sequence of maps ry,: @@ and we infer by (4.11), (4.12) and
by the inequality y(m) = f(m) that

(418)  1,/U = 73y Symy/ U = 8ymy/ U 10 T,  for every m=1,2, ...
It follows by (4.13) that

(4.16) Aty Xy Xyo,0 {Symyy X X}oo = ix0-
From (4.11) and (4.12), and since 17“+1C1?m, we infer that

4.1 T 0)y Ty(T)C ¥, for every m=1, 2, ...
Now let us set
(4.18) Wy = Titmy fOT every m=1,2, ..
It follows by (4.10) and (4.8) that
(4.19) omfVin = i[Vim 10 Vi for every m=1,2,...,
and
(4.20) on(Un) CVy  for every m=1,2, ...

By virtue of (4.15) and (4.20) one infers that

O] U = 08y U 10 0 (Up) C Vo

421 :
( ) O Pt/ U = wmsy(mu)/U in 0p(Upmss) C Vi -

5
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Using (4.17) and (4.19), we infer that

(422)  wntn/U=rm/U iV, and  o,7,.,/U=r,. /U in Ve

for every m=1, 2, ... .
Moreover, (4.12), (4.20) and the inclugion U, C U, imply that

(4.23) O Sy U = 0 Sy U 0 Vi

Tt follows by (4.21), (4.22) and (4.23) that

T/U =0, /U in V,,  for every m = 1,2,..,

hence r== {rm, X, ¥}g o is a fundamental sequence. Moreover, (4.14)
implies that rm/¥ = ¢/¥ and we conclude that r is a fundamental re
traction satisfying (4.16). Hence Y is a fundamental deformation retract
of X and the proof of Theorem (4.1) is finished.

(4.24) PROBLEM. Does Theorem (4.1) remain true if we replace the
hypothesis that X e FANR by a weaker one that X is movable compactum?

(4.25) PrOBLEM. Is it frue that if ¥, ¥,D ... is a sequence of funda-

mental retracts of a space X ¢ FAN Ry thentheset ¥ = " Y is a Jundamental
m=1

retract of X1

By an example due to C. Cox ([31, p. 175) if we replace in this problem
the hypothesis that X e FANR by a weaker one that X is movable, then
the answer would be negative. In fact, consider in the Euclidean 3- space B®
a sequence Ty, Ty, ... of topological tori such that T, 41 lies in the interior
of T for every m=1,2, ... and that the set ¥ =) B, is a solenoid
of Van Dantzig. Let T,,,

m=1

denote the boundary of T,,. Then the set
X=Y%0{Tn
m=1

is a movable compactum (see [2], p. 140) and

Yi=You T,

m=k

is a retract (hence also a fundamental retract)

of X and ¥,,,C Y, for
every k=1,2,.. However the set ¥ =

kﬂ Yk, being a non-movable
. =1
compa,e.tum, I8 not a fundamental retract of X.

Using Theorems (3.7) and (4.1), one gets the following
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(4.26) COROLLARY. If ¥;D ¥,D ... are FANR -spaces and if Ypppq 8
a fundamental deformation reiract of Yo, Jor m=1,2,.., then the set
Y= ﬁ Yu is an FANR-space.

m=1

Using the well-known Brouwer Reduction Theorem (151, p- 161),
we obtain from Theorem (4.1) the following

(4.27) COROLLARY. For every space X ¢ FANR there esists an FR- stable
compactum Y C X being a fundamental deformation retract of X.

It follows, in particular

(4.28) CoroLLARY. Hvery space X ¢ FANR contains an FR-stable
compactum Y e Sh(X).

(4.29) ProBLEM. Is it true that for every sequemce ¥,D ¥,D .. of
F-supports of a compactum X the set ¥ =\ Yy, is an F-support of X%

m=1

(4.30) ProBLEM. Do Corollaries (4.27) and (4.28) remain true if we
assume only that X is a compactum?

(4.31) PROBLEM. Is it true that for every compactum X there ewists
an F-stable compactum ¥ e Sh(X)?

§ 5. S-stable compacta. Let us say that a compactum X is shape-
stable (or is S-stable) if Sh(X) # Sh(Y) for every compactum YgX.

For instance, each closed manifold is S-stable. Also every continuum
X CE" decomposing the space E™ and being the common boundary of
each component of the set B™\X is S-stable. Also the polyhedron P of
H. Hopf and E. Pannwitz, mentioned in § 1, is S-stable (though it is not
stable), because one sees easily that the shape of every compactum ¥ g r
differs from Sh(P).

It is clear that every S-gtable compactum is FR-stable, but the
converse is not true. For instance, if X is the union of all eircles Cg,
k=1,2,.., given in the plane B® by the equations

(o — kb ot =12,

then X is FR-gtable (it is even F'-stable), but it is not S-stable. Moreover
one sees readily that X does not contain any S~stable‘compaotum X,
eBh(X). However there exists an S-stable plane contmum X, such
that Sh(X)= Sh(ZX,). In fact, this property has each continnum X,
decomposing H* into N, regions and being the eommo.n bo@dary of each
of these regions. Let us also observe that for Cantor discontinuum D there
does not exist any S-stable compactum D, e Sh(D).
The following problems remain open:
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(5.1) ProBreM. Does there ewist for every continuum X an §-stablg
continuum X, e Sh(X)?

(8.2) ProBrEM. Is it true that S-stable FANR-spaces are the same
as TR -stable FANR -spaces?
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An open-perfect mapping of a hereditarily disconnected
space onto a connected space

by
R. Pol and E. Puzio (Warszawa)

Abstract. In this paper the authors construet an example of open-perfect mapping
of a hereditarily disconnected space onto a connected space. Both of the spaces are
metrizable and separable.

The aim of this paper is to construct the hereditarily disconnected
gpace X and the open-perfect mapping f of X onto the connected space Y.
Both of the spaces will be separable metrizable. We should mention here
that 0-dimensionality and totally disconnectedness are invariants under
open-closed mappings in the class of metrizable spaces. The first of these
facts is obvious, the second was proved by Kombarov [3]. The basis of
our econstruction is the well-known Knaster—Kuratowski Broom, the
subspace of the plane with dispersion point (see [4], § 46, II). At the
end of this paper we shall prove the theorem related to this object.

Terminology and notation are as in [2] and [4]. In particular, the
word “mapping” and the symbol g: A—B mean continuous mapping,
the symbol g: A -+ B means that g(4) = B. By connected space we always
understand non-one-point space. For ¢ X and ACX we write xx 4
instead of {w} x 4.

1. We start from some auxiliary constructions in the Buclidean
plane R? with the standard metric o. The symbol B denotes the set of
all real numbers, N denotes the set of non-negative integers, I is the
interval [—1, 1] of reals, P and ¢ irrationals and rationals of T Tespectively.
For te R let §= (t,0) < R% "

Divide the set P into two disjoint, dense in P sets P* and @* such
that Q* = Np- Let

M=P'xPu@*xQ.
For 2= (z,, ) ¢ R* and real number o >0 we seb

Uz, a)= {y « Bo(y,a') <o, where & = (m,sFa)}vz},
and

E@,a)={y<Ble(y,®)<o}-
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