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pletion of 4 — see Remark 4.9) are isomorphic as multiplicative lattices.
Thus, the ideal structure of E can be determined by purely lattice theo-
retical means from the lattice of ideals of K.
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Locally flat embeddings of Hilbert cubes are flat
by :
T. A. Chapman * (Lexington, Ken.)

Abstract. In this paper it iz shown that any locally flat embedding of the Hilbert
cube ¢ into a @-manifold is flat. The techniques employed in the proof of this result
also imply that the group of homeomorphisms of @ x R™ onto itself which are fixed
on @ x {0} has exactly two components.

1. Introduction. For topological spaces. X and ¥, an embedding
4: X =Y is said to be locally flat (with codimension #) provided that each
point of X has a neighborhood U and an open embedding i: UX E*—Y
such that % (z, 0) = i(x), for all # ¢ U. We say that the embedding is flat
if we can take U = X. We use R" to denote euclidean n-space, @ to de-
note the Hilbert cube (i.e. the countable infinite product of closed inter-
vals), and by a Q-manifold we mean a separable metrie manifold modeled
on @. The following is the main result of this paper.

TrEorEM 1. If X is ¢ Q - manifold and i:Q — X is a locally flat embedding,
then i is flat.

Of course this result is false if @ is replaced by a more complicated
Q- manifold. For example let X = M X @, where M is the open Mdobius
band, let 4,: 8~ be a homeomorphism of the 1-sphere onto the center
circle, and let ¢ = 4, x id: §*X @ > M x Q. Then 1 is a codimension 1 locally
flat embedding, but ¢ is not flat. (If ¢ were flat, then arbitrarily small
neighborhoods of 7,(8') in M would be separated by 4,(8").) A more general
question would be to investigate when locally flat embeddings of @ - mani-
folds into @-manifolds have normal bundles (see [2] and [4] for finite-
dimengional results).

Let J36,(Q X R™) denote the space of all homeomorphisms of @ x R"
onto itself (with the CO-topology) which are the identity on € X {0}.
The following result is a by-product of the proof of Theorem L.

THEOREM 2. 7,(06,(Q X B} =2, for all n=1. That is, 2 (Qx E")
has exactly two components.

* Supported in part by NSF Grant GP-28374.
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We remark that Kirby’s solution of the annulus conjecture [3]
implies that m(Je(EY) =2 for n # 4, where J(R") is the space of all
homeomorphisms of R® onto itself which are the identity on {0}.

The techniques we use for proving both Theorems 1 and 2 are in-
finite-dimensional. Theorem 2 is much eagier to prove than Theorem 1.
Its proof uses an infinite-dimensional version of the standard Alexander
trick which is used to prove that any homeomorphism of an #-cell onto
itself which fixes the cell’s boundary is isotopic to the identity [1]. In § 3
we establish this infinite-dimensional Alexander isotopy and in § 4 we
prove Theorem 2. In § 5 we establish some lemmas necessary for the
proof of Theorem 1 and in § 6 we prove Theorem 1. The proofs of both
Theorems 1 and 2 use some recent results concerning the triangulation
and classification of @-manifolds (see [7], 8], and [9]).

2. Definitions and notatien. For each » >0 we let »
Bl = {we B || <},

the n-ball of rading r. 8P denotes its boundary and Int(BP) denotes
its interior. Throughout this paper we will use a: R"—R" to denote the
orientation-reversing homeomorphism given by

oy, Bay very p) = (— 1,y Bay oory Bar)

We use id to represent the identity mapping on any space. If
fir X =Y is a homotopy, for ¢ ¢ [0, 1], such that for some A C X we have
fe=foon A for all 1, then we write f, ~= firel A. If each f: is a homeo-
morphism of X onto ¥, then f; is an isotopy and we write f, 2= f,. A proper
mapping is a mapping for which the pre-image of each compactum is
compact. We will occasionally work in the proper category, and we will
use such terms as proper homotopy, proper isotopy, ete.

We will use a considerable amount of infinite-dimensional machinery
and a good source for some of the basic material is [6]. There is one
technical result which is used throughout this paper that bears repeating.
A closed subset 4 of a space X is said to be a Z-sel in X provided that
there exist arbitrarily “small” mappings f: X —X~\A. This means that
if U is any open cover of X, then there exists a mapping f: X —A\4
such that for each » « X there exists an element of U containing both =
and f(z). (We say that f is limited by ). The following is the main
technical tool concerning Z-sets [6].

IsoTory THROREM. Let X be o @ -manifold, A be o space, and leb
F: Ax[0,11-X be a proper mapping such that the levels Ty: A —X,
Fy: A X are homeomorphisms of A onto Z-sets in X. Then the induced
homeomorphism FyF5* of Fy(A) onto Fy(A) can be emtended to o manifold
homeomorplism which is isolopic to the identity. '
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We remark that if all the fibers F({a} x [0, 1]) are “short”, then the
manifold homeomorphism which extends F,F;' can be chosen to be
tcloge” to the identity. To be more precise this means that if U is an
open cover of X and each fiber F ({a} x [0, 1]) lies in some element of Us,
then the homeomorphism extending F,F;* can be chosen to be limited
by St*(W). Here St*(W) is the open cover of X constructed by taking
all sets of the form

Uyw Uyw Uy,

where Uye W and U~ U, # O, Uy~ U, # 0.
This estimated version of the Isotopy theorem will be used in the
proof of Lemma 5.1 to perform the modification of h,.

3. An Alexander-type isotopy. We establish here a version of the
Alexander trick which will be needed for the proof of Theorem 2.

Lemyma 3.1 If h: QX BY—Q X By is a homeomorphism such that
Boe==id on QX ({0} w 877Y), then b = idrelQ X ({0} v §+°1).

" Proof. Let 0: @ X x[0,1]-@Q be a mapping such that 6, is pro-
jection off the second factor, 8, is projection off the first factor, and 6, is
a homeomorphism for all # 0, 1. The construction of 6 uses a standard
coordinate-switehing technique . (see [6], Chapter III). Conmsider the
function fi: @ X BP—Q X B defined by kg, )= (0ig:, %), %), where
Oizia(9) = (15 )y (g, @) = (g5, @), and ¢ = [2}f2. It is easy fo check
that 7 is a homeomorphism such that i = id on @ X ({0} w §77%).

To show that J %2 hrelQx ({0} v 8771) we define g;: BT —[0,1] by
@i(s) = (1—1)-8/2++¢ and for each te[0,1] let Az QX By —Qx B} be
defined by Tilg, #) = (0t1<Q17 4a), m/); where G;E!zu)(m = (g1, G)s Plqy, @)
= (¢, #"), and ¢, = g;(|&’])). It is clear that f; provides our required isotopy
such that fiy=h and h, ="I.

To show that & % idrel @ x ({0} v 8771 we will define an isotopy
ge: QX B*>(Q x B which fulfills our requirements. For ¢ = 0 we define
go = id. Tor t e (0, 1] define g, = id on (@ x {0})w Q % (BI\Int(Bp)) and
on @ x (BN{0Y) we define gig,s) = (0,(q;, g), ), where 632(q)
= (g, @)y M(qu,ft) = (g1, @), and t = [tz’}2. Then g; is our required
isotopy. o

4. Proof of Theorem 2. We will use Lemma 3.1 to prove Theorem 2-
Choose any h e Je,(Q x B*). We will prove that either A ~idrel @ x {0}
or b % idxarel@ x {0}. Choose >0 large enough so that (Q X BY)
CQxInt(BY). Put A =h(Qx8 ), X=(QxBNQxXInt(BY), and
let i: A C_, X De the inclusion mapping. :

We will first show that 4 is a homotopy equivalence. To do this we
prove that 4 induces an isomorphism on all homotopy groups. First as-
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sume that # = 1. Then all we have to do is use the fact that if (¥, ¥)
is an ANR pair such that Y, is closed, bicollared, and the inclusion ¥, C, ¥
is a homotopy equivalence, then Y, separates Y into two disjoint open
sets and the inclusion of ¥ into the closure of each of these components
is a homotopy equivalence. For details see [5].

‘We now treat the case n = 2. Note that X iy a strong deformation

retract of @ x (BMN\{0}), thus 7,(X) =0 for all m > 2. All we need to '

do is prove that ¢ induces an isomorphism on =; . Using singular homology
with integral coefficients consider the commutative diagram

m(A) —> m(X)
|

v
Hy(A) —— Hy(X),
iy .

where ¢, and 4y are induced by ¢ and the vertical arrows are Hurewicz
homomorphisms. Since =;(4) and = (X) are abelian, these vertical arrows
are isomorphisms. So all we have to do is prove that i#1is an isomorphism.
Using the homology exaet sequenee for the pair (X, 4) all we have to
do is prove that Hy(X, 4) = 0 and H,(X, 4)= 0. By excision we have

Hy(X, A) o= H,(Qx By, h(@ X BY))

and the exact sequence for the pair (Qx B2, h(QxBr) gives us
H,(QXBZ, (@ X BY)=0. Thus H(X, A)=0. We can similarly prove
that Hy(X, 4) = 0.

‘We now treat the case # = 3. In this case A and X are both simply
connected, therefore all we need to do is prove that ¢ induces an
isomorphism on all homology groups. But this easily follows from the
Mayer-Vietoris sequence for the triad (Q x BY, X, h(@ x B{‘)).

Our next step is to show that there exists a homeomorphism
hy: @ X BY ~Q X B} which agrees with % on @ X BY. Let f: @ X (BP\Int(BY))
—h™(4) be a homotopy equivalence and note that if: @ x (Bp\Int (BY)
—X is a homotopy equivalence. Since 7, (X) is “nice”, the Whitehead
group Wh(X) vanishes and therefore if is a simple homotopy equivalence.
This implies that if is homotopic to & homeomorphism g: @ x (B™Int (Br))
—+X (see [9] for references). Using the Isotopy theorem we can correct g
to get g = hon @ x 8§ . Then g extends to our required homeomorphism &, .

Now consider the mapping ¢: S~ - 82~ given by ¢ (w) = yphi(qo, @),
where q?eQ, P: QX BY—B} is the projection mapping, and y: Bf\{O‘,
—-877" is a radial projection. Then ¢ is a homotopy equivalence, so it
has degree t1. If degp = 41, then ¢ =~ id, hence the restriction h,|Q X

X877 @ X 8 > X is homotopic to the inclusion Qx 8-t c, X. Using
the Isotopy theorem we can correct hy 80 that we have h, :—-T id oz Qx 8Pt
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Extend &, by the identity to a homeomorphism ﬁl: QX R"—>Qx B* and
note that Lemma 3.1 implies that hy & idrel @ x {0}. Thus hy = hT'h 2n
rel @ X {0}, Bubt hy=1id on QX BY. Then it iy easy to prove that
h, = id rel @ X BY by using the standard Alexander trick. This takes care
of the case in which degp = 1.

On the other hand assume that degep = —1. Then ¢ is homotopic
to a restriction of o, therefore %;|Qx 8: @ x 877> X is homotopic
to the inclusion @ x S7*C_ X followed by id X a. The Isotopy theorem
implies that 7, can be corrected so that we additionally have h, = id X a
on Q x 8. Extend k; by id X a to a homeomorphism h; of @ x R" onto
itgelf. Using Lemma 3.1 it follows that

(id X a)hy 2 id rel@ x {0} .

iso

Therefore h; =~ id X arel@ x {0}, which implies that

hy = Ry % (id X a) hrel @ X {0} .
But once again we have h, ®idrel @ x {0}. Therefore h Pidx arel @ x {0}.

5. Some lemmas for Theorem 1. In this section we prove two results
which will be needed in the proof of Theorem 1.

LevMA B.1. Let h: QX RXRE'-Q X RXR" be an open embedding
such that T = id on QX Rx {0}. Then there ewists. o homeomorphism f of
Q x R R™ onto itself with compact support such that f = id on @ X E x {0}
and either fh=id or fh=1dx a on @x[—1,1]X Bl

Proof. Choose >0 such that

h(@ X [—1,11x B}) C@X (—r,r)x Int(B7) .

We will construct a homeomorphism g of @ X[—r,r]1x By onto itself
such that g=1id on @x[—7,7]1x {0}, g=15 on @x[—1,1]x B}, and
either g=id or g=1dxXa on Bd(@x[—r,r]X B™. This will clearly
fulfill our requirements. Our first goal will be to work our way through
the accompanying diagram of spaces and maps., The homeomorphism h,
ab the top of the diagram will be used to obtain g.

I. Construction of h,. We want h to be a proper embedding such
that hy(Q X (—7, 7) X BY) CQx(~r,m X% Int(By), by = id on @ X (—7, 7) X
% {0}, and b, =& on @x[—1,1]1x Bf. The details of the construction
of h, are routine.

II. Construction of k. We want h, to be a homeomorphism which
extends hy. Let A = hy(Qx (—7,7)x 8t7") and let

X = (@ (—7, 1) X BINu(@x (—r, ) x nt(B}) .
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Just as in the proof of Theorem 2 we can show that the inclusion’
i: A C, X is a homotopy -equivalence. We will show that the inclusion
j: @X (—7,r)x 8"1C, X is -a proper homotopy equivalence.

iy

QX [—7, FIX B} — > QX [—7,7]xX BY

Ll Y
X :
X X
J 7 Jd
. s .
QX (=7, 1) X By ———> Q@ X (—7,1) X B}
J J o
I,
QX(—QT; )X B} —= QX (—7, 1) X By
OXRXRY — s QxRX R

Let w: X C,QX(—r,7)x (B™N{0}) be the inclusion mapping. Let
v: BIN{0} — 827" be the mapping given by radial projection and let P: Qx
X (=1, 1) X (BIN{0}) »@ X (—7, 1) X 817" be given by o =id X v. Then it
is easy to see that bu: X —@x (—r,r)x 82! i3 a proper mapping. We
will prove that it is'a proper homotopy inverse of j. This means that
we must prove that 2% is proper homotopic to id (in X). :

Let w: BIN{0}—>87* be the radial projection and define : QX
X (=71, 1) X (B]N{0}) > X by setting % = id on X and % = h, (id x w) on
By(Q X (=7, 7) X BY). Let v;: BpN{0} - B™\{0} be a radially defined homo-
topy such that vy =1id and v, =v. Let By QX (—7,r) X (B™N{0}) = @ X
X (=7, 1) X (Bp\{0}) be defined by ;= id X v;. Consider the homotopy
ye: X > X defined by y¢ = wveit. It is easy to see that y; is a proper homo-
topy such that y,=id and y; = . S

Novs:* for the construction of h,. Since j is a proper homotopy equi-
valence it must be an infinite simple homotopy eqﬁivai’eﬁe’e (-see"'['Q'] for

references). Therefore we can find a homeomorphism
0: QX (=7, r)x 82 1%x[0,1]-X

such that 6(z,0) ==, T s gl '
ot (#,0) ==, 0{? all % €@ X (—7,7)x §27L Choose #,¢ (0, 7)

ha(@ X [, 7) X 837 C 0(Q x (15 7) x 87 x [0, 1]).,
(@ (=7, — 7] X 817 C 6@ x-(—7r, —1) x 817 x[0,1]) .
It is clear that the inclusions : |
Ba(Q X [, 1) % 874 0@ X1, 7)x 82~ x[0,1]),
ha(@X (=7, —rx 874 C_, B(@ X (—7, —1}x 871 x [0, 1])
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are homotopy equivalences, and because of the presence of the half-open
interval factors they are easily seen to be proper homotopy equivalences.
Thus we can find homeomorphisms
put h(@ X [70, 1) X S X [0, 1]-0(@ x [1, 7) x 82 x [0,1]),
por B (@ X (=7, — 1] X S %[0, 1] 0(@ X (—r, —1]Xx 8% [0, 1])
such that ‘g (w, 0) == 2 and @z, 0) = 2. Choose 7, € (r,, ) close enough
to 7 so that )
@1 (1@ X [r1, 1) X 8771 X [0, 1]) C 0(@ % (1, r) x 877" [0, 1]) ,
Palh(@ X (—7, =] X 8Fx [0, 1]) C (@ X (—7, —1)x 877+ x [0,1]) .
Now let A, = h(@ X [—71, 1] % 8777 and let
Xy = N[ (1a(Q X (71, 7) % 817 x [0, 1]) v
w [ng(hl(Q X (=7, —11) X 871 x [0, 1])] .
Tt iy clear that the inclusion 4,C_ X, is a homotopy equivalence and
therefore a simple homotopy equivalence. Thus there exists & homeo-
morphism @y: A, X [0, 1] X, such that ¢, 0) = z. If we knew that ¢,

agreed with ¢, and @, on

P (h(@ % {r} x 8771 X [0, 1])  and %(hl(Q X {—r}x 817 x [0, 1]) ,

respectively, then we could piece them together to obtain a homeo-
morphism @: AX[0,1]-X satisfying ¢(xz,0) = . This would clearly
imply the existence of our required h,. The manipulation of ¢, to satisfy
these requirements is just a simple application of the Isotopy theorem.

IIT. Construction of h; and X. Define
X = (Qx (—r,r)xBy)w {rhw {—1},
where X iy the compact metric space obtained from Q X (—7,7) X B} by
compactifying the two ends. We choose notation so that (Q % [0, 7)x B;‘) v
w {r} and (Q X (—r, 01X By} {—7} are compact. Then hy is defined to
agree with hy, on @ x (—1, )X By and to be the identity on {—r} v {r}.
1IV. Construction of 8 and h. We want 6 to be a homeomor-
phism such that 6 = id on @ X [—n, 7IX B} and
8(@ % [—7, 71 x {0}) = (@ (=, 1) x {0} w {1} v {=7},
where 7, is chosen so that 0 <r <7 and
1a(@ X [—1,11% BY) C QX [—71, I X Br,.

Then %, will be' defined to make the»appropri:ute rectangle commute.
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It will suffice to produce a mapping 6" of @ x[—r, r]X B* onto
itself such that
(1) §F@X{FIxBY={0}x{r}x {0} and
¥(@ x {—r}x BY) = {0} x {~7} x {0},
(2) ~ ¢’ restricts to a homeomorphism of @ x (—r, )X B? onto
(@ [—r, 71x BIN[({03 x {7} x {03) w ({0} x {—r} x {0})],
(3)  F@x[—r,rIx{0}) = @x[—r,7Ix {0},
(4) ¢ =1id on @ X[—ry, r]x B

Once ¢ iy obtained we just define 8 = q(4')™!, where ¢: @ X [—r, r]x
X B} -+ X is the quotient mapping.

Using the fact that @ is homeomorphic to its own cone [6], there
exists a mapping &, of @ X [—r,r]Xx B onto itself such that

1) &{@x{Ix{z))={0}x ¥x{z} and ’
QX {—x{@}) = {0} x {~r}x {#} for each weB",

(2) &, restricts to a homeomorphism of @ x (—7, 7) X {#} onto ‘

(Q X [—7r,r]x {m})\(({O} X {ryx {z}) © ({0} x {—r} x {w})) for each ,
(3) d=1id on @xX[—~r,n]x B

Now let € be a mapping of [—r, #]x B} onto itself such that
(1) 8({r}x BY) = {r}x {0} and O{{—7}x BY) = {—r}x {0},
(2) 6 restriets to a homeomorphism of (—#, r)X B} onto

([— 7, 71 BN} x {0}) w ({(— ) x {}),

(3) O(—7,r1x {0}) w ([— 7y, n]X BY) = id .

This gives a mapping 6, of {0} X [—7,r1X B® onto itself defined by
6,00, @, y) = (0, ', y'), where (#',y’) = (2, y). For each g @, ¢ # 0, wo
can clearly define a homeomorphism 6 of {¢} X [—r,7]x B onto itselt
which is the identity on

(g} X [=7, 11X {0}) v ({g} X [— 1y, 1] x BY

and such that the 6,’s continuously fit together to define a mapping 4,
of @X[~—7r,7]1X B onto itself by setting d,= 0, on {g}x [—#, r]x B
This follows since § is a uniform limit of homeomorphisms. Then §' = 6, 23,
fulfills our requirements. We note that Ry is & homeomorphism such that
hy=1id on @ X[—r,r]x {0} and By=1% on Qx [—1,1]x B},

e ©
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Just as in the proof of Theorem 2 we can correct %, so that we have
By=1id or hy=1dX a on @ X [—7r,7]xX 8;7'. For the remainder of the
argument we assume that hy=id on @ X[—r,r]1x 8}7%. The treatment
of the case h, =id X a on @x[—r,7]x 8% is similar. Note that if we
had By = id on @ X {—r, 7} X B}, then we would be done. The remainder
of the proof of Lemma 5.1 takes steps to modify 7, to get this extra
condition.

Using Lemma 3.1 there exists an isotopy fi: @ X[—r,r]x BF QX
X [—7, r]X Brrel@ x [—r, #]x ({0} w 837%) such that f,=id and f; = &,.
Choose & 0< e<<r, such that fi(@x {—r,r}x B}) does not intersect
Q X [—71, 1] X BY, for all £ [0, 1]. The restriction of fi to @ X {—r,r} X
x B gives us a homotopy

gi: QX {—r, 7} X By >@Q X [—r,r]X B}
guch that g, =id, gy =hy, on @x {—r,r}X B}, g: =1d on @ X {—7r, 7} X
x ({0} © 8771 for all ¢, and g:(@ X {—7, r} x Int(B)\{0}) does not; inter-
sect @ x [—7, r1x ({0} © §7~!) for all 4. It is clear that we may adjust g¢-so
that additionally g«(@ X {—7,7}x B?) does not intersect @ X [—ry,r1]X
x B, for all ¢. Applying the Isotopy theorem to the manifold i
[@ X [—7, 71 x (Tnt(BEN{O}N@ X [— 71, ] X BY)

we can easily find a homeomorphism z: @ X [—r, #]X B »Q x[—r, 71X
x B" such that v="h, on @x{—7,r}x B}, z=1id on Qx[fr, r]X
X ({0} v 827, and 7=id on Qx[—r,n]xBy. Then 7', gives our
desired modification of h,.

LEMMA 5.2. Let h: @ x[0,1) X R"—»Qx[0,1) X E" be an open em-
bedding such that h=id on @ x[0,1)x {0}. Then there ewisis homeo-
morphism f of @x [0, 1]1x R* onto- itself with compact support such tho;t
f=1id on @ X [0, 1) x {0} and either fh = id or fh = id X aonQx[0, ¥1xBY.

Proof. Similar to the proof of Lemma 5.1.

6. Proof of Theorem 1. We are given a Q-manifold X and a locally
flat embedding i: Q —»X. We will represent § by 1]:]: I;, where each I is
the closed interval [0,1]. For each m let

Q= Ty X Iy X oo X Ly Xy X IppnX oo
and for 4 CQu, BC Iy leb
A%B={(g)eQ tneB and (@, s nsy Lurar ) €4} -

We can choose m large enough so that there exists an open cover W of Qm
satisfying the property that for each U ¢ U there ?,Xlsts an open embedd-
ing hy: (U % In) X B*—»X such that hy(w, 0) = i(z).

8 — Fundamenta Mathematicae LXXXVII
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Our first goal will be to prove that there exists an open embedding
fi Qm*[0,3) X B*-> X guch that f(z, 0) = i(@). There exists an integer 7
so that for each 7, 1 <r <1, there exists an open cover {U, ) _, of @,
refining U sueh that

(1) each U,, is contractible,

(2) Thp1 n (U0 Uppwo v U, s contractible for all » and
1<k<i-1,

(3) " Uppyz C U,  for all k and 1 << v < 1—1.

The construction of the open covers {U, ptiey is routine, Choose numbers tys
1<r<l, so that
f=f<t <. <l<t=1.
We will inductively prove that for each &, 1 < &k < I, there exists an open
embedding
Jit (Upa v oo w Ugy) [0, 1) X B" > X .

such that fi(z, 0) = i(x). This will imply the existence of our desired
open embedding f. The statement is clearly true for k = 1 so we assume
it to be true for some k < I1—1. We will prove that Jra, exists.

Let 0': Uppr1#[0,) x R"»X be an open embedding such that
0z, 0)=i(x). Let 6= U,, Vv U, and let 0CGn T, x+1 Do the

intersecf,i.on of Upyyav.ow U, rur and Uy It s clear that 0 can
be modified so that we additionally have

0(0% [0, ] X R”) C £, (6 # [0, 1) X R?) .
Using 6 and’ f, we can easily construct an open embedding
P (G D Uppd) % [0, 8) X B~ (G 1 Uy 1) %[0, 8,) X R

sich that g =id on (@~ Upyp) [0, 4)% {0} and g = /70 on
C*[0,1,,]x R™ But & ~ Uy, i1 18 & contractible @ -manifold and there-
fore (G ~ Uprrs) #[0, %) s homeomorphic to Qx[()', 1) [B]. Using
Lemma 5.2 we can find a homeomorphism

h: (G n Uh,k-n) * [07 tk) X Rn_’(G o Uk,k-H) * [O, ik) X

with compact support such that b = id on (GnTU 0
( L b = err) * [0, 1) X {0
and elth.er ho=1id or hp =1idxa on O [‘0,i,.+1]><B7{:7 ) 10, (0]
Define a homeomorphism f: X —X by J, — fi 71f,‘11 on
o ﬁ o

fk((G N Uk,lc+1) # [0, £,)x R")

and fi = id otherwise. Then let § = 6. Note that 3: |

: - The = h6. that 0: Uy .., [0, t) X R
—»? Is an open embedding such that b(z,0) = i(x) a]g{:lleithér 0=f,
or 6= fi(idx a) on O %[0, by dX BY. IE 8 =f, on € % [0, .11 % By, then
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we can piece together f on (Upyyyw o Upyyy) %[0, 1) x Int(BY)
and B on Uppypps %[0, 4y,) X Int(BY) to get our required fi,,. Tf B
= fidxa) on Cx[0,t,,1x B} then we replace § by #(idx a) and
proceed as above.

Thus we have constructed an open embedding f: Qu [0, )X B* - X
such that f(z, 0) = i(x). Similarly we can construct an open embedding
g: Qmx (3, L]xX B"—>X such that g(z,0)=i(z). Just as we wused
Lemma 5.2 to construet f,,, above, we can use Lemma 5.1 to piece to-
gether f and g to obtain our required open embedding of @y, = [0, 1]X R*
= @ x R" into X.
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