J. A. Johnson

pletion of Λ — see Remark 4.9) are isomorphic as multiplicative lattices. Thus, the ideal structure of \overline{R} can be determined by purely lattice theoretical means from the lattice of ideals of R.

References

- K. P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J. 15 (1968), pp. 167-176.
- [2] Nonimbeddable Noether lattices, Proc. Amer. Math. Soc. 22 (1969), pp. 129-133.
- [3] R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), pp. 481-498.
- [4] E. W. Johnson and J. A. Johnson, Lattice modules over semi-local Noether lattices, Fund. Math. 68 (1970), pp. 187-201.
- [5] — and J. P. Lediaev, A structural approach to Noether lattices, Canad. J. Math. 22 (1970), pp. 657-665.
- [6] J. A. Johnson, A-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970), pp. 347-373.
- [7] Quotients in Noetherian lattice modules, Proc. Amer. Math. Soc. 28 (1971), pp. 71-74.
- [8] A note on the lattices of ideals of the completion of a Noetherian ring (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HOUSTON Houston, Texas

Accepté par la Rédaction le 29. 10. 1973

Locally flat embeddings of Hilbert cubes are flat

by

T. A. Chapman * (Lexington, Ken.)

Abstract. In this paper it is shown that any locally flat embedding of the Hilbert cube Q into a Q-manifold is flat. The techniques employed in the proof of this result also imply that the group of homeomorphisms of $Q \times R^n$ onto itself which are fixed on $Q \times \{0\}$ has exactly two components.

1. Introduction. For topological spaces X and Y, an embedding $i: X \to Y$ is said to be locally flat (with codimension n) provided that each point of X has a neighborhood U and an open embedding $h: U \times R^n \to Y$ such that h(x, 0) = i(x), for all $x \in U$. We say that the embedding is flat if we can take U = X. We use R^n to denote euclidean n-space, Q to denote the Hilbert cube (i.e. the countable infinite product of closed intervals), and by a Q-manifold we mean a separable metric manifold modeled on Q. The following is the main result of this paper.

THEOREM 1. If X is a Q-manifold and $i:Q \to X$ is a locally flat embedding, then i is flat.

Of course this result is false if Q is replaced by a more complicated Q-manifold. For example let $X = M \times Q$, where M is the open Möbius band, let $i_1 \colon S^1 \to M$ be a homeomorphism of the 1-sphere onto the center circle, and let $i = i_1 \times \mathrm{id} \colon S^1 \times Q \to M \times Q$. Then i is a codimension 1 locally flat embedding, but i is not flat. (If i were flat, then arbitrarily small neighborhoods of $i_1(S^1)$ in M would be separated by $i_1(S^1)$.) A more general question would be to investigate when locally flat embeddings of Q-manifolds into Q-manifolds have normal bundles (see [2] and [4] for finite-dimensional results).

Let $\mathfrak{IC}_0(Q \times R^n)$ denote the space of all homeomorphisms of $Q \times R^n$ onto itself (with the CO-topology) which are the identity on $Q \times \{0\}$. The following result is a by-product of the proof of Theorem 1.

THEOREM 2. $\pi_0(\mathfrak{IC}_0(Q \times \mathbb{R}^n)) = 2$, for all $n \geqslant 1$. That is, $\mathfrak{IC}_0(Q \times \mathbb{R}^n)$ has exactly two components.

^{*} Supported in part by NSF Grant GP-28374.

We remark that Kirby's solution of the annulus conjecture [3] implies that $\pi_0(\mathcal{R}_0(R^n)) = 2$ for $n \neq 4$, where $\mathcal{R}_0(R^n)$ is the space of all homeomorphisms of R^n onto itself which are the identity on $\{0\}$.

The techniques we use for proving both Theorems 1 and 2 are infinite-dimensional. Theorem 2 is much easier to prove than Theorem 1. Its proof uses an infinite-dimensional version of the standard Alexander trick which is used to prove that any homeomorphism of an n-cell onto itself which fixes the cell's boundary is isotopic to the identity [1]. In § 3 we establish this infinite-dimensional Alexander isotopy and in § 4 we prove Theorem 2. In § 5 we establish some lemmas necessary for the proof of Theorem 1 and in § 6 we prove Theorem 1. The proofs of both Theorems 1 and 2 use some recent results concerning the triangulation and classification of Q-manifolds (see [7], [8], and [9]).

2. Definitions and notation. For each r > 0 we let

$$B_r^n = \{x \in \mathbb{R}^n | ||x|| \leqslant r\},\,$$

the *n*-ball of radius r. S_r^{n-1} denotes its boundary and $\operatorname{Int}(B_r^n)$ denotes its interior. Throughout this paper we will use $\alpha \colon R^n \to R^n$ to denote the orientation-reversing homeomorphism given by

$$a(x_1, x_2, ..., x_n) = (-x_1, x_2, ..., x_n).$$

We use id to represent the identity mapping on any space. If $f_t \colon X \to Y$ is a homotopy, for $t \in [0, 1]$, such that for some $A \subset X$ we have $f_t = f_0$ on A for all t, then we write $f_0 \simeq f_1 \operatorname{rel} A$. If each f_t is a homeomorphism of X onto Y, then f_t is an isotopy and we write $f_0 \stackrel{\text{iso}}{\simeq} f_1$. A proper mapping is a mapping for which the pre-image of each compactum is compact. We will occasionally work in the proper category, and we will use such terms as proper homotopy, proper isotopy, etc.

We will use a considerable amount of infinite-dimensional machinery and a good source for some of the basic material is [6]. There is one technical result which is used throughout this paper that bears repeating. A closed subset A of a space X is said to be a Z-set in X provided that there exist arbitrarily "small" mappings $f\colon X\to X\setminus A$. This means that if $\mathfrak U$ is any open cover of X, then there exists a mapping $f\colon X\to X\setminus A$ such that for each $x\in X$ there exists an element of $\mathfrak U$ containing both x and f(x). (We say that f is limited by $\mathfrak U$). The following is the main technical tool concerning Z-sets [6].

ISOTOPY THEOREM. Let X be a Q-manifold, A be a space, and let $F\colon A\times [0,1]\to X$ be a proper mapping such that the levels $F_0\colon A\to X$, $F_1\colon A\to X$ are homeomorphisms of A onto Z-sets in X. Then the induced homeomorphism $F_1F_0^{-1}$ of $F_0(A)$ onto $F_1(A)$ can be extended to a manifold homeomorphism which is isotopic to the identity.

We remark that if all the fibers $F(\{a\} \times [0,1])$ are "short", then the manifold homeomorphism which extends $F_1F_0^{-1}$ can be chosen to be "close" to the identity. To be more precise this means that if $\mathfrak A$ is an open cover of X and each fiber $F(\{a\} \times [0,1])$ lies in some element of $\mathfrak A$, then the homeomorphism extending $F_1F_0^{-1}$ can be chosen to be limited by $\mathfrak{St}^2(\mathfrak A)$. Here $\mathfrak{St}^2(\mathfrak A)$ is the open cover of X constructed by taking all sets of the form

$$U_1 \cup U_2 \cup U_{3'}$$
,

where $U_i \in \mathcal{U}$ and $U_1 \cap U_2 \neq \emptyset$, $U_2 \cap U_3 \neq \emptyset$.

This estimated version of the Isotopy theorem will be used in the proof of Lemma 5.1 to perform the modification of h_4 .

3. An Alexander-type isotopy. We establish here a version of the Alexander trick which will be needed for the proof of Theorem 2.

Lemma 3.1. If $h \colon Q \times B_1^n \to Q \times B_1^n$ is a homeomorphism such that $h = \operatorname{id}$ on $Q \times (\{0\} \cup S_1^{n-1})$, then $h \stackrel{\operatorname{iso}}{\simeq} \operatorname{id}\operatorname{rel} Q \times (\{0\} \cup S_1^{n-1})$.

Proof. Let $\theta\colon Q\times Q\times [0\,,1]\to Q$ be a mapping such that θ_0 is projection off the second factor, θ_1 is projection off the first factor, and θ_t is a homeomorphism for all $t\neq 0\,,1$. The construction of θ uses a standard coordinate-switching technique (see [6], Chapter III). Consider the function $\tilde{h}\colon Q\times B_1^n\to Q\times B_1^n$ defined by $\tilde{h}(q,x)=(\theta_t(q_1',q_2),x')$, where $\theta_{\max}^{-1}(q)=(q_1,q_2),\ h(q_1,x)=(q_1',x'),$ and $t=\|x'\|/2$. It is easy to check that \tilde{h} is a homeomorphism such that $\tilde{h}=\mathrm{id}$ on $Q\times (\{0\}\cup S_1^{n-1})$.

To show that $\tilde{h} \stackrel{\text{iso}}{=} h \operatorname{rel} Q \times (\{0\} \cup S_1^{n-1})$ we define $\varphi_t \colon B_1^n \to [0, 1]$ by $\varphi_t(s) = (1-t) \cdot s/2 + t$ and for each $t \in [0, 1]$ let $\tilde{h}_t \colon Q \times B_1^n \to Q \times B_1^n$ be defined by $\tilde{h}_t(q, x) = (\theta_{t_1}(q'_1, q_2), x')$, where $\theta_{\varphi_t(||x||)}^{-1}(q) = (q_1, q_2), h(q_1, x) = (q'_1, x')$, and $t_1 = \varphi_t(||x'||)$. It is clear that \tilde{h}_t provides our required isotopy such that $\tilde{h}_0 = \tilde{h}$ and $\tilde{h}_1 = h$.

To show that $\tilde{h} \stackrel{\text{iso}}{=} \text{id rel } Q \times (\{0\} \cup S_1^{n-1})$ we will define an isotopy $g_t \colon Q \times B_1^n \to Q \times B_1^n$ which fulfills our requirements. For t = 0 we define $g_0 = \text{id}$. For $t \in (0, 1]$ define $g_t = \text{id}$ on $(Q \times \{0\}) \cup Q \times (B_1^n \setminus \text{Int}(B_t^n))$ and on $Q \times (B_t^n \setminus \{0\})$ we define $g_t(q, x) = (\theta_{t_1}(q_1', q_2), tx')$, where $\theta_{\|x\|/2}^{-1}(q_1', q_2)$ and $\theta_t = \|x\|/2$. Then $\theta_t = \|x\|/2$ is our required isotopy.

4. Proof of Theorem 2. We will use Lemma 3.1 to prove Theorem 2. Choose any $h \in \mathcal{R}_0(Q \times \mathbb{R}^n)$. We will prove that either $h \stackrel{\text{iso}}{\simeq} \operatorname{id} \operatorname{rel} Q \times \{0\}$ or $h \stackrel{\text{iso}}{\simeq} \operatorname{id} \times \operatorname{arel} Q \times \{0\}$. Choose r > 0 large enough so that $h(Q \times B_1^n) \subset Q \times \operatorname{Int}(B_1^n)$. Put $A = h(Q \times S_1^{n-1})$, $X = (Q \times B_r^n) \setminus h(Q \times \operatorname{Int}(B_1^n))$, and let $i \colon A \subset X$ be the inclusion mapping.

We will first show that i is a homotopy equivalence. To do this we prove that i induces an isomorphism on all homotopy groups. First as-

sume that n=1. Then all we have to do is use the fact that if (Y, Y_0) is an ANR pair such that Y_0 is closed, bicollared, and the inclusion $Y_0 \subset_{\bullet} Y$ is a homotopy equivalence, then Y_0 separates Y into two disjoint open sets and the inclusion of Y into the closure of each of these components is a homotopy equivalence. For details see [5].

We now treat the case n=2. Note that X is a strong deformation retract of $Q \times (B_r^m \setminus \{0\})$, thus $\pi_m(X) = 0$ for all $m \ge 2$. All we need to do is prove that i induces an isomorphism on π_1 . Using singular homology with integral coefficients consider the commutative diagram

$$\pi_{1}(A) \xrightarrow{i_{*}} \pi_{1}(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_{1}(A) \xrightarrow{i_{\#}} H_{1}(X) ,$$

where i_* and $i_{\#}$ are induced by i and the vertical arrows are Hurewicz homomorphisms. Since $\pi_1(A)$ and $\pi_1(X)$ are abelian, these vertical arrows are isomorphisms. So all we have to do is prove that $i^{\#}$ is an isomorphism. Using the homology exact sequence for the pair (X,A) all we have to do is prove that $H_1(X,A)=0$ and $H_2(X,A)=0$. By excision we have

$$H_1(X, A) \cong H_1(Q \times B_r^n, h(Q \times B_1^n))$$

and the exact sequence for the pair $(Q \times B_r^n, h(Q \times B_r^n))$ gives us $H_1(Q \times B_r^n, h(Q \times B_1^n)) = 0$. Thus $H_1(X, A) = 0$. We can similarly prove that $H_2(X, A) = 0$.

We now treat the case $n \ge 3$. In this case A and X are both simply connected, therefore all we need to do is prove that i induces an isomorphism on all homology groups. But this easily follows from the Mayer-Vietoris sequence for the triad $(Q \times B_r^n, X, h(Q \times B_1^n))$.

Our next step is to show that there exists a homeomorphism $h_1: Q \times B_r^n \to Q \times B_r^n$ which agrees with h on $Q \times B_1^n$. Let $f: Q \times (B_r^n \setminus \operatorname{Int}(B_1^n)) \to h^{-1}(A)$ be a homotopy equivalence and note that if: $Q \times (B_r^n \setminus \operatorname{Int}(B_1^n)) \to X$ is a homotopy equivalence. Since $\pi_1(X)$ is "nice", the Whitehead group $\operatorname{Wh}(X)$ vanishes and therefore if is a simple homotopy equivalence. This implies that if is homotopic to a homeomorphism $g: Q \times (B_r^n \setminus \operatorname{Int}(B_1^n)) \to X$ (see [9] for references). Using the Isotopy theorem we can correct g to get g = h on $Q \times S_1^{n-1}$. Then g extends to our required homeomorphism h_1 .

Now consider the mapping $\varphi \colon \mathcal{S}_r^{n-1} \to \mathcal{S}_r^{n-1}$ given by $\varphi(x) = \gamma p h_1(q_0, x)$, where $q_0 \in Q$, $p \colon Q \times B_r^n \to B_r^n$ is the projection mapping, and $\gamma \colon B_r^n \setminus \{0\} \to \mathcal{S}_r^{n-1}$ is a radial projection. Then φ is a homotopy equivalence, so it has degree ± 1 . If $\deg \varphi = +1$, then $\varphi \simeq \operatorname{id}$, hence the restriction $h_1|Q \times \mathcal{S}_r^{n-1} \colon Q \times \mathcal{S}_r^{n-1} \to X$ is homotopic to the inclusion $Q \times \mathcal{S}_r^{n-1} \subset X$. Using the Isotopy theorem we can correct h_1 so that we have $h_1 = \operatorname{id} \operatorname{on} Q \times \mathcal{S}_r^{n-1}$.

On the other hand assume that $\deg \varphi = -1$. Then φ is homotopic to a restriction of α , therefore $h_1|Q \times S_r^{n-1}\colon Q \times S_r^{n-1} \to X$ is homotopic to the inclusion $Q \times S_r^{n-1} \subset_{-} X$ followed by $\mathrm{id} \times \alpha$. The Isotopy theorem implies that h_1 can be corrected so that we additionally have $h_1 = \mathrm{id} \times \alpha$ on $Q \times S_r^{n-1}$. Extend h_1 by $\mathrm{id} \times \alpha$ to a homeomorphism \tilde{h}_1 of $Q \times R^n$ onto itself. Using Lemma 3.1 it follows that

$$(\operatorname{id} \times \alpha) h_1 \stackrel{\operatorname{iso}}{\simeq} \operatorname{id} \operatorname{rel} Q \times \{0\}$$
.

Therefore $h_1 \stackrel{\text{iso}}{\simeq} id \times \alpha \operatorname{rel} Q \times \{0\}$, which implies that

$$h_2 = \tilde{h}_1^{-1} h \overset{\mathrm{iso}}{\simeq} (\mathrm{id} \times \alpha) h \operatorname{rel} Q \times \{0\}$$
.

But once again we have $h_2 \stackrel{\text{iso}}{\simeq} \operatorname{id} \operatorname{rel} Q \times \{0\}$. Therefore $h \stackrel{\text{iso}}{\simeq} \operatorname{id} \times \alpha \operatorname{rel} Q \times \{0\}$.

5. Some lemmas for Theorem 1. In this section we prove two results which will be needed in the proof of Theorem 1.

LEMMA 5.1. Let $h: Q \times R \times R^n \to Q \times R \times R^n$ be an open embedding such that $h = \operatorname{id}$ on $Q \times R \times \{0\}$. Then there exists a homeomorphism f of $Q \times R \times R^n$ onto itself with compact support such that $f = \operatorname{id}$ on $Q \times R \times \{0\}$ and either $fh = \operatorname{id}$ or $fh = \operatorname{id} \times a$ on $Q \times [-1, 1] \times B_1^n$.

Proof. Choose r > 0 such that

$$h(Q \times [-1, 1] \times B_1^n) \subset Q \times (-r, r) \times \operatorname{Int}(B_r^n)$$
.

We will construct a homeomorphism g of $Q \times [-r, r] \times B_r^n$ onto itself such that $g = \mathrm{id}$ on $Q \times [-r, r] \times \{0\}$, g = h on $Q \times [-1, 1] \times B_1^n$, and either $g = \mathrm{id}$ or $g = \mathrm{id} \times a$ on $\mathrm{Bd}(Q \times [-r, r] \times B_r^n)$. This will clearly fulfill our requirements. Our first goal will be to work our way through the accompanying diagram of spaces and maps. The homeomorphism h_4 at the top of the diagram will be used to obtain g.

I. Construction of h_1 . We want h_1 to be a proper embedding such that $h_1(Q \times (-r, r) \times B_1^n) \subset Q \times (-r, r) \times \operatorname{Int}(B_r^n)$, $h_1 = \operatorname{id}$ on $Q \times (-r, r) \times \{0\}$, and $h_1 = h$ on $Q \times [-1, 1] \times B_1^n$. The details of the construction of h_1 are routine.

II. Construction of h_2 . We want h_2 to be a homeomorphism which extends h_1 . Let $A = h_1(Q \times (-r, r) \times S_1^{n-1})$ and let

Just as in the proof of Theorem 2 we can show that the inclusion $i: A \subset_{\rightarrow} X$ is a homotopy equivalence. We will show that the inclusion $j: Q \times (-r, r) \times S_r^{n-1} \subset_{\rightarrow} X$ is a proper homotopy equivalence.

Let $\tilde{v}: X \subset_{\bullet} Q \times (-r, r) \times (B_r^n \setminus \{0\})$ be the inclusion mapping. Let $v: B_r^n \setminus \{0\} \to S_r^{n-1}$ be the mapping given by radial projection and let $\tilde{v}: Q \times \times (-r, r) \times (B_r^n \setminus \{0\}) \to Q \times (-r, r) \times S_r^{n-1}$ be given by $\tilde{v} = \mathrm{id} \times v$. Then it is easy to see that $\tilde{v}\tilde{u}: X \to Q \times (-r, r) \times S_r^{n-1}$ is a proper mapping. We will prove that it is a proper homotopy inverse of j. This means that we must prove that $\tilde{v}\tilde{u}$ is proper homotopic to id (in X).

Let $w: B_1^n \setminus \{0\} \to S_1^{n-1}$ be the radial projection and define $\tilde{w}: Q \times \times (-r,r) \times (B_r^n \setminus \{0\}) \to X$ by setting $\tilde{w} = \operatorname{id}$ on X and $\tilde{w} = h_1(\operatorname{id} \times w)$ on $h_1(Q \times (-r,r) \times B_1^n)$. Let $v_t: B_r^n \setminus \{0\} \to B_r^n \setminus \{0\}$ be a radially defined homotopy such that $v_0 = \operatorname{id}$ and $v_1 = v$. Let $\tilde{v}_t: Q \times (-r,r) \times (B_r^n \setminus \{0\}) \to Q \times \times (-r,r) \times (B_r^n \setminus \{0\})$ be defined by $\tilde{v}_t = \operatorname{id} \times v_t$. Consider the homotopy $v_t: X \to X$ defined by $v_t = \tilde{w} \tilde{v}_t \tilde{u}$. It is easy to see that v_t is a proper homotopy such that $v_0 = \operatorname{id}$ and $v_1 = \tilde{v} \tilde{u}$.

Now for the construction of h_2 . Since j is a proper homotopy equivalence it must be an infinite simple homotopy equivalence (see [9] for references). Therefore we can find a homeomorphism

$$\theta \colon Q \times (-r, r) \times S_r^{n-1} \times [0, 1] \to X$$

such that $\theta(x,0)=x$, for all $x\in Q\times (-r,r)\times S^{n-1}_r$. Choose $r_0\in (0,r)$ so that

$$\begin{array}{l} h_1(Q \times [r_0, \, r) \times S_1^{n-1}) \subset \theta \big(Q \times (1, \, r) \times S_r^{n-1} \times [0 \, , \, 1]\big)_{-}, \\ h_1(Q \times (-r, \, -r_0] \times S_1^{n-1}) \subset \theta \big(Q \times (-r, \, -1) \times S_r^{n-1} \times [0 \, , \, 1]\big)_{-}, \end{array}$$

It is clear that the inclusions

$$\begin{array}{c} h_1(Q \times [r_0, r) \times S_1^{n-1}) \subset_{\rightarrow} \theta(Q \times [1, r) \times S_r^{n-1} \times [0, 1]) , \\ h_1(Q \times (-r, -r_0] \times S_1^{n-1}) \subset_{\rightarrow} \theta(Q \times (-r, -1] \times S_r^{n-1} \times [0, 1]) \end{array}$$

are homotopy equivalences, and because of the presence of the half-open interval factors they are easily seen to be proper homotopy equivalences. Thus we can find homeomorphisms

$$\varphi_1: \ h_1(Q \times [r_0, r) \times S_1^{n-1}) \times [0, 1] \to \theta(Q \times [1, r) \times S_r^{n-1} \times [0, 1]) ,$$

$$\varphi_2: \ h_1(Q \times (-r, -r_0] \times S_r^{n-1}) \times [0, 1] \to \theta(Q \times (-r, -1] \times S_r^{n-1} \times [0, 1])$$

such that $\varphi_1(x, 0) = x$ and $\varphi_2(x, 0) = x$. Choose $r_1 \in (r_0, r)$ close enough to r so that

$$\begin{split} & \varphi_1 \big(h_1(Q \times [r_1, \, r) \times S_1^{n-1} \big) \times [0 \,, \, 1]) \subset \theta \big(Q \times (1 \,, \, r) \times S_r^{n-1} \times [0 \,, \, 1] \big) \,, \\ & \varphi_2 \big(h_1(Q \times (-r \,, \, -r_1] \times S_1^{n-1}) \times [0 \,, \, 1]) \subset \theta \big(Q \times (-r \,, \, -1) \times S_r^{n-1} \times [0 \,, \, 1] \big) \,. \\ & \text{Now let } A_0 = h_1 \big(Q \times [-r_1, \, r_1] \times S_1^{n-1} \big) \, \text{and let} \\ & X_0 = X \diagdown \Big[\varphi_1 \big(h_1(Q \times (r_1, \, r) \times S_1^{n-1}) \times [0 \,, \, 1] \big) \, \cup \end{split}$$

It is clear that the inclusion $A_0 \subset_{\rightarrow} X_0$ is a homotopy equivalence and therefore a simple homotopy equivalence. Thus there exists a homeomorphism $\varphi_0 \colon A_0 \times [0, 1] \to X_0$ such that $\varphi_0(x, 0) = x$. If we knew that φ_0 agreed with φ_1 and φ_2 on

$$\varphi_1\big(h_1(Q\times \{r_1\}\times S_1^{n-1})\times [0\,,\,1]\big)\quad \text{ and }\quad \varphi_2\big(h_1\big(Q\times \{-\,r_1\}\times S_1^{n-1}\big)\times [0\,,\,1]\big)\,,$$

respectively, then we could piece them together to obtain a homeomorphism $\varphi \colon A \times [0,1] \to X$ satisfying $\varphi(x,0) = x$. This would clearly imply the existence of our required h_2 . The manipulation of φ_0 to satisfy these requirements is just a simple application of the Isotopy theorem.

III. Construction of h_3 and X. Define

$$X = (Q \times (-r, r) \times B_r^n) \cup \{r\} \cup \{-r\},\,$$

where X is the compact metric space obtained from $Q \times (-r, r) \times B_r^n$ by compactifying the two ends. We choose notation so that $(Q \times [0, r) \times B_r^n) \cup \{r\}$ and $(Q \times (-r, 0] \times B_r^n) \cup \{-r\}$ are compact. Then h_3 is defined to agree with h_2 on $Q \times (-r, r) \times B_r^n$ and to be the identity on $\{-r\} \cup \{r\}$.

IV. Construction of δ and h_4 . We want δ to be a homeomorphism such that $\delta = \mathrm{id}$ on $Q \times [-r_1, r_1] \times B^n_r$ and

$$\delta(Q\times [-r\,,\,r]\times \{0\}) = \big(Q\times (-r\,,\,r)\times \{0\}\big) \cup \{r\} \cup \{-r\}\;,$$

where r_1 is chosen so that $0 < r_1 < r$ and

$$h_3(Q \times [-1, 1] \times B_1^n) \subset Q \times [-r_1, r_1] \times B_{r_1}^n$$
.

Then h_4 will be defined to make the appropriate rectangle commute.

It will suffice to produce a mapping δ' of $Q \times [-r, r] \times B_r^n$ onto itself such that

(1)
$$\delta'(Q \times \{r\} \times B_r^n) = \{0\} \times \{r\} \times \{0\} \quad \text{and} \quad \delta'(Q \times \{-r\} \times B_r^n) = \{0\} \times \{-r\} \times \{0\} ,$$

(2) δ' restricts to a homeomorphism of $Q \times (-r, r) \times B_r^n$ onto $(Q \times [-r, r] \times B_r^n) \setminus (\{0\} \times \{r\} \times \{0\}) \cup (\{0\} \times \{-r\} \times \{0\}))$,

(3)
$$\delta'(Q \times [-r, r] \times \{0\}) = Q \times [-r, r] \times \{0\},$$

(4) $\delta' = \text{id on } Q \times [-r_1, r_1] \times B_r^n$.

Once δ' is obtained we just define $\delta = q(\delta')^{-1}$, where $q: Q \times [-r, r] \times X^n \to X$ is the quotient mapping.

Using the fact that Q is homeomorphic to its own cone [6], there exists a mapping δ_1 of $Q \times [-r, r] \times B_*^n$ onto itself such that

(1)
$$\delta_1(Q \times \{r\} \times \{x\}) = \{0\} \times \{r\} \times \{x\}$$
 and
$$\delta_1(Q \times \{-r\} \times \{x\}) = \{0\} \times \{-r\} \times \{x\}$$
 for each $x \in \mathcal{B}_r^n$,

- (2) δ_1 restricts to a homeomorphism of $Q \times (-r, r) \times \{x\}$ onto $Q \times [-r, r] \times \{x\} \setminus (\{0\} \times \{r\} \times \{x\}) \cup (\{0\} \times \{-r\} \times \{x\}))$ for each x,
- (3) $\delta_1 = \text{id on } Q \times [-r_1, r_1] \times B_r^n$.

Now let θ be a mapping of $[-r, r] \times B_r^n$ onto itself such that

(1)
$$\theta(\lbrace r\rbrace \times B_r^n) = \lbrace r\rbrace \times \lbrace 0\rbrace \quad \text{and} \quad \theta(\lbrace -r\rbrace \times B_r^n) = \lbrace -r\rbrace \times \lbrace 0\rbrace,$$

(2) θ restricts to a homeomorphism of $(-r, r) \times B_r^n$ onto

$$([-r,r]\times B_r^n)\setminus \big((\{r\}\times\{0\})\cup \big(\{-r\}\times\{0\})\big)\;,$$

(3)
$$\theta | ([-r, r] \times \{0\}) \cup ([-r_1, r_1] \times B_r^n) = id$$
.

This gives a mapping θ_0 of $\{0\} \times [-r,r] \times B^n_r$ onto itself defined by $\theta_0(0,x,y) = (0,x',y')$, where $(x',y') = \theta(x,y)$. For each $q \in Q$, $q \neq 0$, we can clearly define a homeomorphism θ_q of $\{q\} \times [-r,r] \times B^n_r$ onto itself which is the identity on

$$(\{q\} \times [-r, r] \times \{0\}) \cup (\{q\} \times [-r_1, r_1] \times B_r^n)$$

and such that the θ_q 's continuously fit together to define a mapping δ_2 of $Q \times [-r,r] \times B_r^n$ onto itself by setting $\delta_2 = \theta_q$ on $\{q\} \times [-r,r] \times B_r^n$. This follows since θ is a uniform limit of homeomorphisms. Then $\delta' = \delta_2 \delta_1$ fulfills our requirements. We note that h_4 is a homeomorphism such that $h_4 = \text{id}$ on $Q \times [-r,r] \times \{0\}$ and $h_4 = h$ on $Q \times [-1,1] \times B_r^n$.

Just as in the proof of Theorem 2 we can correct h_4 so that we have $h_4=\operatorname{id}$ or $h_4=\operatorname{id}\times a$ on $Q\times[-r,r]\times S_r^{n-1}$. For the remainder of the argument we assume that $h_4=\operatorname{id}$ on $Q\times[-r,r]\times S_r^{n-1}$. The treatment of the case $h_4=\operatorname{id}\times a$ on $Q\times[-r,r]\times S_r^{n-1}$ is similar. Note that if we had $h_4=\operatorname{id}$ on $Q\times\{-r,r\}\times S_r^n$, then we would be done. The remainder of the proof of Lemma 5.1 takes steps to modify h_4 to get this extra condition.

Using Lemma 3.1 there exists an isotopy $f_t\colon Q\times [-r,r]\times B_r^n\to Q\times \times [-r,r]\times B_r^n\operatorname{rel} Q\times [-r,r]\times (\{0\}\cup S_r^{n-1})$ such that $f_0=\operatorname{id}$ and $f_1=h_4$. Choose ε , $0<\varepsilon< r$, such that $f_t(Q\times \{-r,r\}\times B_r^n)$ does not intersect $Q\times [-r_1,r_1]\times B_r^n$, for all $t\in [0,1]$. The restriction of f_t to $Q\times \{-r,r\}\times B_r^n$ gives us a homotopy

$$g_t: Q \times \{-r, r\} \times B_r^n \to Q \times [-r, r] \times B_r^n$$

such that $g_0 = \operatorname{id}$, $g_1 = h_4$ on $Q \times \{-r, r\} \times B_r^n$, $g_t = \operatorname{id}$ on $Q \times \{-r, r\} \times (\{0\} \cup S_r^{n-1})$ for all t, and $g_t(Q \times \{-r, r\} \times \operatorname{Int}(B_r^n) \setminus \{0\})$ does not intersect $Q \times [-r, r] \times (\{0\} \cup S_r^{n-1})$ for all t. It is clear that we may adjust g_t so that additionally $g_t(Q \times \{-r, r\} \times B_r^n)$ does not intersect $Q \times [-r_1, r_1] \times B_r^n$, for all t. Applying the Isotopy theorem to the manifold

$$[Q \times [-r, r] \times (\operatorname{Int}(B_r^n) \setminus \{0\})] \setminus [Q \times [-r_1, r_1] \times B_{r_1}^n)$$

we can easily find a homeomorphism $\tau\colon Q\times [-r,r]\times B_r^n\to Q\times [-r,r]\times X_r^n$ such that $\tau=h_4$ on $Q\times \{-r,r\}\times B_r^n$, $\tau=\operatorname{id}$ on $Q\times [-r,r]\times X_r^n$ on $Q\times [-r,r]\times X_r^n$. Then $\tau^{-1}h_4$ gives our desired modification of h_4 .

LEMMA 5.2. Let $h\colon Q\times [0\,,1)\times R^n\to Q\times [0\,,1)\times R^n$ be an open embedding such that $h=\operatorname{id}$ on $Q\times [0\,,1)\times \{0\}$. Then there exists a homeomorphism f of $Q\times [0\,,1]\times R^n$ onto itself with compact support such that $f=\operatorname{id}$ on $Q\times [0\,,1)\times \{0\}$ and either $fh=\operatorname{id}$ or $fh=\operatorname{id}\times a$ on $Q\times [0\,,\frac{1}{2}]\times B_1^n$.

Proof. Similar to the proof of Lemma 5.1.

6. Proof of Theorem 1. We are given a Q-manifold X and a locally flat embedding $i: Q \to X$. We will represent Q by $\prod_{j=1}^{\infty} I_j$, where each I_j is the closed interval [0,1]. For each m let

$$Q_m = I_1 \! \times \! I_2 \! \times \ldots \times \! I_{m-1} \! \times \! I_{m+1} \! \times \! I_{m+2} \! \times \ldots$$

and for $A \subset Q_m$, $B \subset I_m$ let

$$A * B = \{(q_i) \in Q | q_m \in B \text{ and } (q_1, ..., q_{m-1}, q_{m+1}, ...) \in A\}.$$

We can choose m large enough so that there exists an open cover $\mathfrak U$ of Q_m satisfying the property that for each $U \in \mathfrak U$ there exists an open embedding h_U : $(U * I_m) \times \mathbb R^n \to X$ such that $h_U(x, 0) = i(x)$.

^{8 -} Fundamenta Mathematicae LXXXVII

Our first goal will be to prove that there exists an open embedding $f\colon Q_m*[0,\frac34)\times R^n\to X$ such that f(x,0)=i(x). There exists an integer l so that for each $r,1\leqslant r\leqslant l$, there exists an open cover $\{U_{r,k}\}_{k=1}^l$ of Q_m refining $\mathfrak U$ such that

- (1) each $U_{r,k}$ is contractible,
- (2) $U_{r,k+1} \cap (U_{r,1} \cup U_{r,2} \cup ... \cup U_{r,k})$ is contractible for all r and $1 \le k \le l-1$,
- (3) $\overline{U}_{r+1,k} \subset U_{r,k}$ for all k and $1 \leqslant r \leqslant l-1$.

The construction of the open covers $\{U_{r,k}\}_{k=1}^l$ is routine. Choose numbers $t_r,$ $1\leqslant r\leqslant l,$ so that

$$\frac{3}{4} = t_l < t_{l-1} < \ldots < t_2 < t_1 = 1$$
 .

We will inductively prove that for each k, $1 \le k \le l$, there exists an open embedding

$$f_k$$
: $(U_{k,1} \cup ... \cup U_{k,k}) * [0, t_k) \times \mathbb{R}^n \to X$

such that $f_k(x, 0) = i(x)$. This will imply the existence of our desired open embedding f. The statement is clearly true for k = 1 so we assume it to be true for some $k \leq l-1$. We will prove that f_{k+1} exists.

Let $\theta \colon U_{k,k+1} * [0,t_k) \times \mathbb{R}^n \to X$ be an open embedding such that $\theta(x,0) = i(x)$. Let $G = U_{k,1} \cup \ldots \cup U_{k,k}$ and let $C \subset G \cap U_{k,k+1}$ be the intersection of $\overline{U}_{k+1,1} \cup \ldots \cup \overline{U}_{k+1,k}$ and $\overline{U}_{k+1,k+1}$. It is clear that θ can be modified so that we additionally have

$$\theta(C * [0, t_{k+1}] \times R^n) \subset f_k(G * [0, t_k) \times R^n).$$

Using θ and f_k we can easily construct an open embedding

$$\varphi \colon (G \cap U_{k,k+1}) * [0, t_k) \times \mathbb{R}^n \to (G \cap U_{k,k+1}) * [0, t_k) \times \mathbb{R}^n$$

such that $\varphi=$ id on $(G\cap U_{k,k+1})*[0,t_k)\times\{0\}$ and $\varphi=f_k^{-1}\theta$ on $C*[0,t_{k+1}]\times R^n$. But $G\cap U_{k,k+1}$ is a contractible Q-manifold and therefore $(G\cap U_{k,k+1})*[0,t_k)$ is homeomorphic to $Q\times[0,1)$ [5]. Using Lemma 5.2 we can find a homeomorphism

h:
$$(G \cap U_{k,k+1}) * [0, t_k) \times \mathbb{R}^n \to (G \cap U_{k,k+1}) * [0, t_k) \times \mathbb{R}^n$$

with compact support such that $h=\operatorname{id}$ on $(G \cap U_{k,k+1})*[0,t_k)\times\{0\}$ and either $h\varphi=\operatorname{id}$ or $h\varphi=\operatorname{id}\times\alpha$ on $C*[0,t_{k+1}]\times B_1^n$.

Define a homeomorphism $\tilde{h}: X \to X$ by $\tilde{h} = f_k h f_k^{-1}$ on

$$f_k((G \cap U_{k,k+1}) * [0, t_k) \times \mathbb{R}^n)$$

and $\tilde{h}=\operatorname{id}$ otherwise. Then let $\tilde{\theta}=\tilde{h}\theta$. Note that $\tilde{\theta}\colon U_{k,k+1}*[0,t_k)\times R^n\to X$ is an open embedding such that $\tilde{\theta}(x,0)=i(x)$ and either $\tilde{\theta}=f_k$ or $\tilde{\theta}=f_k(\operatorname{id}\times\alpha)$ on $C*[0,t_{k+1}]\times B_1^n$. If $\tilde{\theta}=f_k$ on $C*[0,t_{k+1}]\times B_1^n$, then

we can piece together f_k on $(U_{k+1,1} \cup ... \cup U_{k+1,k}) * [0,t_{k+1}) \times \operatorname{Int}(B_1^n)$ and $\tilde{\theta}$ on $U_{k+1,k+1} * [0,t_{k+1}) \times \operatorname{Int}(B_1^n)$ to get our required f_{k+1} . If $\tilde{\theta} = f(\operatorname{id} \times \alpha)$ on $C * [0,t_{k+1}] \times B_1^n$, then we replace $\tilde{\theta}$ by $\tilde{\theta}(\operatorname{id} \times \alpha)$ and proceed as above.

Thus we have constructed an open embedding $f: Q_m * [0, \frac{3}{4}) \times R^n \to X$ such that f(x, 0) = i(x). Similarly we can construct an open embedding $g: Q_m * (\frac{1}{4}, 1] \times R^n \to X$ such that g(x, 0) = i(x). Just as we used Lemma 5.2 to construct f_{k+1} above, we can use Lemma 5.1 to piece together f and g to obtain our required open embedding of $Q_m * [0, 1] \times R^n = Q \times R^n$ into X.

References

 J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. 9 (1923) pp. 406-407.

[2] M. W. Hirsch, On tubular neighborhoods of piecewise linear and topological manifolds, Conference on the Topology of Manifolds, Prindle, Boston, 1968.

[3] R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969), pp. 575-582.

[4] — and L. C. Siebenmann, Codimension two locally flat embeddings, Notices A.M.S. 18 (1971), p. 983.

[5] T. A. Chapman, On the structure of Hilbert cube manifolds, Compositio Math. 24 (1972), po. 329-353.

[6] - Notes on Hilbert cube manifolds, University of Kentucky (1973).

 [7] — Compact Hilbert cube manifolds and the invariance of Whitehead torsion, Bull. Amer. Math. Soc. 79 (1973), pp. 52-56.

8] — All Hilbert cube manifolds are triangulable, preprint.

 [9] — Classification of Hilbert cube manifolds and infinite simple homotopy types, preprint.

UNIVERSITY OF KENTUCKY Lexington, Kentucky

Accepté par la Rédaction le 5. 11. 1973