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Recursiveness of initial segments of Kleene’s O
by
Carl G. Jockusch, Jr.* (Urbana, IlL.)

Abstract. Tt is shown that for any constructive ordinal a > w?, there are both
yeeursive and nonrecursive initial sogments of the partial ordering <, of Kleene's (4]
which bave order type .

Let 0 be Kleene’s set of mnotations for constructive ordinals and
let <, be Kleene’s partial ordering of 0. If a € 0, let 0 (a) denote {b: b <, a}.
Tt is well known that for any a € 0, O(a) is a recursively enumerable (r.e.)
subset of O which is well-ordered by <, with order type |a|, the ordinal
for which @ is a notation. Our purpose here is to determine which con-
structive ordinals have notations a such that O(a) is recursive (non-
recurgive). We prove that every constructive ordinal has a notation ¢ such
that O (a) is recursive and in fact that there is a IT} path P through 0 such
that 0 (a) ig reeursive for all 4 in P. In the other direction we show that
the constructive ordinals which have notations @ with O(a) nonrecursive
are exactly those which are > w? Our constructions in fact show that
if o> ®is a constructive ordinal and A is ‘an infinite r.e. set (other
than ) then a has a notation a such that O(a) is m-equivalent to A.

Most of our notation is standard. In particular, we use g for the eth
partial recursive function and call e an index of .. We use the recursion
theorem in the following informal style: in the definition of a partial
recursive function ¢, its index may be assumed known in advance. Of
course such arguments arve easily formalized. An index of a recursive
set is any index of its characteristic funetion. A path through O is a sub-
set of O which is lineaxly ordered by <<, and contains a notation for each
constructive ordinal.

Information on Kleene's O can be found in [1], [2], or (5]. In pax-
ticwlar we shall need the binary recursive funetion --o which represents
ordinal addition in the sense that |a-ob| = |a]+ ] for a,be0. Also +¢

* This rosearch was suppored by NSF Grant GP 29223. The author is grateful
to G. Kreisel for introducing him to this subject and for muech helpful correspondence.
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satisfies the following for a, b, ce O:
(P1) a<ga+tob provided b #1,
(P2) 0y 0 <<pt-tober (HA)[d <, b & c= at+,d].

These properties follow at once from [2; XVII, XIX, and XX].
‘We. need one additional property for -, which will enable us to bound
(by ¢) the exigtential quantifier' which oceurs in (2).

LemmA 1. In addition to the propertics mentioned (zbmm, -+ may be
defined so as to satisfy

(P3) a+44b = max{a, b}

(where max, = refer to the standard ordering of ) for all o, b e o, @ # 0.

Proof. Let -, be a recursive function such that a1 = a; a--;2"
=297 (b 3 0), a+,3.5°= 3.5 where w is chosen to be = max {a, 3.5
and @, (n) = a+open) for new, and a+ys = 7 if ¢ ig not of the
form 2° or 3.5° Since any partial recursive function has arbitrarily large
indices which can be effectively found from any given index, an appropri-
ate w to define a+,3.5° can be computed from ¢ and an mdox of 44 (4,
Hence such a partial recursive function -, exists by the recursion theorern.
The arguments of [2] apply at once to this 4+, so (P1) and (’2) hold,
(P3) clearly holds except possibly when b is a power of 2 . Using. thig it
is immediate to prove (P3) by (strong) finite induction on b. (A.s usual,
such an induction also shows that -, is a total funetion.) '

The following result shows that there aré arbitrarily lar ge constructive
ordinals with notations ¢ such that O(a) is recursive.

THEOREM 1. There is a recursive function h such thai whmzm)er (X3 0
then h(a) € 0, la| < |h(a)|, and O(h(a)}-is recursive.

Proof. We want L to satisfy the following: (1) = I, h(2H) = 2™
for b s 0, 1(3.5%) = 3.5¥ where @, 18 such that

Pu(0) == 77»(%( ))
Pult+1) = gu(n) o hlpe(n+1)) ,

and A(z) =7 if x not of the form 2° or 3.5°. The metmma of such
a partial recursive I follows from the recursion theor em, because h(n)
can be effectively computed from . n and an index of h. Furthermore
will he total by the usual inductive argument. It is easy to show by trans-
finite induction on |a| (using property (P1) of <Cy) that if o« then

“(*) Pour-El has pointed out that, because Kloene’s function - 8}
creasing in-each of its arguments,

ficiently large w and thus his functi

is strietly in-
his definition of +, [2, 22 2] a.hon,dv yields a suf<
100+, satisties Lemma 1 for a, b € O.
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h(a)e O and |a| < [k(a)l. To show that O(k(a) is recuisive for a¢O,
we define a recursive function f such that f(a) is an index of (the charac-
teristic function of) O(h(a)) for a ¢ 0. Againi f is obtained using the re-
cursion theorem (alternatively the vecursion lemma [o, p 398] could
e ‘applied.) Since O(h (1)) O and O (2M@) — 0(71 (a)) v {h(a)} for a €O,
thé u'nlly' interesting case in the definition of f(%) is where fc iz of the' form

¢ Tor this case we need to be able to find an index for O(k(3.5%)
eﬂoctlvo]v from the indices of O(h @ n))), n € @. More precmely, it Wﬂl
sufflcc 1.0 prove the following lemma:

LE’\IMA 2. There is a recursive functwn t(e,j) such: that if 3.5° 0
and gi(n) 18 an index QfO(h(rp,(n,))) for all n, then t(e,j) is an index of
0(n(3.5%)). C

For oree Lemma 2 is established, f(3.5°) is defined to be i(e, j)
where:j i§ an index of f o .. Then it.is immediate by transfmlte mduc‘mon
on |a| that f(a) s an index of O(k(a)) for a e O.

Since the definition of h(3.5°) uses the function -}-o 5 ‘bhe fo]lo“ mg
lemma is cruecial to the proof of Lemma 2. oo .

LemmaA 3. If a,becO and O(a), O(b) are recursive then O(a—]—o'b)v i
recursive. .

Proof. Since <o 18 & linear ordering of O(a-+,b) and -+, has pro-
perties (P2) and (P3),

(P4) 0(a-+ob) = 0(a) v {o: (Hd),[d e O(b) & ¢ = at,dl} .

Thus if O(a), zu‘é recursive, (P4) exhibits O(a—'}-o ) a8 the nnion
of two recursive sets

To define t(e, j) as required by Lemma -2, assume that 3.5%¢ 0 and
gi(n) is an index of O(h(pe(n))). Let h(3.5°) = 8.5%. Then since O (h(e(m)))
is recursive for each #, it follows from Lemma 2 by induetion on # that
O(pu(n)) is recursive for each n. Since the proof of Lemma 2 is uniform
we ean in fact effectively compute from e, j, and = an index of O(ng(n)
We claim now that .

(5) ) ' 060(3..5'”)H(c»r;;z)sa[ceo(qu(njul))];

The claim implies that 0(3.5%) is recursive in view. of the uniform
recursiveness of O(rpw(n—|—1)) and in fact yields an index of. 0(3.5%) um-
formly from ¢ and j. Then t(e, ) is defined to be this index, )

To verify (5) observe that the implication from mg’ht to left is im-
mediate from the definition of <o, even without the bound on the quanti-
fier. For the- COD.VGISG, assume c<03 5. I ¢ <,pu(0) then we simply
let n = 0 to satisfy the right hand side. Otherwise let # be the*uniqueé
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number such that
Pu(n) <o € <o Pu(n+1) = ??w(""/)'l"oh(%(”‘f‘l)) .

By property (P2) of -+, there is a d such that gu(n)4od = ¢. By (P3),
pu(n) < c. But also by (P3), ¢, is nondecreasing with respect to the
standard ordering of w. Finally @u(n) # @uw(n-+1) by (P1l) beecause
pe(n-+1) # 1. Therefore ¢, is strictly increasing and so # < gu(n) <e.
Thus the n we have defined satisfies the right-hand side of (5).

In defining #(¢, j) we assumed that ¢ and j were as in the hypothesis
of Lemma 2. It remains only to point out that thiy definition can be
formally carried out for any pair e, j so that ¢ is a total recursive function.
The proof of Lemma 2, and thus of Theorem 1, is complete.

It i3 easy to show that if a <, b and O(d) is recursive, then O(a) is
recursive (cf. Proposition 1). From this and Theorem 1, it follows that
each constructive ordinal has a notation @ such that O(a) is recursive.
We shall now apply the methods of Feferman-Spector [1] to obtain
a stronger result.

Let <3, 0% be as in Feferman—Spector [1]. In particular < is an r.e.
partial ordering whose restrietion to O is <o, and 0* is a X! superset
of O such that the IT} paths through O are precisely the sets of the form
O n C(a) for a < 0*—0. Here, as in [1], ((a) denotes {p: b < a}. Observe
that C(a) = O(a) for ae 0. The following lemma, which will only be

needed in the special case where A = {a: ((a) recursive}, sums up the
information we need from [1]

Lemwma 4. If A is a Z} subset of w such that
() aeAnO*&b < a-beAd and
(i) @c0—(EB)D e 4 O & |a] < b]],
then there is a II} path P through O such that A D P.

Proof. It suffices to show that 4 ~(0*—0) is nonempty since
then one can choose a €A n (0*~0) and take P = 0 ~ C (a). Suppose
for a contradiction that A ~ (0*—0) is empty, i.e. 4 ~ 0*C 0. Then
A~ O%is a X subset of O and hence the corresponding set of ordinals
is bounded above by a constructive ordinal (cf. the second proof of [1, 2.6]
or [6, p. 184]). But since 4 ~ 0* C A ~ 0, this contradicts (ii).

. We now want to apply Lemma 4 with 4 — {a: C(a) is recursive}.
Since ((a) = O(a) for a ¢ O it follows at once from Theorem 1 that hypo-
thesis (ii) of Lemma 4 is satisfied for this choice of A. Also it iy a routine
* exercise to verify that this 4 is arithmetical and hence Z}. We now show
that (i) also holds. )
ProPOSITION 1.

: If ac 0" C(a) is recursive, and b <3 @, then ((b) is
recursive. - . )
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Proof. By [1, Definitions 3.1 and 3.3] if a ¢ 0* then (/(a) is linearly
ordered by <. If b < a, we have

c<Lbe(e<a&e£b& 10 Qo).

Thus if C(a) is recursive, then C(b) is 60-r.e., i.e. the complement of an

r.e. set. Since C(b) is always r.e., it follows that C(b) is recursive.
Now we have from Theorem 1, Lemma 4, and Proposition 1:

COROLLARY 1. There i8 a IT} path P through O such that O (a) is recursive
for all a e P. )

If a €0, let O;(a) be the set of all numbers in O(a) of the form 1L
or 3.5% It is eagy to see that O(a) =n 0,(a) for any ac 0, a # 1. If ac O
and |a} < o?, it follows that O (a) is recursive because 0;(a) is finite. The
following result was obtained independently by Parikh [4].

THEOREM 2. There exists ae O such that |a| = o® and O0(a) is non-
recursive.

Proof. Let .4 be an r.e. nonrecursive set, and let f be a 1-1 recursive
function whose range is 4. For y ¢ », let y* be the unique element of O
such that |y*| = y. We want to define a recursive function g such that
for all n, @, and ¥y

y* i 2=f0),
(6) Py(¥) = 1 387D 4yy* i @ =f(nt1),
| undefined it a¢d.

The existence of such a recursive function g is a consequence of the
recursion theorem because if we take the index of g as given, the right
hand side of () becomes a partial recursive function z(z,y) of » and y
(which is single-valued because f is one-one). Then g(x) is defined to be
an index of the partial recursive function Ayv(z,y).

Tt is easy to see by induction on n that 3.59™ e 0, 3.57™ <, 3,57/,
and |3.57®| = o-(n+1). Let ¢ be such that gun)=3.5"™, and let a
= 3.5%. Clearly a ¢ 0 and la| = w? Also

(1) sed <350 < a.

For if @=f(n), 3.57™ = gin)<,3.5" and if 5¢A then Potzy 18
everywhere divergent so 3.5°® ¢ 0. From (7) and the nomrecursiveness
of A it follows that O(a) is nonrecursive.

. The following Corollary combines and sharpens some of our results.

COROLLARY 3. If A is an infinite r.e. set other than w, and a ig a con-
structive ordinal = o, then o has a notation ¢ such that 0(c) =mn 4.
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. Proof. Assume first that e = w?, and leb a be as in Theorem 2. Then
A < 0(a) by (7). Since g(») in the ploof of Theorem 2 need only be the
index of a certain partial recursive funetion, there is no difficulty in
modifying the definition of g so that g is gtrietly inhcreasing, Thus the
range of g 1s recursive. Slnce [3.5°®| = w-(n+1) we have for & # 1

weOZ(a)Hmhms forjan"‘e where ‘eerangeJ&g He) e d .

Themfore O( ) OI(a) <m A, since A # 0. Now if a = o let ﬂ be
such that o*+p="a. Tt b be 4 notation for § such ‘that O (b) is recursive.
(Such a b exists by Corollary 1).

0(a-+ob) =i A. By the previous case it ‘sulfices to show that O(a-,b)
=y, 0(a). But-(P4) in the proof of Lemma 3 shows that O(a-,b) is the
disjoint union of 0(d) with a recursive set, from which O(a+gb) =m0 (a)
follows immediately. Thus let ¢ ="a“yb.

In.closing we apply our results to partially answer some: questions
posed by Kreisel [private coirespondence] concerning the existence of
reducibility relations between 4} sebs and JI} paths through O. Our first
observation comes immediately from the proof of Theorem 2 and was
obtained independently by Parikh [4].

" COROLLARY 4. There is o II} path P through O such that the complete
r.e. set K is many-one reducible to P.

Proof. Let 4 be K in the proof of Theorem 2, and let P be any II}
path through O.such that e « P, where @ and ¢ are as in the proof of Theo-
rem 2. Then for any o, if @ K then 3.57@ ¢ O(a) CP and if o ¢ K then
3.59® ¢ 0 50 3.5/ ¢ P. Theérefore K <y P

In fact it holds in general that if b ¢ P, Whe1e Pis any path through 0,
then 0 (b) is Turing reducible to P. (The proof is the same as the Proposi-
tion 1 except that C(a) is now replaced by P). We do not know whether
this result holds for reducibilifies which are stronger than Turing re-
ducibility, but interéstingly enough a gort of modified converse does.
‘Let us call a reducibility B invertible if whenever a 4} set A is B-reducible
to a II7 path P through O, then A is R-reducible to O (a) for some a e P.
Then, as Kreisel pointed out to me, m-reducibility is easily seen to be
invertible. (If 4, P are as above and 4 = f~'(P) where f is a rvecursive
function, then f(4) is a A} and hence bounded subset of P. If a e P is
chosen so that b <, a for b € f(4), then clearly A = f‘l( (@)) a8 required.)
Kreisel [3] has ghown that enumeration redwcibility (as defined in [5])
is invertible and Parikh [4] has shown that truth-table reducibility is
invertible. {Although these proofs are more coinplieatéd than the one
above for many-one -reducibility they share the same idea of taking A
and the reduetion procedure from A to P as given and then inverting
the reduction procedure to obtain a (necessarily bounded) subset of. P

Then |a+,b| = a and we claim that

e ©
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from this information which yields 4 by the same reduction.) From the
remarks after Theorem 1 and the cited results of Parikh and Kreisel

we obtain immediately the following Corollary which shows that Corollary 4
certainly does not hold for all II} paths P through O.

COROLLARY 5. There is a II} path P through O such that any A set
which is either enumeration réducible to P or truth-table reducible to P is
recursive.

It is not known whether Turing reducibility is invertible nor whether
the analogue of Corollary 5 holds for Turing reducibility. In fact it is
conceivable that Turing redueibility fails very badly to be invertible
in the sense that every 4; set is recursive in every II path P through O,
or even that O is recursive in every II7 path through O.

Added in proof (March 1975). Recently Friedman [7] has shown that there is
a IT! path P through O such that O is recursive in P (and also O(a) is recursive for
all aeP). It follows that Turing reducibility is not invertible.
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