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Fixed point theorems in topological spaces

by
Lj. B. Ciri¢ (Beograd)

Abstract. Let 7: X—X be a mapping of a topological space X into itself. T is
called o strongly mon-periodic muppang it x # Tx implies x e el{T?x, T, ..}. In the
present paper are given conditions in metric and topological spaces under which these
mapping have fixed peints.

1. Let X be a topological space and I': XX a mapping. A poinb
weX is called a fized point under T if Tu = u. A point z¢ X is called
a periodic point under T' if there exists a positive integer k > 2 such that
Thy = g, ie., if ©e{T%, T, ..}. For < X, let

0(T"z) = {T"w, T""w, ..}, n=0,1,2,..

(where it is understood that Tz = z) and O(I"z)= cl{T"z, g, W)
Now we will introduce a notion of a strergly non-pericdic mappirg.

DEFINITION 1. A mapping T: X—X is called sirongly non periodic
ift for every e X

2 # Tz implies ¢ O0(T%).

Let T be a mapping of a metric space M into itself. In [1] an
orbitally continuous mapping and a T'-orbitally complete space are
defined as follows. A mapping T is said to be orbitally continuous if
u, % ¢ M are such that « = lim; Tz then Tu = lim; TT™z. A space M is
said to be T-orbitally complele if every Cauchy sequence of the form
{T™: i « N} converges in M. Now the corresponding concept for orbitally
continnous mappings in a topological space X will be given.

DEFINITION 2. A mapping T: X —X is said to be orbitally continuous
it u, @ ¢ X ave such that u is a eluster point of O(), then Tw is a cluster
point of T'(0(a)). .

In the present paper we investigate strongly non-periodic an
orbitally continuous mappings frem a topological space into itself, which
are not necessarily continuous. We present a result which contains many
of results for contractive mappings (mappings which shrink distance in
some manner) from a metric space into itself. )
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2. We prove the following result.

TEEoREM 1. Let X be a topological space and T: X—X be a strongly
@on-peﬂodia and orbitally continuous mapping. If for some 2y e X the set
O (w,) 15 compact, then there exists a cluster point w of O (x,) such that Tu = wu.
Furthermore, if for every (u,v) e X X X, w # v implies (Tu, Tv) 5 (u,v),
then wu is a unique fized point in X under T.

Proof. It is clear that if y e O(x) then Ty e O(,). Now, let y be
a cluster point of O(w,). Since T is orbitally continuous it follows that
Ty is a cluster point - of T(O( )) O(Tx,) C O (). Therefore, we have

T(0(p)) C O (o).

Let & be a family of all nonempty closed subsets of 0 (,) which 7' maps
into itself. Since T(O(mo))C O(z,) the family & is not empty. Let F be
partially ordered by the set inclusion and let £ be a totally ordered sub-
family of . Put F, = ﬂ {F: I eL}. F, is closed nonempty subset of O(z,)
by the compactness of O(x,) and it is a lower bound of £. Using Zorn’s
lemma we can find a subset ¢ of & which-is minimal with respect to
being nonempty, closed and mapped into itself by T'. By the minimality
of 0 we have T(0)= C. ’

Let % be an element in ¢ and suppose that « # Tu. Then u ¢ O (T%)
since T is strongly non-periodic. The orbitally continuity of I' implies
that the set Q(Tzu) is mapped into itself by T and the minimality of C
implies that O (T?w) = C. Since % ¢ C, one has % ¢ O(T?) which is desired
contradiction. Therefore, = Tu.

The last assertion of the theorem is clear. This completes the proof.

CoroLLARY 1. Let X be a compact topological space and T: X—X be
a strongly nom-periodic and orbitally continuous mapping. Then for each
x € X there ewists a cluster point u of O(x) such that Tu = u. Furthermore,
if for every (u,v) e XX X, u # v implies (Tu, Tv) # (u,v), then T has
a unique fized point.

Exampre. The following example shows that in Theorem 1 one
cannot delete the requirement that I be orbitally continuous. Let X be
the set of reals 0 << # <1 with the usual topology, and let 7': XX be
defined by Tz = i}z for 2 rational and = # 0, T(0)= 1 and Tw =}z
for » irrational. It i clear that I is strongly non-periodic and X is com-
pact. But T is not orbitally continuous and has not a fixed point. Let
now F: X—X be defined by Fox= Tae for « # 0 and F(0)=0. The
mapping F is strongly non-periodic and orbitally continuous (but not
continuous) and has the fixed point.

In the following corollaries we shall show that contractive mappings
on a metric or uniform space are the strongly non-periodic mappings.
Sm.ne of these contractive conditions are listed below. We suppose that
T is a mapping of a metric space M into itself.
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(1) (Bdelstein [2]). T' is said to be contractive if forall z,ye M, © # v,
A(Tz, Ty)< d(z, y).

(2) (Kirk [4]). T is said to have diminishmg orbital diameters if for
each »¢ M the diameter §(0(x)) of the orbit O(z) satisties the
property that 0< 8(0(x))< co implies 6(0()) > limy6(0(I7x)).

(3)  (Cixié [1]). T is said to be a contraction type mapping if for all
z,y ¢ M there are non-negative numbers d(x,y) and gz, )<l
with supg(z,y)= 1 and such that

d(TnmiTny)<(Q(m:?/))n5(m7y); n=1,2,..
Let now X be a uniform space, $ a basis for the uniformity and
T: X—»X a mapping.

(4) (Kammerer and Kasriel [3]). T is said to be B - contractive if for
each U eB and (z,y)e U, z # ¥, there exists a W B such that
(Tw, Ty) e WC U and (x,y) ¢ W.

COROLLARY 2 (Edelstein [2]). Let (M, d) be a metric space and T:
M—M be contractive. If for some @, e M there emists a subsequence {T™wo}
of the sequence {T™m,} such that lim;T™z, = u, then u is & unigue fized
point under T and u = lim, T"%,.

Proof. Let < M be arbitrary and suppose that & # Tx. Then it
is impossible that z= Thgz for k>2. For if so, then d(z, Tz)
— @(T%s, T*Tx) and since T" is contractive when T is contractive, we
have that d(TFz, T*Tw) < d(z, Tz), which is a contradiction. Also it
is impossible that  is a cluster point of 0(T?z). For if g0, by routine caleu-
lation one can show that then follows & = Tw, which is a contradiction
with © # Tw. Therefore, T is strongly non-periodic. It is clear that every
contractive mapping is (uniformly) continuous and hence orbitally
continuous. Since it follows that lim, Tz, = u, the set O () is compact.
Tf u v then d(Tu, Tv)< d(u,v) implies that (Tu, Tv) # (u, ) e« M*.
Therefore, all agsumptions of Theorem 1 are satisfied.

COROLLARY 3 (Kirk [4]). Suppose (M, d) is a compact metric space
and T: M->B is continuous with diminishing orbital diameters. Then for
each @ ¢ M, some subsequence {T™x} of the sequence {T"x} has a limit which
is a fized point of T.

Proof. Suppose @ # Tz, Then 6{0(z)) >0 and by hypothesis
8(0(x)) > 1im,, (0 (T"z)). Hence there exists a positive integer m such
that §(0 (z)) >4{0 (T™z)) = 8(0(T™x)) which implies that O(z) # O(T™x).
Hence # ¢ O(T™z). It is impossible that z € O (T?z). For if so, then # = Ty
for some k< m. This implies @ = T™*z for every =1, 2, ..., which is
a contradiction with @ ¢ O(T™z). Therefore, T' is a strongly non-periodie
mapping.
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COROLLARY 4 ([10). Let T: M~ be an orbitally continuous mapping
of & metric space M into dtself and let M be T -orbitally complete. If T is
a contraction type mapping then T has a unique fized point we M and
o = lim,, T"% for every ¢ M.

Proof. Let - Tw and suppose that z= TP, %:>>2. Then

0< d(w, Ta)= d(IT", T"*Tx) > (q(x, Tx)|"d (¢, Tx)

for every m=1,2, ..., is a contradiction with g(z, Tw) < 1. Also it is
impossible that @ is & cluster point of O (T%z), because O(T7z) has the
unique cluster point « for which we have w = Tw. Therefore, T iy strongly
non-periodic. It is clear that O(#») is compact for every x e M.

Let now (X, W) be a uniform space and let B be a basis for the
uniformity, % is said to be ample if (,y)e U B implies that there
exists o W e B for which (z,y)e WC WC U. A space X is U-chainable,
U < B, if for every »,y « X there are a finite set of points u, =, 1, ...
vy p =y in X such that (u,_y, %;) e U, 4= 1,2, .., n. This terminology
iy identical with that nsed by W. Kammerer and R. Kasriel in [3].

CoroLLARY 5 (Kammerer and Kasriel [3]). Let (X, W) be a compact
Hausdorff uniform space, $ be an open ample basis for W and let T: X —X
be @ B-contractive mapping of X into dtself. If X is U-chainable, U ¢ 3B,
then there is o unique fized point w e X and lim, T == u for every » e X.

Proof. Sinee it can be shown that 7 has a unique fixed point u ¢ X
and lim, T2 = u for every xe¢ X, we fee that B-contractive mappings
on U-chainable spaces are strongly non-periodic mappings.

Before we prove the following results we recall first some terminologies.

Let 8 be a bounded subset of a metric space M. We denote by a(8)
the infimum of all & > 0 for which § has a finite e-net and by f(8) the
infimum of all £ >0 such that § admits a finite covering consisting of
subsets with diameter less than s. Clearly «(8) << B(S8) < 2¢(8) and «(S)
= B(8) =0 iff § is totally bounded. Let T: M->M be a mapping which
is not necessarily continuous. T is said to be condensing if for every
bounded 8 C M such that «(S) >0, we have a(T(8))<< a(S). T is said
to be densifying if for every bounded § C M, sueh that §(8) >0, wo have
B(T(8)) < B(S). ,

TuEoREM 2. Let T: M~>M be an orbitally continuous, sirongly non-
periodic and condensing mapping. If M is T'-orbitally complete and for
some o € M the set O(x,) is bounded, then T has a fized point w e M and
lim; T, =u for some sequence {T™uy} C O (x,).

Proof. Since O(z) is bounded, 7 condensing and afT(0(m)))
= a(O ()}, it follows that a(0(m,)) = 0. The set O(x,) is compact since
O(ry) is of the form {T™z,: n e N} and M iz a T-orbitally complete
metric space. Now we may apply Theorem 1.
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The proof of the following theorem is similar to previous and is
omitted.

TuEOREM 3. Let T: M—M be an orbitally continuous, sirongly non-
periodic and densifying mapping. If M is T-orbitally complete and for
some @, € M the set O(x,) 8 bounded, then T has o fized point uwe M end
lim; T;“mo =y for some sequence {T™xe} C O(x,).
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