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Ag @ final remark we note that under (31) the monotone sequence
Kd[f"B1y for B a bounded subset of X either converges to 0 or is ultimately

constant.
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QuaSI-nonexpansive multi-valued maps and selections
by

Chyi Shiau, Kok-Keong Tan (Halifax, Nova Scotia)
and Chi Song Wong * (Windsor, Ontario)

Abstract. Two classes of quasi-nonexpansive multi-valued maps are investigated.
(1) Let f be a map of a metrically convex eomplete metric space X into the family of
all non-empty compact subsets of X. Then f has a fixed point if there exists a self map
on [0, oo} such that ¢(f) < for all £>> 0 and f is p-contractive. (2) Let X be a weakly
compact convex subset of a Banach space B and f be a continuous map of X into the
family of all non-empty closed convex subset of X. Then f has a fixed point and has
a Kannan selection; the selection so chosen is continuous if further B is strietly convex
and X is compact. The relation between selections and fixed points are investigated.
As an example, it is proved that every Kannan map of the unit interval into its sub-
intervals has a Kannan selection and therefore a fixed point; all such maps can be
explicitly illustrated.

1. Introduction. Let (X,d) be a (non-empty) metric space. Let
be(X) be the family of all non-empty bounded closed subsets of X en-
dowed with the Hausdorff metric D induced by d [9]. Let f be a map
of X into be(X). f is contractive (nonempansive) at a point z in X if
D(f (@), fly)) < d(z,y) (< d(z,y)) for all y in X other than @. Let ¢ be
2 map of [0, oo) into itself. @ is contractive if ¢(0)= 0 and ¢(f)<< t for
all £ > 0. Let ¢ be a contractive self map on [0, o). f is ¢-contractive at
a point ¢ in X if D(f(=2), f(y)) < p(d(z, 9)) for all y in X. f is nonerpansive
(contractive, @-contractive) on X if f is nonexpansive (resp. contractive,
@-contractive) at each point in X. f is quasi-nonexpansive (quasi-con-
tractive, quasi-g-contractive) if the fixed point set F; = {w ¢ X: x e f(z)}
of f is non-empty and f is nonexpansive (resp. contractive, ¢-contractive}
at each point in F,. For convenience, we shall identify a singleton with
the point it contains. Thus if f is single-valued, our notion of quasi-non-
expansiveness coincides with the one introduced by W. G. Dotson [6].

* The second and third authors are partially supported by the Canadian Mathe-
matical Congress for participating in the Summer Research Institute and by the Na-
tional Research Council of Canada under the grant nuwmbers, respectively, AS096
and A8518.
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One reason for our interest in such maps is as follows. A fixed point
of f usually corresponds to a solution of certain equation. For solving
an equation, one cares only the existence of a solution and how to approxi-
mate it; so it is not important whether f is nonexpansive at points out-
side F; or not. Of course, the nonexpansiveness of f outside ¥; may en-
foree stronger properties of f on F,. The two classes of maps which we
are dealing with are as follows. (A) Let ¢ be a self map on [0, o). ¢ ig
a distribution function on [0, o) if ¢ is continnous from the right and
is monotonically non-decreasing on [0, o). Let f be a map on a complete
metrie space (4, d) into the family ¢(X) of all non-empty compact sub-
sets of X. We prove that f has a fixed point in X if there exists a con-
tractive distribution self map ¢ on [0, co) such that f is ¢-contractive.
Related work in this direction can be found in [16]. (B) Let f be a map
on a metric space (X, d) into (be(X), D). f is Kannan if

D(f(2),f ) < 3(d[s, f(2))+aly, f) for all »,y in X
(d(z, A) = inf{d(z,y): ye d},wed, ACX).

Single-valued Kannan maps were first considered by R. Kannan [101,
[11], [12]. We need one more definition for stating our results. A function g
(not necessarily continuous) on X is a selection of f if g(#) « f(x) for each »
in X [14]. We shall prove that: (a) If X is a weakly compact convex sub-
set of a separable Banach space and if f is a Kannan map of X into the
family wee(X) of all non-empty weakly compact convex subsets of X ,
then f has a fixed point if and only if f has a Kannan selection. (b) If X is
& compach convex subset of a strictly. convex Banach space and if fis
a continuous Kannan map of X into wee(X), then f has a fixed point
and a continuous selection. A simple characterization of Kannan maps
with fixed points is given. As an example, it is shown that every Kannan
map of the unit interval into the family of its subintervals has a fixed
point; the family of all such maps is explicitly illustrated.

2. g-contractive multi-valued maps. Let (X,d) be a metric space.
?3‘01‘ any non-empty subset A of X, 6(4) will denote the diameter of A,
Le. 6(4)=sup{d(z,y): m,ye A}

THEOREM 1. Let (X, d) be a complete metric space and f be a map of X

into be(X). Suppose that there exisls a contractive distribution function o -

on [0, o) such that f is @-contractive. Then

(a) There erists a unique non-empty bounded closed subset X, of X
such that

Xo=-cl U {f(2): we X,}.
(b) If f(@) is compact Jor each » in X, then f has a fized point.
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Proof. (a) Consider the lifting map F on be(X) defined by
FAy=cl | {f(x): ved}, Aebe(X).

It suffices to prove that F has a unique fixed point. We shall first prove
that F is a self map on be(X). Let A e be(X), z, 5, € A, y € f(z), 9, € ().
Then

D(f (@), f(@0)) < pld(z, @) < d(w, 2) < 6(4) .

Now use the definition of Hausdorff metric, one can prove that

(Y, Yo) < 5(A)+_5(f(wo)) -
So
S(F (A)) < 2(3(4)+ 8(f (y))

and therefore F(A4) is bounded. By repeating the argument in the proof
of Theorem 1 in [16], we conclude that F' is @-contractive. It can be
proved that (be(X), D) is complete. So by a result of D. W. Boyd and
J. 8. W. Wong [2, Theorem 1], F has a unique fixed point X,.

(b) Let G be the restriction of F in (a) to ¢(X). Let 4 e ¢(X). Since
fis continuous and f(z) is compact for each z in A4, by a result of B. Michael
[13, Theorem 4.2], { {f(#): # € X} is compact. So @ is a self map on ¢(X).
Since @ is ¢-contractive and (¢(X), D) is complete, @ has a fixed point X,.
So f/X, (f restricted to X,) is a ¢-contractive and therefore a contractive
self map on X,. By a result of R. B. Fraser and Sam B. Nadler Jr. [8,
Theorem 4], f/X, and therefore f has a fixed point.

We need the following definition for our next result. Let (X, d) be
a metric space. X is meirically convex [1, p. 41] if for any distinet z, ¥
in X, there exists z in X different from » and y such that d(z, y) = d(z, 2)+
4-d(z,y). Note that every normed linear space is metrically convex.
In Theorem 1, with metric convexity on X, we can drop the condition
that ¢ is a distribution funection.

TEEOREM 2. Let (X, d) be a metrically conver complete metric space
and f be a map of X into be(X). Suppose that there exisis a contractive self
map on [0, co) such that f is g-contractive. Then

(a) There exists & unique non-empty bounded closed subset Xy of X
such that

X,=clu {f(@): ©eX}.

(b) If f(w) is compact for each x in X, then f has a fized point.
Proof. For each t> 0, let

a(t) = sup{d(f(@), f)): z,ye X, dl=, ) <1}.

By Lemma 1 in [16], a is monotonically non-decreasing and is continuous

3 — Fundamenta Mathematicae LXXXVIL
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from the right. Since a« < ¢, a(t) < ¢ for all £ > 0. So (a), (b) follow from
Theorem 1.

(b) in Theoreni 2 generalizes a result of D. W. Boyd and J. 8. W. Wong
[2, Theorem 2] for single-valued maps.

We conclude this section with the following open problem:

ProBLEM 1. Let (X, d) be a complete metric space. Liet f be a map
of X into ¢(X). Suppose that there exists a contractive self map ¢ on
[0, oo] such that ¢ is upper semicontinuous from the right and f is
¢-contractive. Does f have a fixed point?

fin Problem 1 has a fixed p?int if f is single-valued [2, Theorem 1]

3. Kannan maps. Before investigating Kannan maps, we first note
that every Kannan map is nonexpansive at its fixed points. In fact, we
can prove the following more general result. Let (X, d) be a metric space
and f be a map of X into be(X). Suppose that for any @, y in X,
D(f(x), f(y)) les in the convex hull of '

{d(év,f(w)), aly, f@), dz, f(), Ay, f (@), d(z, 9)} .

Then f is nonexpansive at its fixed points. Now suppose that f is a Kan-
nan map. Then f is quasi-nonexpansive if and only if f has a fixed point.
Since a Kannan map may not even be contraetive, it is too much to hope
that f has a fixed point. Thus we assume that X is a weakly compact
convex subset of a Banach space B. Then f may not have a fixed point.
However, if f is single-valued and. continuous. on X, then f has a fixed
point [17, Theorem 1]. In this section, we shall prove that f has a fixed
point if f is eontinuous. In [18, Theorem 3], it is proved that f has a fixed
point if f is single-valued and X has close-to-normal structure, i.e. for
any closed convex subset H of X with §(H) > 0, there exists w in H for
which [lz—y|| < 6(H) for all y in H. Thus f has a fixed point if ¥ has.
close-to-normal structure and f has a Kannan selection (a selection which
is » Kannan map). This leads to the following related problem which is.
of interest in itself. ’ k

ProBrEM 2. Let X be a weakly compact convex subset of a Banach
space and f be a Kannan map of X into cec (X). (a) Does f have a Kannan.
selection? (b) When f is. continuous, does f have a continuous Kannan
selection? (ce(X) = {4 e wee(X): 4 is compact}).

i In this section, we shall solve the above problem for the case when
f is continuous, B is strictly convex and X is compact convex.
Let B be a Banach space. We ghall denote by @ the metric for B in-

duee;d by the norm || || on B. For any subset X of B, we(X) denotes the:
family of all non-empty weakly compact subsets of X. .
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THEOREM 3. Let X be a non-empty subset of a Banach space B. Let f be
a Kannan map of X into we(X) which has a fized point a. Then f has a Kan-
nan selection with unique fired point a.

Proof. Let # ¢« X. Since f(x) is weakly compaet, there exists a. point
falx) in f(x) such that d(a,fa(z)) = d(a, f(x)). Thus fs is a selection of f.
For any x, y in X,

d(a, fu{®))+ d(a, foly)) = dla, f(x))+d(a, F(y)
D(f(a), f(2))+D(f(a), f(¥)

(o, f(@)+1d(y, F(y)

Yd(w, fo(@)+ 34y, foy)) -

Hence f. is a Kannan selection of f. Clearly a is the unique fixed point
of fa.

fLet X be a weakly compact convex subset of a Banach space B.
For our next result, we need to emphasize that to assume that X has
a close-to-normal structure is a very weak condition. It is proved
in [19] that X has a close-to-normal structure if any one of the
following conditions holds: (a) X has normal structure [3], (b) B is
strictly convex, (¢) B is separable, (d). B has property (A), ie. for
any sequence {r;} in B, {,} converges to a point x in B if it converges
weakly to z and if {|jz.|} converges to {jaf] [14]. It is proved in [18] that
every Kannan self map on a non-empty weakly compaet convex subset
of B has a fixed point if and only if every weakly compact convex subset
of B has a close-to-normal structure. So we have, from Theorem 3, the
following result.

TEEOREM 4. Let X be a non-emply weakly compact convex subsel of
a Banach space B which has a close-to-normal structure and f be a Kannan
map of X into we(X). Then f has a Kannan selection if and only if f has
a fixed point.

THEOREM 5. Let K be a non-empty weakly compact convexr subset of
& Banach space B and T be a Kannan map of K into wee(K). Then

(a) There exists x, in K such that dlm,, T (1)) < d(z, T(z)) for all &
in K, ie. the map v—dfw, T(x)) on K attains its infimum 7,.

(b) The set A = {w e K: dlz, T(x)) = ry}y is T-invariant, d.e. T(x)C A
for each » in A.

(e) A contains a non-empty T-invariant closed conver subset of XK.

Proof. (a) For each 730, let K,= {me K: dx, T(z))<r}. Since
K is bounded, the set I = {r > 0: K, # 0} is non-empty. It is sufficient

to show that () K, # 0.
rel

A(falx) ; fuly)

<
<

AN

n

3%
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For each r e I, let H; be the closed econvex hull clco(T (Kr)) of T(K,)
(= U T (). Then {Hy: r < I} is a family of weakly compact convex sub-

sets of K which has the finite intersection property and therefore has
a non-empty intersection. Thus it suffices to prove that H,C X, for
each r in I. Let r e I, y ¢ Hr and & > 0. Then there exist #; in [0, 1], y; in
K, and & in T(ys), i=1,2, .., 7, such that

"
2t1=1

and .
a(y, ﬁ:tiﬂi)< &
Thus -
(1) dly, T(y) < y,%, ) +d($ tigis, T(9) -

Since T'(y) is weakly comipact, for each 4 =1, ...
such that d(fi, 20 = d(F:, T(y)). Since

, n, there exists z; in T'(y)

Dtime T(y),
we have -
@ - a(X g, Tw) <a Y um, 2 a) < ) td(Fi, =)
i=1 =1 i=1 =1
< D udg, Tw) < D tD(T (), T(y))
< D' u(ddlye, T(ya)+3dly, T ()
i=1 '
< ) ulbr+3dly, TWw)
=3r+dly, Tw) -
From (1) and (2), d(y, T'(y)) < 2e+r. Since ¢ >0 is arbitrarily chosen,
aly, T(y))<r. So y e K,. Hence H,CE,.

(b) T(X,)CH, CK, .

(¢) T(H,)C T(K,)C deco(T(K,)) =
and convex. '

For our next result, we need the following definition. Let X be
a convex subset of a Banach space and f be a map of X into a metric

H,, and H, is non-empty closed

icm®

115

Quasi-nonexpansive multi-valued maps and seleciions

space. Then f is continuous along line segments if for any x, y in X,
{fltw+ (1—1)y)} converges to f(#) when ¢ tends to 1 from below.

THREOREM 6. Let K be a non-empty weakly compact convex subsel of
a Banach space and T be a Kannan map of K into wee(K). Suppose that
T is continuous along line segmenis. Then T has a fixed point.

Proof. By Theorem 3(c), we may assume that d(z, T (;r)) is constant,
say 7, on K. It remains to show that r = 0. Let x e K, y « T(x) and z ¢ T(y).
Let te(0,1). Then

d{z, T(T-y—l—(l—t)z)} < D‘T(y), T(ty+(1—-t):))
< 3{aly, Tw)+aly + a—0z, Tly+ @ — ) =r.

Similarly, d(y, T(ty+(1—1)z)) <r. Sice Tfy+(1—
compact, there are 7, Z in T( ty+ (1—1)z) such that

aty,y) = dly, T(ty+(1—t>s)},

tyz) is weakly

d(z,2) = d(z, Tlty+(1—

0)3)) -

Since

dfty+(1—1)2, Tty +(1—1)z))
<d(ty+(1—1)z t7+(1—1)3)
<td(y, N+ (1-1)d(z,3)

=1d(y, T(ty—{(l~—t)z))+(1—t)d(z,
<tr+(1—Hr=r,

all of the above inequalities are equalities. So we have, in particular,
d(~, ty—{—(]—t)z)‘) = 7. Since T is continuous along line segments,
[T{ty+(1—1)z)} converges to T'(y) as t tends to 1 from below. Since
1d(z, A)—d(=z, B)] < D(4, B) for any non-empty subsets 4. B of K,
{(Z(z, T(ty+(1—1) ))} converges to d(z, T(y)). Therefore r= dlz, T()-
Since ze T (y), r= 0.

The proofs of the above two results are respectively refinements
of the proofs of Theorem 1 in [17] and [18]. Earlier contribution of
P. Soardi [15] should also be recalled here. We would like to emphasize
here that even if f is single-valued, the above result is far general than
the corresponding result of R. Kannan in [10] and [12 1

THEOREM 7. Let X be a non-empty compact convex subset of a sirictly
conver Banach space B and f be a continuous Kannan map of X into ec(X).
Then f has a continuous Kannan selection.

Proof. By Theorem 6, f has a fixed point a. Define f, as in Theorem 3.
Then f, is a Kannan selection of f. We shall plove that f, is continuous.

T(ty+ (1—1)z))
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Let {wy} be any sequence in X which converges to a point # in X. It
suffices to show that a subsequence of {fu(2a)} couverges to fal®). By
compactness of X, {fa(zx)} has a subsequence {fa(®pmy)} which converges
to some point g, in X. For each 7, there exists ¥, in f(z) such that

d(fﬂ(mh('n,))i yn) < 'D(f(mh(n)) ! f(w))+1/n -

Since f is continuous, {d(fu(m,,‘(n)),yn)} converges to 0. Thus {y,} con-
verges to u,. Since f(») is dlosed, y,ef(»). Therefore {d(a, fa(@yu)}
converges to d(a, y). Since f is continuous and {a,,} converges to z,
{@(a, f(@#yy)) converges to d(a, f(a)). Since Ay Fol@my) = At F(H39))
for each n, d(a,y,) = d(a,f(®)). Since B is strictly convex and f(») is
compact convex, ¥, = fo(®). Thus {fa(@,)}; converges to Ffalm).

We conclude this section with the following remarks. A fixed point
of f in Theorem 7 can also be obtained as follows. Let U be the uniformity
on X indueed by the metric d on X. Since X is compact, by results of
E. Michael [13, Proposition 3.6 and Theorem 3.3], the topology on ¢(X)
induced by the Hausdorff metric D coincides with the uniform topology
[2V] and the finite topology {2Y| on ¢(X). Sinece f is & continuous map
of X into (e(X), D), by another result of . Michael [13, Corollary 9.3],
fis lower semicontinuous. Since X is paracompact, by still another result
of E. Michael [14, Theorem 3.2"'], f has a continuous selection, say g.
By Schauder-Tychonoff fixed point theorem, g and therefore f has a fixed
point. We note here that since f is upper semicontinuons, one can also
obtain a fixed point of f from a result of Ky Fan (see e.g. [7,(4) on
p. 13]).

4. Examples. We need some further observations before presenting
examples.

THEOREM 8. Let (X, d) be a metric space and f be a Kannan map of X
into be(X). Then f has a fized point a if and only if

D(f(=), f(a)) < $d(=, f(2) ,

THEOREM 9. Let K be a non-emply weakly compact conver subset of
a Banach space. Let f be o Eannan map of K into wee (K) with a fized point a.
Then the set F; of all fized points of f is f(a). Moreover, F'; is minimal f-in-
variant,

Proof. Let weF,. Then D(f(z),f(a))=0 and thercfore @ ef(w)
= f(a). Thus I, C f(a). By (a) of Theorem 5, I, is f-invariant. So from
acF;, we have f(a) CF,. Hence f(a)=F,. Clearly F'; is minimal f-in-
variant.

In the following result, 7' is not necessarily continuous.

THEOREM 10. Let T' be o Kannan map of the unit interval K = [0, 1]
wnto co(K). Then T has a fized point.

relX.
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Proof. For each 2 in K, let f(z) be the mid-point of the interval
T(®) = [, 2] ({f(x)} = T(x) if T'(x) is a singleton). Then f is a selection
of T. Note also
S D(T (x), T(y)) = max {Jey—pal, |ea—yal} -

0
I (@)= F ) = 15(a+ @) — § g+ Ua)l < F(lo—yal =+ 22— i)

D(T(z), T(y)) < 3(dfz, T(@)+aly, T(w))
< ¥{dz, f@)+dly, f)) -
Thus f is a Kannan selection of 7. Since K has close-to-normal strueture,
f and therefore 7' has a fixed point.

‘We remark that the selection f of 7' in Theorem 10 is nonexpansive
if T' i3 nonexpansive (instead of Kannan). It thus gives a simple proof
that every nonexpansive map of the unit interval K into c¢c(K) has
a fixed point.

With Theorems 9 and 10, we are able to give all Kannan maps of
the unit interval to the family of its subintervals.

THEOREM 11. Let f be a map of the unit interval K = [0, 1] into ec{K).
For each » in K, let [2, x,] be the interval f(x). Then f is a Kannan map
if ‘and only if there exists a in K such that

(a) &y = a1, @ = a, if ¥ ela, a];

(b) @, € [3(2a34 ), 20— 2] ~ [0, 1,

#y € [e— 31— @), to+ F (21— @)] ~ [, 1] if 2 €[0, ay);

() @ e[20,—m, }(20,+ )] ~ [0, 1],

oy e [ay— 3z —an), a4+ Ha—2:)] A [0, 5] if @ € (a5, 1]

Proof. Suppose first that f is a Kannan map. By Theorem 10,
f has a fixed point, say a.

(a) follows from Theorem 9. )

(b) Suppose z € [0, a;). Then << 2;: If not, then z > z,. By Theo-
rem 9, x>, as « ¢ f(»). Then

d(m,f(.v)) =B h— B < D(f(-”) 7f(”'1)) < %(l(tt‘,f(.l:)) )
a contradiction. Thus from D(f(:z:),f(a)) < 3 (w,—a), we have
max {|#— ay], lta— @} < (@—) .

1° Consider lo,—a,) < }(z,— ). If # > a;, then z,—a, < H{o—2)
ie. o < 2a—ux. So x,efay, 2qp— ). I @y << @y, then a—az < §(m—a)
ie. @ > 3(2a;+2). So 2 €[} (2a,+7), a). Thus

;e ([}ea+2), @) o [a, 20+ 2] -
Hence @, € [§(2a;+x), 2a;,+2] ~ [0, 1].

2° Consider |m— o] < k(m— ). If @y > @y, then zp—a, < (zv—a),

ie. zy < @yt 3(#—a). Therefore @, [ty to+ §(m—2)] I 2 <ay, then
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ay— o, < 3(m~2), Le. @ > a,— §(x,— ). Therefor 00— & (2~
Thu; g%y y 2 — 3 (@ ) € -7”261“2 3 (2 -T'),(lg).
&y € [%— 3 (z—a), az) v [y, 0o+ (21— )] .
Hence @, € [ay— 3 (#,— ), ty+ F(@— 2)] ~ [, 1].
We leave the proof of (¢) to the reader.
_NOW suppose that (a), (b), (¢) hold. Let x e K. By Theorem 8, if
suffices to prove that D(f(x), f(y)) < }d(z, f(2)), i.e.
max {jo,— o, |o—asl} < 3d(o, f(2).
F.rom (a), we may assume that < a; or 2 > a,. Suppose that » >«
Since B [26,— 2, 320+ )], << @. So d(z, f(1)) = 2—x,. ’
1o If », > a,, then from z, < $(2a,+ ), T— a, < F(0—,).
o 2° If z, < a,, then from z, = 2a,—u, L (v—a,) = a,— . From 1° and
P 1 j g :
2 ,v!.r2 as| < }(8—2,). Since 2, € [a;— ¥ (2— @), o+ (2— 1)] ~ [0, 2], we
have 2,—a, < §(v—2,) and z; < @,. Thus 2, < 2, and '

max {|#y— &, [#— i} < $(3—a,) = 1d(m,f(m)) .
We leave the proof of the case # << a; to the reader.

From ‘qlle above result, we know that for a given Kannan map T of
K= [p, 1] into ce(K), there may be many (possibly continuous) Kannan
selections of 7' and in case T' is continuous, there may be many contintu—
0‘118 and discontinuous Kannan selections, and there inay be many selec-
tions _of T which are not Kannan. To crown all, Theorem 11 g:ivbés us
iklgatsls for B:f]?n‘% further reasonable questions. For those who W‘Olﬂ(“l

0 see a detail exam iple- i
o pmie e followjnéﬂi noef‘ multiple-valued continuous Kannan maps,

ExaMeLE. Let T be a map on K = [0, 1
= such that for each # i
o) o pere , 1] at for each z in I,

P B .
(%) % =15 5= 15, it @[, L];

( )$1=37+%$’ mz—___‘;__.%m if 976[0,-135);
(0 5= 35 130, = 4o # o e() 1)

Then by Theorem 11, T is a Kannan map. T (») is the shaded part

of the following figure, o
o1 - (11
N v
(0% ( NER ER S A
OGS G0
y \,
d \\
(00)

(1.0)

icm®
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