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2° In our example both of the spaces X and ¥ are 1-dimengional,
hence they can be embedded into 3-dimensional Euclidean space. We
do not know if it is possible to construct an example of this kind taking
a subspace of the plane as Y. We do not know also whether ¥ would be
the Knaster-Kuratowski Broom.

We are deeply gratefull to Professor R. Engelking for suggesting the
problem. We are also indebted to Doctor J. Krasinkiewicz for interesting
discussions about the subject of this paper.

Added in proof. Recently the second of the authors showed, modifying the
present construction, that ¥ can be taken as a subspace of the plane. We have
also proved that if we replace in the construction of Knaster-Kuratowski Broom
the rational and irrational numbers of the m-axis by two disjoint subsets of irratio.
nals of the second category, then we obtain the space ¥ with a dispersion point
which is not an open-perfect image of any hereditarily disconnected space.
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The non-existence of >} well-orderings of the
Cantor set

by
Richard Mansfield (University Park, Pa.)

Abstract. It is shown the existence of a X% well-ordering of the Cantor seb implies
that all reals are constructible., This is the converse of a theorem of Godel.

Throughout this paper we assume the existence of a non-constructible
real. With that in hand, let us set forth some notation. A finite sequence
s is an extension of ¢ if ¢ iy an initial subsequence of s. A tree is a set of
finite sequences of 0’s and 1's containing every initial subsequence and
at least one proper extension of each of ity members. For « a function
with domain the set of non-negative integers, a(n) is the sequence
<a(0), a(1), ..., a(n—1)>. A path through the tree P is a function a such
that a(n) is in P for every n. [P] is the set of paths through P. It is easily
shown that [P] is a closed subset of 2% and that every closed subset of 2%
is the set of paths through a unique tree. The tree corresponding to a
closed seb is its code; a cloged set with a constructible code is con-
structibly coded. A closed set is perfect iff every sequence in its code has
at least two imcompatible extensions in the code.

Let B be the Boolean algebra corresponding to forcing with con-
struetibly coded perfect sefis ordered by the subset relation. B is a complete
Boolean algebra containing the constructible trees as a dense subset.
There are several ways to represent B; one is as the regular open sets
in the space 2¥—L with the topology generated by the constructibly
coded [P]'s. .

We are going to be using B-valued set theory. In that set theory
there is a canonical generic function 8 in 2V. (In the system presented
in [6], 8 is {¢R, P): VseP [length (s) < nVsy=1]}.) We are also going
to be using another Boolean extension of set theory M, in which every con-
structible tree P has a path generic over V with respect to B. The Truth
Lemma [11] states that for o generic and ¢ a formula in the forcing lan-
guage, V(o) satisfies ¢ iff there is a condition P with « ¢ [P] and P I g.
In interpreting the foreing language for ¥ (a), 8 is a name for a. Thus if
¢(z) is a X} or IT; formula with possible unlisted constructible parameters
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and o is generic, the statement “p(a) iff there is a constructible tree P
with ae[P] and P I ¢(S)” has value one in the model M.

LevvA L. ||§ ¢ LA o) = oFz = 1.

Proof. See Sacks [8].

Tmyma 2. If g(z) 4s 23 and P is a condition, [P1C {a: ¢(a)} implies
P 1+ p(8). ‘

Proof. Let M be a Boolean extension of V in which every con-
structible tree has a path generic over V with respect to B. Suppose that
[P1C {a: p(a)} but P does not force ¢(8); then since we are using weak
foreing there is a condition @ extending P with @ I ~ @(§). Then [@]
~ {a: p(a)} = [Q] and so [@] ~ {a: ¢(a)} has a non-constructible element §
(via the assumption in the first sentence of this paper). By the absolute-
ness Lemma ¢(f) is valid in M, and so in M [@] ~ {a: @(a)} has a con-
structibly coded perfect subset [R]. (This is the exact statement of the
perfect set Theorem [5].) Since R is an extension of @, R IF ~ ¢(8); pick
any generic a ¢ [R] and the contradiction is immediate.

Lemma 2 has a converse of sorts which we shall call Lemma 3 even
though it is not used in anything that follows. Lemmas 2 and 3 between
them say that for ¢ a X formula, [P]C {a: ¢(a)} and P +¢(8) bear
roughly the same relation to each other as strong and weak forcing.

Using the Kondo-Addison Uniformization Theorem [7], any X}
set 4 can be written as the domain of a I7} function fa. Furthermere
in ZF set theory it can be proven that f4 is a function and A4 is its domain,

DEFINITION. A II} set is large if A has a perfect subset; a 2y set 4 is
large if f4 has a large graph.

Note that the statement “4 is large” is X}. Furthermore if 4 is large
it has a perfect subset [4], but not necessarily vice versa. In the presence
of a non-constructible real, the perfect set theorem [5] states that A is
large iff it has a non-constructible element.

Leyma 3. If ¢ is X} and P I ¢(8S) then [P] ~ {a: g(a)} is large.

Proof. Again let M be a Boolean extension of V in which every
constructible tree has a generic path. In M it is valid that [P] ~ {a: ¢(a)}
has a non-constructible element; any generic path through P will do.
Thus it is also valid in M that [P] ~ {a: p(a)} is large. This being a X}
statement, it is true in ¥V, completing the proof of the Lemma.

Levma 4. If @(x) is I and P i ¢(8), then every non-constructible
path through P satisfies ¢. :

Proof. Otherwise [P] ~ {a: ~ ¢(a)} would have a non-constructible

element, and hence a constructibly coded pexfect subset, violating
Lemma 2.
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The class L(a) of sets hereditarily constructible from o is often
defined to be the denotation of certain ranked terms z(a, Opy veey On)
where the o; are ordinals. These terms are such that within any transitive
model for Kripke-Platek set theory containing « and each o1, 7(a, 0y, ..., on)
has the same value as it hag in the universe. If ¢ is a well-ordering of
integers, let [t] be its order type.

LEMMA 5. If by, ...t are well-orderings of integers, the predicate
B=(a, [l ., [tal) is 45 in the parameters a, f,1,, ..., t.

Proof. f=v(a, |h],.., [ta]) iff it iy true in any or all countable
transitive models for Kripke-Platek set theory containing the parameters.
This is in turn equivalent to its being true in any or all well-founded
models for Kripke~Platek set theory containing surrogates for the para-
meters. This latter condition is easily seen to be 43.

In order to illustrate how these lemmas can be used to elucidate
perfect set forcing, let us give a new proof of an old theorem from [8].

THROREM 1. The statement “S has minimal degree of constructibility”
has valwe one.

Proof. Suppose otherwise. Then there is a term v and ordinals
01y vy o a0l & condition P such that

P8 ¢L(w(8, 01y ey 0a))AT(S, 03, ey o) ¢ L

Since 0¥ = oM (Lemma 1), we may assume that oy, .., on are all con-
structibly countable. Therefore by Lemma 5 and the well-known theorem
that “a e L(B)” is % [10], the predicate R (a) defined by a ¢ L(z, 61, ..., oa) A
AT(@, Oyy ooy 0n) ¢ L i8 IT} in constructible parameters. From Lemma 4
every non-constructible member of [P] satisfies B. Let a, be a non-con-
structible eclement of [P] and let B, be =(ay, 01,y..., 0n). The seb
{a e[P]: T(a, 0y, ..., on) = By} 18 Zj in B, and constructible parameters,
non-empty, and has no element in L(f,), contradicting the Absoluteness
Lemma. Thus our original agsumption is false and the theorem is proven.

TrmornM 2. If there is a non-constructible real, there is no Z3 well-
ordering of 2V,

Proof. Suppose otherwise that < is & 23 formula which well-orders 2.
We claim that the Boolean value of “In L(8) < well-orders 27.” is one.
First noto that by writing down completely 4 ywell-orders 2V.”, we see
that it is of the form pAVe, pla= fva< fvp< a] where ¢ is IT;. Two
applications of the Absoluteness Lemma reveal that since ¢ is true in v,
it is valid in V(B) and henee valid in L(8).So the only way our claim can
be false that for terms 7, , 7, and constructibly countable ordinals oy, ..., on
and a condition P the following is satistied:

P8, 0y ey 0n) & To(S, 0y, ey 02)A TSy 01y eny o) % T8, Oyy eery On) -

6 -- Fundamenta Mathematicae, T. LXXXVI
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By Lemma 5 the statement forced is JT} in constructible parameters and
so must be satisfied by every non-construectible path through P. Since
there is such a path, this contradicts our original assumption that < ig
a linear ordering, and establishes the claim.

It is easy to see that the only elements of B invariant under all
automorphisms of B are 0 and 1. From this it follows that in L(8) all
definable sets are constructible [11], [6, Theorem 6.8]. However it must
also be valid that the first non-constructible element in the ordering < is
definable and non-constructible.
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On longest paths in connected graphs *
by
Linda Lesniak (Kalamazoo, Mich.)

Abstract. It is shown that a connected graph of order p > 4 contains a path of
length %, where 1< k< p—1, if for every integer j with 1 < j< k/2, the number of
vertices of degree not exceeding j is less than j. Furthermore, a tree of order p > 4 has
diameter at least &, where 8 < & < p~1, if the number of vertices of degree one is less
than {2(p—1)/(k—1)}. ‘

A hamiltonian cycle (path) in a graph & is a cycle (path) containing
every vertex of @. P6sa [1] proved that if & is a graph of order p > 3
such that for every integer j with 1 <j<C p/2, the number of vertices
of degree not exceeding j is less than j, then @ contains a hamiltonian
cyele. In this article, we establish an analogous result for graphs with
hamiltonian paths and in fact for graphs containing paths of any speci-
fied length.

TEEOREM 1. Let G be a connected graph of order p = 4. Then G containg
a path of length & (L <k <p—1) if for every integer j with 1 <j < kf2
the number of vertices of degree not exceeding j is less than j.

Proof. Since @ is connected and p > 4, the theorem is true for k=1
and k& = 2. Henceforth we assume % > 3. Suppose the length of a longest
path in @ is » where 2 < n< k. If P is a longest path in @, let Sp denote
degu--- degv, where w and v are the endvertices of P. Among all longest
paths in G, choose P: g, Uy, ..., %s 80 that Sp iz maximum. Suppose
deguy, < degun.

Since P is a longest path, each of u, and u, is adjacent only to vertic.es
of P. If witin e B(G), 0<i<<n—1, then wuyuy, ¢ E(F); for otherwise
the cycle

01 gy Uy ony Uy Uy Upyy »ovy Yigay Yo

of length n--1 is present in G. The cycle ¢ cannot contain all verbices
of @ since n+1 < p. Since @ is connected, there exists a Yertefx w nob
on € adjacent to a vertex of ¢; however this implies ¢ contains a path of
length n--1 which is impossible. Hence for each vertex of {thyy Uy y erey Ygea}

* AMS (MOS) Subject classitication (1970). Primary 05005, 05C35 Key words
and phrases: path, longest path, hamiltonian path, tree, endvertex, diameter.
o


GUEST




