

Fixed point theorems in topological spaces

by

Lj. B. Ćirić (Beograd)

Abstract. Let $T\colon X\to X$ be a mapping of a topological space X into itself. T is called a *strongly non-periodic mapping* if $x\neq Tx$ implies $x\in cl\{T^2x,\,T^2x,\ldots\}$. In the present paper are given conditions in metric and topological spaces under which these mapping have fixed points.

1. Let X be a topological space and $T: X \to X$ a mapping. A point $u \in X$ is called a *fixed point* under T if Tu = u. A point $x \in X$ is called a *periodic point* under T if there exists a positive integer $k \ge 2$ such that $T^k x = x$, i.e., if $x \in \{T^2 x, T^3 x, ...\}$. For $x \in X$, let

$$O(T^n x) = \{T^n x, T^{n+1} x, ...\}, \quad n = 0, 1, 2, ...$$

(where it is understood that $T^0x=x$) and $\bar{O}(T^nx)=\operatorname{cl}\{T^nx,\,T^{n+1}x,\,\ldots\}$. Now we will introduce a notion of a strengty non-periodic mapping.

Definition 1. A mapping $T\colon X{\to}X$ is called strongly non periodic iff for every $x\in X$

$$x \neq Tx$$
 implies $x \notin \overline{O}(T^2x)$.

Let T be a mapping of a metric space M into itself. In [1] an orbitally continuous mapping and a T-orbitally complete space are defined as follows. A mapping T is said to be orbitally continuous if $u, x \in M$ are such that $u = \lim_t T^{n_t} x$ then $Tu = \lim_t T^{n_t} x$. A space M is said to be T-orbitally complete if every Cauchy sequence of the form $\{T^{n_t} x: i \in N\}$ converges in M. Now the corresponding concept for orbitally continuous mappings in a topological space X will be given.

DEFINITION 2. A mapping $T: X \to X$ is said to be orbitally continuous if $u, x \in X$ are such that u is a cluster point of O(x), then Tu is a cluster point of T(O(x)).

In the present paper we investigate strongly non-periodic and orbitally continuous mappings from a topological space into itself, which are not necessarily continuous. We present a result which contains many of results for contractive mappings (mappings which shrink distance in some manner) from a metric space into itself.

2. We prove the following result.

THEOREM 1. Let X be a topological space and T: $X \rightarrow X$ be a strongly non-periodic and orbitally continuous mapping. If for some $x_0 \in X$ the set $\overline{O}(x_0)$ is compact, then there exists a cluster point u of $O(x_0)$ such that Tu = u. Furthermore, if for every $(u, v) \in X \times X$, $u \neq v$ implies $(Tu, Tv) \neq (u, v)$, then u is a unique fixed point in X under T.

Proof. It is clear that if $y \in O(x_0)$ then $Ty \in O(x_0)$. Now, let y be a cluster point of $O(x_0)$. Since T is orbitally continuous it follows that Ty is a cluster point of $T(O(x_0)) = O(Tx_0) \subset O(x_0)$. Therefore, we have $T(\overline{O}(x_0)) \subset \overline{O}(x_0)$.

Let \mathcal{F} be a family of all nonempty closed subsets of $\overline{O}(x_0)$ which T maps into itself. Since $T(\bar{O}(x_0)) \subset \bar{O}(x_0)$ the family \mathcal{F} is not empty. Let \mathcal{F} be partially ordered by the set inclusion and let £ be a totally ordered subfamily of \mathcal{F} . Put $F_0 = \bigcap \{F : F \in \mathcal{L}\}$. F_0 is closed nonempty subset of $\overline{\mathcal{O}}(x_0)$ by the compactness of $\overline{O}(x_0)$ and it is a lower bound of \mathcal{L} . Using Zorn's lemma we can find a subset C of \mathcal{F} which is minimal with respect to being nonempty, closed and mapped into itself by T. By the minimality of C we have T(C) = C.

Let u be an element in C and suppose that $u \neq Tu$. Then $u \notin \overline{O}(T^2u)$ since T is strongly non-periodic. The orbitally continuity of T implies that the set $\bar{O}(T^2u)$ is mapped into itself by T and the minimality of C implies that $\bar{O}(T^2u) = C$. Since $u \in C$, one has $u \in \bar{O}(T^2u)$ which is desired contradiction. Therefore, u = Tu.

The last assertion of the theorem is clear. This completes the proof.

COROLLARY 1. Let X be a compact topological space and T: $X \rightarrow X$ be a strongly non-periodic and orbitally continuous mapping. Then for each $x \in X$ there exists a cluster point u of O(x) such that Tu = u. Furthermore, if for every $(u,v) \in X \times X$, $u \neq v$ implies $(Tu,Tv) \neq (u,v)$, then T has a unique fixed point.

Example. The following example shows that in Theorem 1 one cannot delete the requirement that T be orbitally continuous. Let X be the set of reals $0 \le x \le 1$ with the usual topology, and let $T: X \to X$ be defined by $Tx = \frac{1}{2}x$ for x rational and $x \neq 0$, T(0) = 1 and $Tx = \frac{1}{3}x$ for x irrational. It is clear that T is strongly non-periodic and X is compact. But T is not orbitally continuous and has not a fixed point. Let now $F: X \to X$ be defined by Fx = Tx for $x \neq 0$ and F(0) = 0. The mapping F is strongly non-periodic and orbitally continuous (but not continuous) and has the fixed point.

In the following corollaries we shall show that contractive mappings on a metric or uniform space are the strongly non-periodic mappings. Some of these contractive conditions are listed below. We suppose that T is a mapping of a metric space M into itself.

1*

- (Edelstein [2]). T is said to be contractive if for all $x, y \in M$, $x \neq y$, d(Tx, Ty) < d(x, y).
- (Kirk [4]). T is said to have diminishing orbital diameters if for each $x \in M$ the diameter $\delta(O(x))$ of the orbit O(x) satisfies the property that $0 < \delta(O(x)) < \infty$ implies $\delta(O(x)) > \lim_n \delta(O(T^n x))$.
- (Cirić [1]). T is said to be a contraction type mapping if for all $x, y \in M$ there are non-negative numbers $\delta(x, y)$ and q(x, y) < 1with $\sup q(x, y) = 1$ and such that

$$d(T^n x, T^n y) \leq (q(x, y))^n \delta(x, y), \quad n = 1, 2, ...$$

Let now X be a uniform space, \mathcal{B} a basis for the uniformity and $T: X \rightarrow X$ a mapping.

(Kammerer and Kasriel [3]). T is said to be 3-contractive if for each $U \in \mathcal{B}$ and $(x, y) \in U$, $x \neq y$, there exists a $W \in \mathcal{B}$ such that $(Tx, Ty) \in W \subset U$ and $(x, y) \notin W$.

COROLLARY 2 (Edelstein [2]). Let (M, d) be a metric space and T: $M \rightarrow M$ be contractive. If for some $x_0 \in M$ there exists a subsequence $\{T^{n_i}x_0\}$ of the sequence $\{T^nx_0\}$ such that $\lim_i T^{n_i}x_0 = u$, then u is a unique fixed point under T and $u = \lim_n T^n x_0$.

Proof. Let $x \in M$ be arbitrary and suppose that $x \neq Tx$. Then it is impossible that $x = T^k x$ for $k \ge 2$. For if so, then d(x, Tx) $=d(T^{k}x,T^{k}Tx)$ and since T^{k} is contractive when T is contractive, we have that $d(T^kx, T^kTx) < d(x, Tx)$, which is a contradiction. Also it is impossible that x is a cluster point of $O(T^2x)$. For if so, by routine calculation one can show that then follows x = Tx, which is a contradiction with $x \neq Tx$. Therefore, T is strongly non-periodic. It is clear that every contractive mapping is (uniformly) continuous and hence orbitally continuous. Since it follows that $\lim_n T^n x_0 = u$, the set $\overline{O}(x_0)$ is compact. If $u \neq v$ then d(Tu, Tv) < d(u, v) implies that $(Tu, Tv) \neq (u, v) \in M^2$. Therefore, all assumptions of Theorem 1 are satisfied.

COROLLARY 3 (Kirk [4]). Suppose (M, d) is a compact metric space and $T: M \rightarrow M$ is continuous with diminishing orbital diameters. Then for each $x \in M$, some subsequence $\{T^{n_i}x\}$ of the sequence $\{T^{n_i}x\}$ has a limit which is a fixed point of T.

Proof. Suppose $x \neq Tx$. Then $\delta(O(x)) > 0$ and by hypothesis $\delta(O(x)) > \lim_{n} \delta(O(T^{n}x))$. Hence there exists a positive integer m such that $\delta(O(x)) > \delta(O(T^m x)) = \delta(\bar{O}(T^m x))$ which implies that $O(x) \neq \bar{O}(T^m x)$. Hence $x \notin \overline{O}(T^m x)$. It is impossible that $x \in \overline{O}(T^2 x)$. For if so, then $x = T^k x$ for some k < m. This implies $x = T^{nk}x$ for every n = 1, 2, ..., which is a contradiction with $x \notin \overline{O}(T^m x)$. Therefore, T is a strongly non-periodic mapping.

icm[©]

COROLLARY 4 ([1]). Let $T \colon M \to M$ be an orbitally continuous mapping of a metric space M into itself and let M be T-orbitally complete. If T is a contraction type mapping then T has a unique fixed point $u \in M$ and $u = \lim_n T^n x$ for every $x \in M$.

Proof. Let $x \neq Tx$ and suppose that $x = T^k x$, $k \geq 2$. Then $0 < d(x, Tx) = d(T^{nk}x, T^{nk}Tx) \geq (q(x, Tx))^n \delta(x, Tx)$

for every n=1,2,..., is a contradiction with q(x,Tx)<1. Also it is impossible that x is a cluster point of $O(T^2x)$, because $O(T^2x)$ has the unique cluster point u for which we have u=Tu. Therefore, T is strongly non-periodic. It is clear that $\overline{O}(x)$ is compact for every $x \in M$.

Let now (X,\mathfrak{A}) be a uniform space and let \mathfrak{B} be a basis for the uniformity. \mathfrak{B} is said to be ample if $(x,y) \in U \in \mathfrak{B}$ implies that there exists a $W \in \mathfrak{B}$ for which $(x,y) \in W \subset \overline{W} \subset U$. A space X is U-chainable, $U \in \mathfrak{B}$, if for every $x,y \in X$ there are a finite set of points $u_0 = x,u_1,\ldots,u_n = y$ in X such that $(u_{i-1},u_i) \in U, i=1,2,\ldots,n$. This terminology is identical with that used by W. Kammerer and \mathbb{R} . Kasriel in [3].

COROLLARY 5 (Kammerer and Kasriel [3]). Let (X, \mathfrak{A}) be a compact Hausdorff uniform space, \mathfrak{B} be an open ample basis for \mathfrak{A} and let $T\colon X\to X$ be a \mathfrak{B} -contractive mapping of X into itself. If X is U-chainable, $U\in \mathfrak{B}$, then there is a unique fixed point $u\in X$ and $\lim_n T^n x = u$ for every $x\in X$.

Proof. Since it can be shown that T has a unique fixed point $u \in X$ and $\lim_n T^n x = u$ for every $x \in X$, we see that \mathcal{B} -contractive mappings on U-chainable spaces are strongly non-periodic mappings.

Before we prove the following results we recall first some terminologies. Let S be a bounded subset of a metric space M. We denote by $\alpha(S)$ the infimum of all $\varepsilon > 0$ for which S has a finite ε -net and by $\beta(S)$ the infimum of all $\varepsilon > 0$ such that S admits a finite covering consisting of subsets with diameter less than ε . Clearly $\alpha(S) \leq \beta(S) \leq 2\alpha(S)$ and $\alpha(S) = \beta(S) = 0$ iff S is totally bounded. Let $T: M \to M$ be a mapping which is not necessarily continuous. T is said to be condensing if for every bounded $S \subset M$ such that $\alpha(S) > 0$, we have $\alpha(T(S)) < \alpha(S)$. T is said to be densifying if for every bounded $S \subset M$, such that $\beta(S) > 0$, we have $\beta(T(S)) < \beta(S)$.

THEOREM 2. Let $T: M \to M$ be an orbitally continuous, strongly non-periodic and condensing mapping. If M is T-orbitally complete and for some $x_0 \in M$ the set $O(x_0)$ is bounded, then T has a fixed point $u \in M$ and $\lim_t T^{n_t} x_0 = u$ for some sequence $\{T^{n_t} x_0\} \subseteq O(x_0)$.

Proof. Since $O(x_0)$ is bounded, T condensing and $\alpha(T(O(x_0))) = \alpha(O(x_0))$, it follows that $\alpha(O(x_0)) = 0$. The set $\overline{O}(x_0)$ is compact since $O(x_0)$ is of the form $\{T^nx_0: n \in N\}$ and M is a T-orbitally complete metric space. Now we may apply Theorem 1.

The proof of the following theorem is similar to previous and is omitted.

THEOREM 3. Let $T: M \to M$ be an orbitally continuous, strongly non-periodic and densifying mapping. If M is T-orbitally complete and for some $x_0 \in M$ the set $O(x_0)$ is bounded, then T has a fixed point $u \in M$ and $\lim_t T^{n_t} x_0 = u$ for some sequence $\{T^{n_t} x_0\} \subset O(x_0)$.

References

- [1] Lj. B. Ćirić, On contraction type mappings, Math. Balkanica 1 (1971), pp. 52-57.
- [2] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), pp. 74-79.
- [3] M. J. Kammerer and R. H. Kasriel, On contractive mappings in uniform spaces, Proc. Amer. Math. Soc. 15 (1964), pp. 288-290.
- [4] W. A. Kirk, On mappings with diminishing orbital diameters, J. London Math. Soc. 44 (1969), pp. 107-111.

INSTITUT MATHEMATIQUE Beograd

Accepté par la Rédaction le 9. 5. 1973