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Let X be the space G of Michael [14, Example 2] which is a closed
subset of the space F' of Bing used in Example 5.3. This space is meta-
compact and perfectly normal but not collectionwise normal. Hence X is
a space with the required properties.
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Some properties related to [a, bl-compactness
by
J. E. Vaughan (Greensboro, N, C.)

Abstract. In this paper, three properties are studied which are closely related
to [a, b]-compactness in the sense of complete accumulation points ([a, b]-compact’).
and [a, b]-compactness in the sense of open covers ([a, b]-compact).

§ 1. Introduction. The concept of [a, b]-compactness, which appears
in many interesting results today, dates back to the work of P. Alexandroft
and P. Urysohn in 1929. Since then many mathematicians have studied
[a, b]-compactness, and several authors have introduced natural pro-
perties which they asserted were equivalent to [a, b]-compactness. Some
of these properties, however, are not equivalent to [a, b]-compactness,.
although they arve closely related to it. The purpose of this paper is to
study the relations among several such properties, and to give some con--
ditions under which they are equivalent. We believe that the consider-
ation of these properties will aid in understanding [a, b]-compactness,,
in particular, [a, b]-compact product spaces. We will also point out some
errors in the literature concerning three of these properties.

Let the letters a, b,m, and n denote infinite cardinal numbers with
a<Db, and let [a, ] stand for the set of all cardinals m such that.
a<m=b. Let |B| denote the eardinal number of a set B, and let mt
denote the first eardinal strictly larger than m. The cofinality of m is
denoted by cf(m). Use of the generalized continuum hypothesis will be
denoted by [GCH]. :

DrriNrrions. A space X is called [a,b]-compact” if every open
cover Al of X such that W] is a regular cardinal in [a, b] has a subcover
U’ C U with |W'| < ||, This concept was introduced by Alexandroff
and Urysohn [1]. The superseript » is a reminder of the “restriction of”
regulaxity” in the definition (see [5]). A space X is called [a, b]- compact:
if every open cover U of X with |W| < b, has a subcover of cardinality
strietly less than a. This idea was introdueed in 1950 by Yu. Smirnov [13].
Essentially the same property was studied independently in 1957 by
I. 8. Gaal [3]. The work of Gaal mentioned in this paper [3, 4] has been:
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reworded to coincide with the terminology of Alexandroff and Urysohn.
A short survey of the theory of [a, b]-eompactness Is given in [15].

We will use the standard terminology concerning nets (Moore-Smith
sequences) as found in Kelley’s book [8]. In addition, a partially ordered
set D is said to be < a-directed (cf. [4, Def. 1.2]) if each of its subsets,
of cardinality strictly less than a, has an upper bound in D. The term
< q-directed is defined similarly. Thus, every < N,-directed set is
a directed set in the usual sense. For a set 7, leb

8,(T)={HCT: |H|<a}.

It 8,(T) is used as the domain of a net, it is to be understood that
the partial order on it is set inclusion. Recall that b = 3 {b™: m < a}.

We now define three properties which are related to [a, b]-com-
pactness.

A space X is said to have property S[a, b] if every open cover of X of
regular cardinality < b, has a subcover of cardinality < a. This property
was introdueed by Yu. Smirnov in [13] where it is incorrectly stated that
8[a, b] is equivalent to [a, b]-compactness” (see Example 1). (Professor
Smirnov has informed me that a number of people have noticed this
-€ITOor.)

A space X is said to have property G[a, b] if every net in X whose
domain D is < q-directed and |D| < b, has a cluster point. Essentially
this condition was introduced by Gaal in [3]. It is incorrectly stated in
[4, Theorem 1.2] that G[a, b] is equivalent to [a, b]-compactness (see
Example 2). ‘

A space is said to have property N[a, b] if every net in X whose
domain is 8,(m) for some a <<m < b has a cluster point. Such nets were
called b-a-sequences by N. Noble in [11] where it is erroneously stated
[11, Prop. 1.3] that NTa,b] is equivalent to [a, b]-compactness (see
Example 4). When b = oo is used in any of the five properties, it means
that the property holds for all b > a.

The basic relations among these five properties are given in the
following two results.

THEORENM 1. Let X be a topological space. Each of the statements (a)—(d)
Dbelow implies the one below it.

(a) X has property Nla, b].

(b) X s [a, b]-compact.

(e) X has property S[a, b].

(d) X has property Gla, b].

(e) X s [a, b]-compact’.

As will be shown in § 4, none of these implications can be reversed
for every value of ¢ and b. We are especially interested in conditions
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under which these properties are equivalent to
some topological conditions were given under
perties (b)—(e) would be equivalent. In the next
on the cardinals a and b under which certain o
rem 1 are equivalent.

[a, b]-compactness. Tn [5]
which the last four pro-
result we give conditions
f the conditions of Theo-

THEOREM 2.

A If a=, then the five conditions of Theorem 1 are equivalent

B. If a is regular and bS = b, then (a)~(d) of Theorem 1 are egm’valent:
In particular, they are equivalent when q is regular and b = co.

C. If cf(b) = a then [a, b]-compaciness is equivalent to S[q, b].

D. [GCH]. If o is regular, then S[a, b] is equivalent to G[a, b].

The following diagram summarizes the results in Theorems 1 and 2.

NTa, bl <« f
[a, b]-compact <
=N, cf(b) > a
| Sla, b] a regular
a regular and Bl =5
[GCH]
’ Gla, b]

[a, b]-compact”

Theorem 2D points out the following interesting situation. Property
8[a, b] was introduced in 1950 to characterize [a, b]-compactness”, and
G[a, b] was introduced in 1958 to characterize [a, b]-compactness. While
neither achieves sueh characterizations, it is consistent to assume that
8[a, b] and G[a, b] are equivalent when q is regular. Further, from Theo-
rem 2B and Lemma 4 in § 2, if both a and b are regular — regardless of
the number of singulax cardinals between them — then G[a, b], S[a, b],
[a, b]-compactness and N[a, b] are all equivalent under the assumption
of [GCH].

In § 2 we give some preliminary results which are used in § 3 to prove
Theorems 1 and 2. The examples are given in § 4.

§ 2. Preliminary results. First we prove an . equivalent form of the
axiom of choice which has & number of uses. The first part of it is due
to N. Howes [6, 7]. His proof [6] can be adapted to yield both parts of
the result below, but we give our own proof which is slightly shorter.

Lemma 1. Let (P, <*) be @ partially ordered set. There ewists a cofinal
subset WC P and a well-ordering < on E such that
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() if d,d B, and a<*d', then d<d',

(@) (B,<) is order isomorphic to the cardinal number which is the
smallest cardinality of all cofinal subsets of (P, <™.

Proot. Let D be a cofinal subset of (P,<") having smallest possible
cardinality m. Well-order D so that

D = {dyy Ayy ooy gy oent @<} '
Define a map f: m—m by transfinite induction as follows. Let f(0)= 0,
and define for each a<<m,

flo) = min{t: dy £" dy, for all f<a}.

The map f is well-defined since for each a<<m, clearly [{dsg: < a}|<m,
hence H = {dy5: B < o} is not cofinal in P. Thus, there exists at least
one ¢ < m such that d; ¢ H and d; is not exceeded in (P,<<*) by any member
of H. First we note that f is strictly increasing. If not, there exists
B< a< m such that f(f) > f(a). Clearly, f(B)# f(a) so we have
f(B) > f(a). By the definition of f(B) as a minimum and the fact that f(a)
is o smaller index that f(8), we know there exists some v < B < a such
that dy, <" dy,,. Bub this contradicts the definition of f(a), and thus f
is strietly increasing. Set B = {d;y,: ¢<<m}, and well-order it by the
well-order induced from its index set. Thus B is order isomorphic fo m.

We now show that ¥ is the desired cofinal subset of (P,<*). Pirst
ot all, E is cofinal in D: Given any d in D, say d = dp, since the image
of f has cardinality m, there exists a < m such that B < f(a). By defini-
tion of f(a) there exists v<C a such that d <* dyy- Thus E is cofinal
in D and therefore cofinal in P. Finally, we show that property (1) holds.
Let dyy, and dy, be members of B such that dypy <" dygy- We must
show that f(8) < f(a). By definition of f(f) we know that for all z<< §
we have dys £" &y, hence a<< f is impossible, so §<Ca. Since f s
strietly inereasing, f(B) < f(a). This completes the proof.

Lmnmaa 2. Let (P, <*) be a partially ordered set of cardinality m, where
m s a singular cardénal. If P is < cf (m)- directed, then P has a cofinal sub-
set of cardinality strictly less than m.

Proof. Assume false. By the preceding lemma, there exists a cofinal
subset E C P and a well-order < on F such that (#, <) satisfies (1) and (2)
of Lemma 1. By our assumption, (2) implies that (B, <) is order iso-
morphic to m. Let H be a cofinal subset of (F, <) with |[H| = cf(m)< m.
Sinee (P, <*) is < ef(m)-directed, there exists p,e P such that % <" p,
for all h ¢ H. Since E is cofinal in (P, <<*), there exists ¢, ¢ B such that
Py <* €,. But this says that H has an upper bound in (¥, <) since given
any h e H C B, h <" ¢, implies (by condition (1) of Lemma 1) that h < €.
This is a contradiction since H is a cofinal subset of (¥, <)=m and
has no upper bound in (E, <).
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CororLrARY. If W is an apen cover of a space X, |Us| = m, m 48 singulay
and U is stuble under all unions of cardinality < cf(m) (i, if W C ‘Ui
and U] < ef(m), then \J W' W), then W has & subcover of cardinality
strictly less than m.

Proof. By Lemma 2, the set U, partially ordered by set inclusion
has a cofinal subset of cardinality smaller than || ’

LemwA 3. If D ds < m-directed, where m is o singular cardin dl, then
D is < m-directed. «

Proof. We show that if 2’C.D and |D'| = m then D’ has an wpper
pound in D. Let D= {Dy: A< cf(m)} where |D,| <m for each A
Let d; be an upper bound for D; in D. Sinee of (m) < m, {d,: 1< of (m)}
has an upper bound in D which is an upper bound for D’.

We will also need the following easy result concerning eardinal
arithmetic (for example, see [12, p. 329]).

LovmA 4. [GOH). If nw<m and m is regular, then m® = m.

§ 3. Proofs of Theorem 1 and Theorem 2. For Theorem 1, all impli-
cations, except S[a, b]—Gla, b], are easy to prove directly from the
definitions involved. Instead of this, however, we give a different proof
based on the lemma below, which is of interest itself. It shows that four
of the five properties have a characterization in terms of certain filter bases.

Let & be a collection of subsets of a space X. We say that § has
the < a-intersection property provided for each ¥ C & with |F'| < a, we
have () F' # @. We say F is < a-stable if & consists of non-empty sebs
and for each ¥’ C F-with |F'| < q, there is an F' ¢ F such that F C () F'.
Let 7 denote () {F: I e ).

LevMA 5. Let X be a topological space.

(a) If X has property N[a,b] then for every F with the < a-inder-
section property and |F| << b, we have (\ {) F': F' e S(F)} # 0.

(b)Y X is [a, b]-compact if and only if for every F with the < q-inter-
section property and |F| <2 b, we have (N F # O.

(€) X has property S[a, b] i and only if for every T with the < a-inter-
section property, where || s regular, ond |F| <6, we have T # 0.
() X has property Gla, B if and only if for each F which s < a-stadle
and |F| < b, we have T # O.

(6) X 4 [a, b]-compact” if and only if for every decreasing collection
F = {F;: a<wm}, such that

CHDFD.LDFD .., a<m

where m is a reqular cardinal with o < m<b, we have N F # @.
Proof. Gaal proved (b) in [4], and the proof of (c) is similar. State-
ment (o) is due to Alexandroff and Urysohn [1, p. 20]. Our proof of (d)
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uses the fact that if F is < a-stable, then ¥, partially ordered by reverse
inclusion is < a-directed. We sketch a proof of (a). Let X satisfy property
N[a,b] and F have the < a-intersection property with |F|=m <b.
Well-order F = {F,: a< m} and define a net f: S(m)—2X by choosing
a point f(H) in () {F,: a<H} for each H e 8,(m). Any cluster point of
f is in the closure of each set (N {F,: aecH}) for each H e 8y (m). Con-
versely, if X satisties the condition deseribed in (a), then X need not
satisfy property Nla,b] as can be seen from Example 4. This completes
the proof of the lemma.

Now from this lemma, it is clear in Theorem 1 that {a) — (b),
(b) — (), and (d) — (e). To prove thabt (¢) — (d), we first prove Theo-
rem 2C.

Proof of Theorem 2C. Since it ig obvious that every [a, b]-com-
pact space has property S[a, b], we prove the converse with our additional
hypothesis. First we assume that b is regular. Suppose X has property
S[a, b] and is not [a, b]-compact. Then there is an open cover U of X
with || < b, such that U has no subcover of cardinality strictly less
than a. Let m be the smallest cardinal for which X has such an open
cover AU of cardinality m. Note that U does not have a subcover of
cardinality strictly less than m, and further, since X has property S[a, b],
m is a singular cardinal. We consider another open cover of X. Set

W= {JW: W CW and W] < cf(m)}.

Clearly W is stable under unions of cardinality < c¢f(m). If |W| =m,
then by the corollary to Lemma 2, W hag a subcover W' with | W] < |W].
Now each W e W' is a union of no more than ef(m) elements of W. Thus,
U, has a subcover of cardinality no more than ef(m) |W'| < m. This is
impossible, s0 |'W| > m. Let W’ be a subcover of W such that |W| = m™.
Now X has property S[a, b] and b is regular; thus m™ < b. Hence W’ has
a subcover W'’ of cardinality strietly less than a. Thus U has a subcover
of cardinality no more than cf(m)-|{W"”|< m. This is a contradiction
and completes the proof when b is regular. We now assume that a < ¢f(b)
and b is singular. From what was just proved, we see that X is [a, m]-com-
pact for all a << m<C b because X satisfies property S{a, m™]for a scm<<b
and m™ is regular. Thus, to show that X is [a, b]-compact, we necd only
show that every open cover of X of cardinality b has a subcover of smaller
cardinality. Let U = {U,: a < b} be an open cover of X with |U| = b.
Set W,= U {Us B< o} for each a<b. Then

WoC W,C..CW,C..., a<b

is an increasing open cover of X. By picking a cofinal subset of it, we
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have & subcollection WC{W, a< b} such that W covers X and
[W] = n < ef(b) < b. Since X is [a, m]-compact for a<m<b, W hag
a subeover W' with |W'| < a. By hypothesis, |W'| < ¢t (D). Now ’l;he seb of
indices of the elements of W’ has an upper bound o< . Thus {U,: § < a}
is a subcover of U having cardinality less than . This complﬁetes the
proof of Theorem. 2C.

Now we complete the proef of Theorem 1. We need only show
that S[a, b]—Gla, b]. If b is regular, then S[a, bl—[a, b]-compact by
Theorem 2C, and clearly [a, b]-compactness implies G[a, b]. Thus we
agsume that b is singular. Now if b is singular and X satisfies S[a, b]
then X is [a, m]-compact (henee satisfies Ga, m]) for all m < b. To sfmwi
that X has property Gla, b] we need only show that for every << a-stable
collection F with |57 =0, we have T # @. If a< cf(h), then by
Theorem 2C, X . i3 [a, b]-compact (hence satisfies G[a, b]). Thus,
we assume that cf(b) < a. From this we see that F , partially ordered
with reverse inclusion, is < ¢f (b)-directed. By Lemma 2, ¥ has a cofinal
subset F' C & with |7'| = m < b. Since &' is cofinal in ¥, it is < a-stable
and () &' = () . Since X is [a, m]-conipact, we have that (| F' 0,
and this completes the proof of Theorem 1.

Proof of Theorem 2A. Alexandroff and TUrysohn [1] proved
that [¥, b]-compactness” and [, b]-compactness are equivalent, and
S. Mréwka [10, Lemma 2] proved that N[, b] is equivalent to
[aeof,g?‘}compactness. The important property of &, here is that [8go{I)

Proof of Thuorem 2B. Let & have the < a-intersection property
and |[F|<Db. We must show that N {W: F' e 8(F)} # @. Now
§={N F': F € 8,(5)} has cardinality <b*=b and, since a is regular,
§ is < q-stable. Since we are assuming that X has property G[a, b] we
have that ) § # @.

Proof of Theorem 2D. We assume [GCH], that a is regular and
that Gla, b] holds. We show that S[a, b] holds. Let F have the < a-inter-
section propexty, and sappose that a < [F| = m is regular, and |F| <Bb.
We must show that () F # . By Lemma 4, we have that md=m.
Sinee m is vegular and X satistios G[a, m], we know from Theorem 2B
that X satistios 8[a, m] (in fact, N{a, m]), thus (" F # @. This completes
the proof of Theorem 2.

§ 4. Examples. We now give the examples which show that none
of the implications in Theorem 1 may be reversed for every value of a
and b. Firgt we deseribe an example due to A. Mikéenko [9], which we
will use below. Lot o, denote the first uncountable cardinal, w, the second
uncountable cardinal, and so on. For each natural number 73 1, leb w41
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denote the set of ordinals less than or equal to w;. Mi¥éenko’s space ig

o k )
B = U ([[ (w+1)x [] o)
k=1 =1 {=k+1
considered as a subspace of the compact product space [] (wi4-1).
i=1

Mik¢enko proved that B* is [¥;, oo]-compact”, and if U is an open cover
of B* with || < &,, then U has a countable subeover (for an easy proof
of this see [3]). Further, R* has an open cover of cardinality w, which
does not have a subcover of smaller cardinality.

ExAMPLE 1. An [a, b]-compact” space which does not satisfy G[a, b].
The space is B*,a =;, and b may be taken to be any ecardinal such
that b > |R* or b= oo, In light of the above remarks concerning R

" :
we need only show that R* does not satisfy G[a, b]. Let D = ” wi, and

t=1

give D the partial order defined by d < d' if and only if d(%) < d'(k) for
all integers k > 1 (where d(k) denotes the kth coordinate of d). It is easy
to check that D is < w;-directed and |D|= |R*|. We consider the in-
clusion map f: D—R* as a net and show that it does not have a cluster
point in B*. For each # in R* there exists an integer & snch that #(%) < w.
Now consider the open set U= {y e R*: y(k) < #(k)} and the element d
in D defined by

ati) = z(k)y+1 ifi==k,

0 otherwise .

There is no member d’ ¢ D such that @’ > d and f(d') e U. Thus = is not
@ cluster point of f. Since # was an arbitrary point in R*, we have shown
that B* does not satisfy G[x, |B*[]. This also gives another proof of
Miéenko’s result that B+* is not [a, b]- compact.

EXAMPLE 2. A space X which satisfies G[a, ] but not S[a, bl
Let X be a diserete space of cardinality x,. Take = 8, and let b be any
cardinal with b > a™ or b= co. Clearly X does not satisfy Sfa, b]. We
show that X does have property Gla, b). Let f: D—X be a net where
D is < §,-direeted. By Lemma 3, D is < N,-directed. If f has no cluster
point in X then for each @ <X, there exists dye D such that f(d) @
for all d > dy. The set {ds: © ¢ X} has an upper bound, say d, in D but
f(d) # @ for all @« X. This contradiction shows that f has a cluster point
in X. We do not know if Theorem 2D still holds without the assumption
of [GCH].

ExAMPLE 3. A space which satisfies S[a, b] but is not [a, b]-com-

psa}ct. The space is R*, a=#§, and b = 8,. We note that in accordance
with Theorem 2C we have that cf(b) < a.
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ExXAMPLE 4. An [a, b]-compact space which does not satisfy NTa, b].
The space is the set of natural numbers N = {0, 1,2, ..} with the disc;'ete
topology. We take a =, and b any cardinal =g or b = cc, Since N is
a Lindelof space, N is clearly [x,, co]-compact. We show that N does
not satisty N[x,,,]. Define a net f: Sy, ()N by f(H)=n where
o' [ H1 = Na. It is easy to see that f has no cluster point in V.

We conclude with some results concerning [a, b]-compact product
spaces which involve properties G[a, b] and N[a, 5]. In [14] we introduced
a property for topological spaces which we ealled (tentatively) property
(2)a5 and we proved [14, Thm. 3.4] that a countable product of spaces,
each of which satisfies (2), 5, Where o is regular and b& = b,is[a, b]- compact.

In light of the characterization of property Gla, b] given in Lemma, 5,
it appears that property Gla,b] plays the main role in the proof of
{14, Thm. 3.4], rather than [a, bl-compactness, and we, therefore, can
strengthen this theorem by using some results in this paper. First we
need to change slightly the definition of (2)s5- We say that a space has
property (3),y if for every < a-stable collection ¥ on X with | [ <,
there exists a compact set K and a collection § which is < a-stable and
6] < Db such that § is finer than & and the filter base of all open sets
containing K.

The proof of [14, Thm. 3.4] yields.

TrmorEM 3. A countable product of spaces, each of which satisfies
property (3)y5, sabisfies Gla, b). )

In other words, the offect of the restrictions on the cardinal numbers
a and b in [14, Thm. 3.4] is to have G[a, b] imply [a, b]-compactness.
Thug, by Theorem 2B we may improve [14, Thm. 3.4].

CorOLLARY. A countably product of spaces, each of which satisfies
property (3),,, where a is vegular and b = b, satisfies N{a, b].

el
Let m = ) m; be a countable sum of smaller cardinals, and for each

fesl
positive integer 4, let X; be a discrete space of cardinality m;. In [14,
Example 3.6] we showed that the produet space X = [T {X;: i=1,2,..}
is not [, oo]-compact. We point out that each X; satisfies property
(8) ey a0 thus by Theorem 3 the space X satisfies property G[m, oo].

Added in proof. 'Wo lhave rocenily developed a theory of *totally Q-compact

spaces,” which inceludos property (3)as as a special cage, and allows product theorems
like Theorem 3 above. The dotails will appear elsewhere.
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On the descriptive set theory
of the lexicographic square
by
A. J. Ostaszewski (London)

Abstract. Analytic and deseriptive Borel subsets of the le:
characterized. A sigma-compact subset is found not to
subsets are seen to be images under a three-valued
the set 7 of irrationals and some are not two-valued such images. A first-countable
separable compact subset is seen to be a two-valued such image of I but not single-
valued. Two Borelian hierarchies in § (one derived from compact sets, the other from

descriptive Borel sols) are studied. An absolutely closed space which is noj gigma-
deseriptive Bovel is construected.

xicographic Bquare § are
be descriptive Borel. All analytie
semi-continuous mapping from

Introduction and definitions. Let § be the unit square [0, 17 ordered
lexicographically (so that <m,, @,y < <@y, wyy it and only if either <
or both @ = @} and @, < #}) and endowed with the topology generated
by this ordering. § iy compact and first-countable (compare [4, pp. 52-53]).
Our investigations below of the analytic and deseriptive Borel subsets
of 8 (shortly to be defined) uncover an interesting (perhaps “exemplary”)
divergence of descriptive set theory in & from the classical sitnation in
Polish gpaces. For example, the compact subset [0, 1]x {0, 1}, which is
first-countable and separable (it contains @x{0,1} as a dense subset,
where ¢ denotes the rationals of [0,1]), is the image of the set I of ir-
rationals under a two-valued semi-continuous mapping, as indeed is any
compact, separable, ordered space, however it is not the image of I under
a single-valued, semi-continuous mapping. The eompact set [0,1]x
x{0,%,1} is the image of I mnder a three-valued, semi-continuous
mapping but not under o two-valued guch mapping. The set S\[0, 1] x
X {3 is a “paturally oceurring” example of a sigma-compapgt subset
whieh is not deseriptive Borel (compare the example given by Z. Frolik
in [2, p. 166]). ‘ ‘

Let % be a family of sets in a space X, We denote by Borelian-J8
the smallest family of sets of X to include % and closed under countable
unions and countable intersoctions. We characterize wo hierarchies of
Borelian- 3¢ sots (seo § 3 for definitions), onefor % consisting of the compact
sets 5 of 8, the other for Je congsisting of the descriptive Borel sets, finding

them cofinal in one another with respect to inclusion. These considerations
o
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