30 J.M. Boyte and E.P. Lane

tion kel such that g <% <f. Then —he U, —gel and —h € —yg.
Again by (y), there exists a function —k ¢ L such that —b < —% < —y.
Then ¢ <k <h <f If h*@)=h()/(1+|h(@)]) when h(z) is finite,
W*(#) = 1 when h(z)= 4oo, and A*w)= —1 when #(x)= —co, then
B* is Isc. If &* is defined similarly in terms of %, * is use and k* < h»,
By Theorem 2 of [4] there is a continuous function b* on X such that
B < b* < B*. It b(z) = b*(@)[L—b*(#)) when [pM@)<1, b(e)= +oo
when b*(x) = 1, and b(») = —co when b*(z) = —1, then b is an extended
real-valued continuous function on X. Since % << b < h, it follows that
g €<b <f. Thus (3) holds. It therefore remains to prove that («)
implies (y).

Let f ¢ L, let g ¢ U, and assume that ¢ < f. Then 4 = {x: f(#) = g(s)
= +oo} and B = {m: f(#) = g(x) = — oo} are closed sets, and the sets
U(n)= {z: f(x)>n} and V(n)= {w: g(z)< —mn} are open for each
natural number n. Since X is normal it follows that there cxist closed
sets A(n) and B(n), n=1,2, .., such that A(1) ~B(1)=@ and

Um)DAMm)D An) D An+1)D A,
V(n)DB(#n)DB(n)DBr+1)DB.

Take A' =) {4(n): n=1,2,..}, B=N{B®n): n=1,2,..} and W
.=X~—(A’uB’). For w¢ W, put u(e)= —occ if ¢ A(L) and u(z)=n
it ze A(n)—A(n+1). Then « is usc and f(z) > u(xz) for each o in W.

Hence also uVg is use and for e« W, (uvg)(z) < f(x). Since W is an

F_-subspace of X, the space W is countably paracompact and normal;
hence there exists a continuous function » on W such that (uvg)(x)
< v(w) < f(x) for  in W. If h(x) = — oo when e B’, h(z) = v(x) when
weW and h(x)= 4 oo when weA’, then & is lsc and g € h < f.

The authors are indebted to the referee for the significantly shorter

a;ln)d more elegant proof of the implication («) implies (y) which is given
above.
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Cech cohomology and covering dimension
for topological spaces
by
Kiiti Morita (Tokyo)

Abstract. For a topological space X let us define the covering dimension of X
and the Sech cohomology groups of X by using only normal open coverings of X instead
of arbitrary open coverings. Then it will be ghown that some of the basic theorems
concerning the Gech cohomology groups and covering dimension of CW complexes or
paracompact spaces, such as the Hopf classification theorem.and the product theorem
on dimension for the case of one factor being ¢-compact, can be generalized to the
case of arbitrary topological spaces.

Tn discussing the topological invariants for topological spaces, such
as the Cech cohomology groups and the covering dimension, which are
defined by using open coverings, it seems natural to make a modification
by restricting open coverings to normal ones.

Tor the covering dimension of Tychonoff spaces (= completely
regular Hausdorff spaces) such a modification was made by M. Katétov [8]
and Yu. Smirnov [20]; & nice exposition of their results is given in En-
gelking [4]. Applying their modification to a general case, we shall define
the covering dimension of a topological space X, denoted by dimX, to
be the least integer m such that every finite normal open covering of X
admits a finite normal open covering of order <n-+1 as its refinement.
In case X is 2 normal space, dim X defined here coincides with the cover-
ing dimengion of X in the usual sense.

Ag for the mth Cech cohomology group H™(Xj @) of a topological
space X with coefficients in an abelian group @, we shall define it by using
only normal open coverings of X. Tn case X is paracompact Ha.usdprﬁ,
H"(X; @) is the usnal Gech cohomology group based on all open coverngs.

The purpose of this paper is to show that with these definitions we

' can génemlize some of the basic theorems concerning the (ech cohomology

groups and dimension of paracompact Hausdorft spaces or CW complexes

to the case of topological spaces. ) »
Let X be a topological space, ¢ an abelian group, and. Z th'e additive
group of all integers. Let |K(G,n)| be the geometric realization of the
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Eilenberg-MacLane complex K (G, n). Then the following results will
be established.

I dim(XxY)<dimX-+dimY i Y is a locally compact, para-
compact Hausdorff space, and the equality holds if Y is a locally finite
polyhedron. ' ) .

II. If dimX < n, then the cohomotopy group »™X, %), that is, the
group of homotopy classes of continuous maps from (X, x) to (8", p,),
i isomorphic to H™(X; Z) for n = 1, where 8" iy an #n-gphere and #, ¢ X,
P, € 8% (Hopt’s classification theorem.) '

III. The nth homotopical cohomology group, that is, the group
[X; |KE(&,n)]] of homotopy classes of continunous maps from X to
|K (@, n)|, is isomorphic to H™X; &). )

IV. If Y is a compact Hausdorff space, then the Kiinneth formula

HYXxY; @)= @ HIX; H(Y; @)
DAg=n

holds.

These results have been proved hitherto only for the case. of X being
a paracompact Hausdorff space; indeed, for this case, T was proved by
K. Morita [9], II by C. H. Dowker [2], III by P. J. Huber [7] (for the
cage where X is a k-space or G is countable), T. Goto [5] and V. Bartik [1],
and IV by V. Bartik [1].

Throughout this paper by a space we shall mean a non-empty to-
pological space, and I denotes the closed unit interval [0, 1] in the real
line and N the set of all positive integers.

§ 1. The Tychonoff functor v. Throughout this section, let X and ¥
be spaces. Let ¥= denote the set of all continuous maps ¢: X—¥ with
the compact-open topology and construct the product space P(X)
= I{I| ¢ « I*}, where I,= I. By defining @x(#) to be the point of P(X)
whose @-coordinate is ¢(z), we havé a continuous map Pg: X—P(X).
For a continuous map f: X—Y¥ we have a continuous map P(f): P(X)
-—->P(Y) by defining P(f)(¢) to be the point of P(¥) whose y-coordinate
is the po f-coordinate of ¢ where ¢ ¢ P(X), v ¢ I¥. Then the diagram

X__ﬁ__>y

is commutative. Let us put
7(X) = Image of Ox,
©(f) = P(Nir(X): (X)—>=(Y),
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and denote by the same letter @x the map from X to v(X) which coincides
with @y but has 7(X) as its range. Then we have a commutative diagram
X - .y

Px . (3%

T(X)——"’fm 7(X)
Thus 7 i8 a covariant functor from the category of topological spaces
and eontinuous maps into itself and {@x} defines a natural transformation
from the identity functor to =; 7(X) is a Tychonoff space and @x: X
-»7(X) 15 a homeomorphism if X is itself a Tychonoff space (cf. Du-
gundji [3]). Hence we shall call = the Tychonoff functor. The Tychonoff
functor is the reflector from the category above to the full subcategory
of Tychonoff spaces; that is,

LoMmA 1.1, Any continuous map f from X into a T'ychonoff space B is
factored through =(X) such that f = g o Dx for some continuous map g: ©(X)
—R; g 4s determined wnigquely by f. ’ :

For a normal open covering {@,| «€Q} of a space X there exist
a continuous map f from X onto a metric space T and a normal open
covering {H,| « ¢} of T such that f~'(H,)C@, for each aef. By
Lemma 1.1 the map f is factored through 7(X). Therefore we have

Levma 1.2. dimX < n if and only if dimz(X)<n

Moreover, we have

TeEOREM 1.3. dim X < n if and only if for every normal open cover-
ing § of X there is a normal open covering 3 of X of order <n-+-1 which
is a refinement of S.

Proof. In cage X is a Tychonoff space, this theorem is proved by
Pasynkov [18] (for another proof, cf. Morita [156]). By virtue of Lemma 1.2
and the remark preceding it, the theorem for the general case follows
from the theorem for the special case mentioned above.

The following lemma due to Puppier [19] is useful sometimes.

Levma 1.4, If Y is a locally compact Hausdorff space, then 7(X X Y)
= 7(X)x ¥.

Proof. If T is a Tychonoff space, 80 is T¥ (cf. Engelking [4]). Since
Y is locally compact Hausdortf, there is a bijective map e: PEXT 5 (TFYE
where o(f)(%)(y) = f(», y) for feT**¥. Hence there is a continuous
map g: 7(X)x Y- (X x ¥) such that Byyp =9 ° (PxX1y)

On the other hand, since 7(X)x Y is a Tychonoff space, by
Lemma 1.1 there is a continuous map h: (X X Y)—>7(X)x Y such tha't
DyX1p=hoDy,p. Therefore hog=1luxxr and g o b= Lxxp- This
proves Lemma 1.4.

3 — Fundamenta Mathematicae LXXXVII


GUEST


34 K. Morita

§ 2. A factorization theorem for maps into metric spaces and a covering
theorem for product spaces. Let X be a space and @ = {WUy| ¢ ¢« N} a normal
sequence of open coverings of X. Let (X, @) be the space obtained from X
Dby, taking {St(z, Ux)| < N} a8 & local base (= a basis of neighborhoods)
at each point # of X, and X/ the quotient space obtained from (X, @)
by identifying such points # and y that y e St(z, Uy) for each ie N. Leb
us denote by ¢ the composite of the identity map from X onto (X, D)
and the quotient map from (X, @) onto X, /. Then g: X —X/[® is a continu-
ous map. We shall call X/@ the space agsociated with @, and ¢ the ca-
nonical map.

For any subset 4 of X let us put

Int(4; &) = {z ¢ X| St(z, Uy) C.A for some ieN}.

Then Tnt(A4; @) is open in (X, &) and, since ¢~*(p(Int(4; ©))) = Int(4; @),
o(Int(4; @) is open in X/®. Let us put further

Uy = {Int(T; @)} U eUy} for deN.

Then @' = {W]| ¢ ¢ N} is also a normal sequence of open coverings of X
and
W, < Wy Wy<< Uyyy for el

where, for coverings U and U, by U< U we mean that U is a refinement
of U. Hence X/¢' = X/@. In particular, {St{t,p(Wp)| i e N} is a local
base at each point ¢ of X/@. Thus, X/P is metrizable. If Uy consists of
at most m members, so does U, and if the order of U, is not greater
than n+1, so is the order of U;. These results were obtained in our previ-
ous paper [14] and the argument given there proves the following lemma.
Here w(X) denotes the weight of X (i.c. the minimal cardinal number m
such that X has an open basis of cardinality m). ‘
LuMMA 2.1. Let @ = {WUy| i € N} be a normal sequence of open coverings
of X. Then X|® is metrizable, and if each s consists of at most wm members
where m = N (Tesp. has order <n--1), then w(X/P) < m (resp. Aim X/P < n).
As an immediate consequence we have

LeMMA 2.2. Let f: X— T be a continuous map from a topological space X
into a metric space T, and suppose that w(T) = N,. Then there exist a metric
space 8, a continuous onto map ¢: X—8 and a continuous map g: §—T
such that f=gop, w(S) < w(T) and dimf < dimX.

Indeed, if {W;] i e N} is a normal sequence of open coverings of T
such that {St(f, Ws)| 4 « N} is a local basis at each point ¢ of T and each W
consists of at most m members, where m = w(T), then there is a normal
sequence @ = {Ux| ¢ € N} of open coverings of X such that f~*(We) < U,
order Uy < dim X 41 for ¢ ¢ N and each U consists of at most m members;
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this is seen from Theorem 1.3. Hence by Lemma 2.1 it is easy to see that
§ = X/® has the desired property.

For the case of X being a Tychonoff space, Lemma 2.2 was stated
without proof by Pasynkov in [17], and in [18] he gave a proof which,
however, lacks a congideration about the weight of §; for the assertion
that 8 can be chosen so that w(S) < 8 if w(T) < §,, he gave a separate
proof in [18].

TraroruM 2.3. Let X be o space, Y a locally compact, Lindelof, Haus-
dorff space, and T a melric space. Then for any continuous map f: XX
« YT there exist a melric space 8, a continuous onto map ¢: X—8 and
o continuous map g: SX YT such that f=go(pXly) and w(8)
< Max(w(T), w(¥)).

Proof. Since Y is locally compact, there is a bijective map p: T%*¥
—(T7)*, where o{f)(#)(y) = f(»,y) for f: XX ¥T—T. Since Y is locally
compact and Lindelof, the function space T¥ iz metrizable. Hence by
Lemmasg 1.1, 1.2 and 2.2 there are a metric space 8, a continuous onto
map @: X->8 and a continuous map h: 8—T¥ such that o(f)=h-9p,
w(8) <w(T¥), and dimf§ < dimX. If we put g= ¢ '(h): Sx¥~>T,
then f= g o (p X 1x). Since w(TY) < w(Y)w(T), this proves Theorem 2.3.

TEMMA 2.4. Let X and Y be the same as in Theorem 2.3. Then for any
normal open covering § = {G,| a2} of XX X there is a metrizable space
8 = X0 associated with o normal sequence & of open coverings of X such
that ( X 1¥) " H(H,) C Gy, a € Q for some normal open covering & = {H,| @ ¢ 2}
of 8x ¥ where p: X—X|® = § is the canonical map.

Proof. There are a metric space T, a continuous map fi XXY->T
and an open covering X = {K,| a @} of T such that f7(K,)C @&, for
each a, By Theorem 2.3 the map f is factored through § = X/®, which
is associated with some normal sequence P of open coverings of X, such
that f= g o (pX 1y). The covering % = ¢~Y(X) has the desired property.
This proves Lemma 2.4.

Remark. Temma 2.4 can be proved similarly as in the proof of
[15, Theorem 1] without appealing to Theorem 92.3. Thus, we have another
proof of Theorem 2.3 by using Theorem 2.5 which relies upon Lemma 2.4.

Tumormy 2.5. Let X be a space and Y a compact Hausdorff space.
Lot 8 = {6,] a <} be an open covering of X X Y. Then there exists an open
covering V> = {U,] e A} of X satisfying conditions (a), (b) and (c) below:

(a) card A <m or < ¥ according as m =K, OF m<< N, where m
= Max(cardQ, w(Y)). )

(b) For a suilable collection {U,| 4 e A} of finite open coverings of .17,
the collection {U,x V| V & Uy, Le A} is an open covering of X x Y which
refines Q.
3%
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(e) W is a normal open covering of X if and only if § is a normal open
covering of XX X.

Proof. There exists a colleetion {V,| § € 4} of finite open coverings
of ¥ such that cardAd <m or < ¥, according as m =8, or m< N, and
such that every finite open covering of ¥ is refined by some U, with 4 4.
For each U, let U, = {Vyl i =1, ..., 75} and leb Iy be the set of all maps
w1 {1, eur, 7op—>£2. Then card I, < 1t 0T < 8 aceording ag m = Ny or 1M < &,

For 6 e, el let us pub

U5, %) = {weX| {#}x ClV,, C Gy for each i< Tof -

Sinee C1V,,; is compact, U (3, ») is an open set of X. For any, point o of X
there is & finite subset y of @ such that {#}x ¥ C {J{G,| « ey}. Hence
there is & € 4 such that {{#} x ClV| ¥V € U,} is a refinement of {G,| ¢ €y}.
Hence Us= {U(8, %)| % eIy, 4} is an open covering of X and

(U8, $)XV| VeV, %ely,8ed}

is an open covering.of X x ¥ which refines €.

Let us put A= {(8,%)] xely, 6ed}, and Uy, = U, Then
cardA <m or < &, according as m > 8, or m << ¥. Thus, conditions (a)
and (b) are satistied.

Next, let § = {G, a < 2} be a normal open covering of X x ¥. Then
by Lemma 2.4 there exist a metric space §, a continuous map ¢: X—8
and 2 normal open covering = {H, aeQ} of §X Y such that
(px 1¥)™Y(H,) C @, for each o. Let us put

M8, %) = {s e8| {s}x OLV,; C H,, for ¢ <rs}.

By applying the result proved in the preceding paragraph to {H.} wé
see that {M (8, )} is an open covering of 8. Since § is paracompact and
e M (8, %)) C U(8, ») for each (8, %), W= {U(d,x)} is a normal cover-
ing of X.

Conversely, suppose that U is a normal covering of X. Then Wx ¥
= {U,x ¥| Ae A} is a normal covering of Xx ¥ and {U;x V| Ve Uy}
is a normal covering of U,x Y by Morita [13, Lemma 1.4]. Hence by
[11, Theorem 1.2] {U,x V| V ¢ U;, 1 € 4} i3 a normal covering of X' x ¥,
and so § is a normal covering of X X ¥. This proves that condition (c) is
satisfied, and the proof of Theorem 2.5 is completed. )

As an application of Theorem 2.5 we have a direct proof of the
following theorem of ours (cf. Morita [11, 12]).

TEEoREM 2.6. Let X be a normal space, m an infinite cardinal number,
and D the discrete space consisting of ewactly two poinis 0 and L. Then the
Sollowing statements are equivalent.

(a) X 48 m-paracompact.

"
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(b) XX Y is normal for any compact Hausdorff space X of weight <m.

(e) XxI™ is normal.

(d) XX D™ s normal.

Proof. (a)= (b). Let §= {&,] a <2} be an open covering of XX ¥
guch that card £ < m. Since w(Y) < m, by Theorem 2.5 there is an open
covering W= {U,] 4 e A} such that card4 <m and for a suitable col-
lection {U,] Ae A} of finite open coverings of Y the collection W
={U,XV| VeV, e A} is an open covering of X X ¥ which refines G.
Let X be nt-paracompact. Then AU iy normal and hence by Theorem 2.5
g is normal. This proves the implication (a)=- (b).

(b)= (c) and (c)=(d) are obvious. ’

(d) = (a). Suppose that Xx D™ is normal. Let 2 be a set with
card Q = m. For each « ¢ @, let us put ¥, = D, and construct the product
space Y = IT{Y,| oL}, which is homeomorphic to D™; we denote by
o, the projection from ¥ onto ¥,. Let § = {@,| ¢« £} be any open cover-
ing of X and put

Hi= |J{G,x¢;'0)| e} for 4=0,1.

Then & = {H,, Hy} is a normal open covering of X x ¥. Hence by Theo-
rem 2.5 there is & normal open covering {U,| Ae A} of X such that for
a suitable collection {V;| AeA} of finite open coverings of ¥ the col-
lection {U;xX V| Ve%Uy; Aed} is an open covering of Xx Y which
refines Je. Here ¥, can be chosen so that for some finite subset
y = {ay, v, an} of 2 we have

. ‘
WV, = { o5k %;=0 or 1 for ¢ <mn}.
Gl

Suppose that
n
U, % p 0z (k) C Hy -
el

n
Pick a point y of () oni(k,) such that y,=1 for af {aygy eory @n}. IE
i1
w¢\J{G,| i=1,..,n}, then (#,y)¢H, Hence we have
U, CU{G) i=1, vy M}

This shows by Morita [11, Corollary 1.3] that 8 is a normal covering of X.
Thus, the proof of Theorem. 2.6 is completed.

§ 3. The Cech cohomology groups. Let (X, 4) be a pair of a space -X
and its subspace 4 and G an abelian group. Let {W,| 1 A} be the family
of all locally finite normal open coverings of X. Let us denote by K, anfi I,
the nerves of Uy, and Uy| A= {TUnA|Ue U} respectively. For covermgs

Uy, and W, with U, < Uy, we define a canonical projection @}: (Kj, L)
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—(K,, L,) such that ¢}u) = v implies U CV where U and V are members
of Uy, and U, corresponding to vertices u of K, and » of K, respectively.
As is well-known, any two canonical projections are contiguous and hence
induce the same homomorphism from H™K,,L,; &) to H™(K,, L; @).
Thus, we have a direct system {H"(K,, L;; @), (¢h*} of abelian groups;
we denote its direct limit by H™(X, 4; G) and call it the n-th Cech co-
Tomology group of (X, A) with coefficients in @. Since for an open sct
Uof X,UnA+@ if and only if U Cl4 # @, we have

HYX, A; 6) == HMX,Cl4; G).

Any continuous map f: (X, 4)—(Y,B) induces o homomorphism
Y BEMY, B; )—~H"X, 4; G).

If Us, is loeally finite there is a continuous map ¢, (X, 4)—(K;, L)
such that oy*(St(u; K,)) C U where u is a verfex of K, corresponding
to the set U of UWy; p, is ealled a canonical map. Here by the same letter I,
we denote the polyhedron |K,| with the weak topology. Then two ca-
nonical maps from (X, 4) to (K, L;) are homotopic. If we denote by
{W,} 1€ A’} the set of all locally finite normal open coverings of X, we have

HY(X, 4; 6) o= U {HYE,, L; &), ()" 4,7 A"}
and (p,)*: HYEK,, L;; ¢)--H"X, A; G) coincides with the projection.

Lemya 3.1. If AimX < n, then H'(X,A; @)= 0 for r >n.

Proof. This is obvious by Theorem 1.3.

For normal sequences @ = {U| i ¢ N} and ¥ = {V| i ¢ N} of open
coverings of X we write ® < ¥ if each Uy is refined by some U;. Now,
let {@,} o e} be the totality of normal sequences &, of open coverings
of X, In § 2 we defined the space X/®, and the canonical map @,: X—X/D,.
If ¢, < &,, there is a canonical map ¢f: X/®,—X[®; which is continuous
and gf o, =@, It &, <P, <®D,, then of= ¢} o¢j. Since {P,} forms
a -directed set with respect to the partial order defined above, {X/®P,; ¢5}
defines an inverse system of metrizable spaces. Its limit will be denoted
by u(X). In case X is a Tychonoff space u(X) is the completion of X with
respect to its finest uniformity (ef. [14]). In general, u(X):= ,u(r(X))
where ¢ i3 the Tychonoff functor defined in § 1.

For two pairs (X, 4) and (Z, 0) of spaces let us denote by [X, 4; Z, (]
the set of all the homotopy classes of continuous maps f: (X, 4)~(Z, O).
Then by Theorem 2.3 we have at once the following theorem. Ilere
= means the existence of an equivalence in the category of sets or abelian
groups as the case may be.

TEEOREM 3.2. Let (X, A), (¥, B) and (Z, C) be pairs of spaces such
that Y is locally compact, Hausdorff and Lindeldf and Z is metrizable. Then-

UX, 4)x (Y, B); Z, O] ¢ lim {[(X/®,, po(A)) x (¥, B); Z, O], lgsx 1]} -
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In case m = Max(w(Y), w (%)) > % and dmX < n, the formula holds even
if we restrict D, at the right hand side to normal sequences of open coverings
of cardinality <<m and of order < n+1. :
By virtue of Lemma 2.4 we obtain a theorem on cohomology groups
corresponding to Theorem 3.2.
TuroreM 3.8. Under the same assumption on (X, A) and (¥, B) as
in Theorem 3.2, we have

(X, A) X (Y, B); G) e Um{H"(X[®,, p(4)) X (Y, B); 6), (#5 X 1¢)"},
with the same supplements as in Theorem 3.2 where m = w(X) = .
Theorem 3.2 shows that the problems concerning the homotopy

sets of continuouy maps from a space X to a metric space can be reduced
to those for the case of X being metrizable. ’

§4. An expansion theorem for sets of homotopy classes of maps into
polyhedra. Liet (X, 4)be apair of spaces, and for an infinite cardinal number
m let {W,] e A(m)} be a cofinal subset of the directed seb of all locally
finite normal open, coverings of X consisting of at most m sets; K, and
L, are respectively the nerves of U, and U,l4 with the weak topology,
g (X, A)—~(K,, L;) are canonical maps, and ¢ (K,, L)—~(K,, L,) are
canonical projections.

Let (Q, Q) bo a simplicial pair (that is, a pair of a simplicial complex
and its subcomplex with the weak or metric topology) such that @ has
at most m vertices. :

Tor a continuous map f: (X, 4)—(@, Q,) we call a covering W, a bridge
for f if there exists a continuous map f,: (K, Ly)—(@,€) such that
fef, op, where ~ means “is homotopic to” as usual; each continuous
map f, with this property is called a bridge map for f. These notions were
first introduced by S. T. Hu in 1948 for the absolute case.

LzvmmaA 4.1, For (my continuous map f: (X , A)>(Q, Qo) there exists
a bridge W, with A e A(m) and any refinement U, of Uy, is also a bridge for f.

Proof. Let us pub

W == {§6(q; Q)] ¢ ranging over vertices of Q.

Then W js & normal open covering of @ since @ is paracompact. Then

there is W, with A e A (m) such that f~1(W) < W,. Let Uy = {U} a e 25}

Then for ench vertex ! of I, wo can choose a vertex ¢ of @ so that
ULCI (B4 @)

Let us pub f,(u?) = ¢. If ¢ is not in @, then St(g; @) Qo= 9. Hence

if U2 ~ A 5 @, then f,(u?) is a vertex of . Thus f, defines a simplicial map

‘ T (K)JLI)-%'(Q’QO) .
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For any point # of X let {ay, ..., an} be the totality of a ¢, such that
@ ¢ U) Then f(x) and (f, o ¢;)(z) lie in the simplex of ¢ which is spanned
by fz(“ﬁf)’ i=0,1,..,n and ¢;, j=0,1,.., 8 where [g,,¢,...¢,] is the
carrier of f(z) in Q. Hence we have f=~f,oq: (X, 4)—(Q, Q).

LEMMA 4.2. Let U, be a locally finite normal open covering of X with
v € A(m), and let f,, g,: (K,, L,)~(Q, Q) be two continuous maps such that
foop, g, 00, (X, 4)>(Q,Q) .
Then there exists a locally finite normal open covering s, of X with 4 € A (m)
such that

(a) W, < Uy,

(b) f, e #p =g, o g}: (K, Ly)—(Q, Qo).

Proof. Let (K,,L, be a subdivision of (K,,L,) such that
{uy| BeQ,} is the set of all vertices of K, and

@) F7HW), g7 (W) < {(8b(ug'5 K,)l Bey}.
Here W is the same covering of @ as in the proof of Lemma 4.1.

By assumption there is a continuous map &: (X, A)x I-(Q,Q,)
such that

@) O(0,0)=(f,op,)(@) for weX,
@) O(z,1)=(g,o0,)(@) for weX.

Then by Theorem 2.5 there exists a locally finite normal open covering U,
of X with A e A(m) satisfying the following conditions:

(4) Uy = {Uﬂ e},
(5) Uy > {p78(ug; K,)| Bef,},

(6) there exists a collection {Al,| ae£2,} of finite open coverings: of
I=10,1] such that {Uix Cl M| M ¢ A, @ e} is a covering of
X x I which refines &~1(W). .

For each covering .6, there iy a refinement of the form:

{1y g0 J=0,1,u, 1}, Where 0 =1, <1, <..<t, =1

Ty
and (f,_,,1%,,) and (A ty+1) MO€AD. Tespectively [0, ¢,,) and (topy15 1)-

Let u; be the vertex of X, corresponding to U%. By (6), for each u
and ¢,; ¢ I there is a vertex g,; of @ such that

(7 UﬁX (A tagi1) C @_I(St(fla,ﬁ Q)) .

It Ui~ A # 0, then we have 005 € Qo Let us put -
(U bg) = oy -

Then g,; and g¢,,,, are vertices of a gimplex of Q.
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.

Tor t,, < 1< 1,4, lot p(u}, 1) be the point of @ which divides the
segment from ¢,; 60 g, i the ratio (t—1,,): (f, ., —1).
Let [ul, uh, ., u},] be a simplex of K, (resp. L,). Then we have

UA X1 C P (B (qs3 @) or  BTH(Sb(gy 5 Q) N B8 (dhy 1405 D))

according as ¥ == to; OF Ty, < ¥ <ty z,;. Hence ¢ (uy,?) for i=10,1,...,n
are vertices or points on the 1-faces of a simplex of @ (resp. @,). Therefore
the map w can be extended linearly over the simplex [u}, ..., w2 ] with ¢
fixed, and we have a map

pi (X I, Iyx I)—>(Q, Qo)

by using the same letter p. The map % is clearly continuous over
[ul,, why oovy Un, )% I and hence over H;x I sinee K;x I has the weak

ap ?
topology.
For each «e R, there is feQ, such that

(8) UL C (St (uy'; K,))
Let us define a simplicial map
‘%: (K L)~ (K,, L)

by i) = -
f?‘or each BeQ, there is a vertex f,,(ug') of @ such that

o) St(uy; ) C £ (S(f,(u); Q) -

Hence we have a simplicial map f,: (K,, L) (Q, @) which is a simplicial
approximation of f,. Therefore we have by (8) and (9)

TAC (f, » 0,)~{Sb{f, Fiu); Q) -

On the other hand, by (7) we have
U2 0 C oSty (uf, 0); Q)

and hence we get from (2)

ULC (f, o )7 (Stlw(ud, 05 Q) -

Now lot us pub
' woly) = w(y,0) for yel.
Then wy: (K;, L)~ (@, Qo) is & simplicial map and we have
yo2fy o Fhfyo @
Similarly, we have
P, ¥
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where py: (K, L) (@, Q) is defined by wi(y) = v(y, 1) for ¥ « K. Since
Yy~ vy, we have )
Foo@lag, e @it (Kay La)=>(Q, Qo) -

Let g2 (K, L,)—>(K,, L,) be a simplicial map such that St(uy; K,)
C 8t(py(up); K,). Then we have

UL C ;7 (St(73(ua); ) C o7 {Stlmi(ul); K,)) C U;

v

where U2 is the set of U, corresponding to gupi(ul). Thus gph K,»K,
is a canonical projection which will be denoted by ¢}, Since ¢, is homotopie
to the identity map, we have

fv ° (pf::gv n(pf: (I‘(ZY Ll)">'(Qi QG) .
This completes the proof of Lemma 4.2.

As an immediate consequence of Lemmas 4.1 and 4.2 we obtain the
following theorem.

TrEOREM 4.3. Let (X, A) be a pair of spaces and (@, Q) . simplicial
pair such that @ has at most m vertices, where m is an infinite cardinal number.
Let {Vs| 2 e A(m)} be a cofinal subset of the directed set of all locally finite
normal open coverings of X of cardinality << wm. Let K, and I, be the
nerves of Uy and Uyl A respectively, ¢,: (X, A)~(K,,L,) canonical maps
and ¢': (E,, L,)~>(K,,L,) canonical projections, where i, v e A(m). Then
{IK,, Li; @, Qol, (@)Y¥| 4, v e A(m)} is a dirvect system and {(p,)%| A e A(m)}
defines a bijective map:

[X,4;Q,Q0] == l_il’n{[Ku Ly; @, @)y e A(m)}.

Let. (¥, B) be a compact pair. Then by a theorem of Milnor the
function space (@,Q,)™® has the homotopy type of a simplicial pair.
Hence by Theorem 4.3 we have i

THEOREM 4.4. Let (X, A) be a pair of spaces, (¥, B) a pair of compact
Hausdorff spaces and (@, Q,) a pair of spaces dominated by a simplicial
pair (). Let {Uy| e A} be a cofinal subset of the directed set of all locally
]fim'te normal open coverings of X and let K,, L,, p, and @} be the same as
in Theorem 4.3 emcept that A, v < A(m). Then {[(K,, Iy x (¥, B); @, ),

(@EX L)% 4, v € A} is a direct system and {pax LY#| 1 ¢ A} defines a bijective
map:

[ 4)X (X, B); Q, Qo] = lim {[(K;, L) X (Y, B); @, Ql, 24}

Remark. It follows from Theorem 4.3 and [10] that [X, 4; 8" ]
forms a group called the, n-th cohomotopy group of (X yA), if dimX/A

(le A ?a_ir of an ANR (for metric spaces) and its closed ANR subspace ig dominated
by a simplicial pair (Hu [6, P. 211)). .
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< 2n—L and A # @ (where §” is an n-sphere). By virtue of Theorem 4.3,
we can prove that the cohomotopy sequence of (X, 4) is exact if X ig
a normal space of dimension <2n—1 and 4 a closed subset of X, since
any countable normal open covering of A is refined by restriction of
a countable normal open covering of X. This settles a question stated
in Morita [10, footnote 3) on p. 254].

The following theorem will be used in § 5.

TueorREM 4.5. Let 8™ be an n-sphere (n = 1) with base-point s,. Let
X be a space of dimension <n and x, its base-point. Then the suspension map

8: [X, my; 8 8] [8X, 255 887, 5]

defined by S[f1= [8f] is bijective.

Here S denotes the operation of taking the reduced suspension;
that is, SX is the quotient space of X x I by identifying all the points
of X xXJ v zyxI to a single point which we consider as the base-point
of 8X and denote by the same letter «, as the base-point of X.

Proof. With the notations of Theorem 4.3, the diagram

[pa)
[X, @55 87, 8o] < (K3, ks5 8™, 8]
8 8
[8X, y; SS", 8] < [SK;, k;; S8, s,
Sley)

is commutative where without loss of cofinality we may restrict U, to
those coverings which have exactly one member containing z, and k, is
a vertex of K, corresponding to such a member.. We can assume here
that dimX, < n for each A ‘
In case m > 2, it follows from the suspension theorem in Spanier
21, p. 458] that
8: [K, Toys 8% 80]>[8K;, k3 S8™, 80]

is bijective. In case n = 1, this fact can be verified directly.
Therefore, by virtue of Theorem 4.4 we have Theorem 4.5.

§ 5. The covering dimension. Let I" be the n-dimensional cube and "
ity boundary (n = 1).

A continuous map f: X—I" is called essential if any continuous map
g: X—I" such that g|f~(I") = fIf (I ") satisfies g(X) = I"; otherwise f is
called inessontial. Thus f: X—I" is essential if and only if there is no
continuous map ¢: X—I" which is homotopic to f relative to f7H(I™)
and g(X) # I™ Theorem 5.1 below is given by Smirnov [20] for the case
of X being Tychonoff. In view of Lemmas 1.1 and 1.2 we have Theorem 5.1

- for the general case.
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THEOREM 5.1. For a space X, Aim X < n if and only if every continu-
ous map f: X—I"' is inessential.

Hence, if dimX = n, there is an essential map f: X—>1I".

TrEOREM 5.2. Let X be a space such that dim X = n. Let f: X—I*
be an essential map. Then the continuous map fX1: XX I—>I"XI is
essential. '

Proof. Let us put )
A=f7(0", T=XxI, B=(x17(I™,

where 1"t = (I"xI)u (I"xI). Then B=(AdxI)u (XxI). Let us
construect quotient spaces and quotient maps as follows:

p: X>XA=X,, v: ¥Y>Y/B=1,,
w IPsIMiv =8, f: I"x I->(I"x I)/f*** = g+,

and pub .

z=p(d), Yo = ¥(B),

8= a(i™, t= B(I"*") .
Then we have two continuous maps

For (Zgy @)= (8" 80) s goi (Toy Yo)= (8", %)

go that the diagrams

? v
(X, 4) ———— (X, %) (X, B) ——— (¥, %)
b fo Fx1 7o

@I I) —— (8 s)  (I"XI, I™) ——— (8", 1)
8

a

are commutative.

) As usual, let § be the operation of taking the reduced suspension.
Then we have

Y= 8X,, 81=488" g,=5f,.

Leyma 5.3, f*: HMI" I"; Z)—~H"X, A; Z) is not zero.
If we have proved Lemma 5.3, then f, is not null homotopic and
hence by Theorem 4.5 g, is not null homotopic, and consequently

(fx1)*: ™I % I, ") —H"Y(Y, B)
is not zero. Therefore fX 1 is essential. This proves Theorem 5.2.

Pr.o of of Lemma 5.3. If y: X~ ¥ is a continuous map from X onto
a metric space ¥ such that f = g o y with some continuous map g: ¥—I",
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then g is essential. Hence by Theorems 3.2 and 3.3, it is sufficient to prove
Lemma 5.3 for the case of X being a metric space. In this case, in the
commutative diagram

, .
H"Y(4; Z) ————> HNX, A; Z)
14 1

0 ——> H" Y™ Z)—> HMI*, [* Z) — 0
¢ @

the lower sequence is exact and O8(f|4)*(1) # 0 for a generator ¢ of
H™!(}"; Z); this is seen by Hopt’s extension theorem (cf. Dowker [2, Theo-
rem 5.2]) since f]4 cannot be extended to a continuous map from X to i™.
Thus, f*6(¢) # 0. This proves Lemma 3.3.

COROLLARY 5.4, dim (X x I) = dim X +1.

If we use the special case of the Kiinneth formula:

H"H((_X,A)X(I,I);Z)_%E“(X,A;Z),'

we have another proof of Corollary 5.4 by Lemma 5.3.

In a previous paper [15] we have proved the following theorem for
the case of X being a Tychonoff space, from which the theorem for the
general case follows immediately in view of Lemmas 1.2 and 1.4.

TarorEM 5.5. If X is a space and ¥ a locally compact, paracompact
Hausdorff space, then dim(X X ¥Y)< dim X+ dim Y.

TEMMA B.6. Let X be a space and Y a normal, Hausdorff P-space
in the sense of Morita [181. If a subset B of ¥ is locally compact, -compact
and closed, then X x B is O-embedded in XX Y.

Proof. Let f be any real-valued continuous function defined over
X x B. Then by Theorem 2.3 there is a continuous map ¢: X-1T for
some metric space T such that f=go(px1a) for some real-valued
continuous function g defined over 7'x B. Since T' X Y is normal by Mo-
rita [18] and T x B is closed in T'x ¥, there is a real-valued continuous
function & defined over Tx ¥ such that #|T X B =g. Then & o (pX1ly)
is an extension of f.

TeROREM 5.7, Let X be a space and ¥ a o-compact regular. Hausdorff
space. Then dim(Xx ¥) < dimX+dim Y. ‘

Before proceeding to the proof of Theorem 5.7 we state Lemmas 5.8
and 5.9 below, which were proved for the case of Tychonoff spaces by
Katétoy and Smirnov (cf. [4, p. 268]) and by Kat8tov (cf. [4, p. 285))
respectively. .

TmvmA B.8. Let A be a subspace of a space X which is O*-embedded
in X, If dimX <n, then dimd <n.
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LemMA 5.9, Let {44| 4 e N} be a countable covering of a space X such
that each A is C*-embedded in X. If dim A, << n for each i, then dim X < a.

These lemmas can be reduced to the case of Tychonoff spaces by
Lemma 1.2 and the following lemma.

LeMMA 5.10. Let A be a subspace of a space X which is C*- embedded
in X. Then ®x(A) is O"-embedded in ©(X), and dimPx(4)= dimd4,
where Ox: X—1(X) is the natural map defined in-§ 1.

Prow#f. The first assertion is obvious. Let f: X—I be a continuous
map. Then by Lemma 1.1 f is factored through 7(X) such that f = g « &y
for a continuous map g: 7(X)~1I, and, for a cd, Ox(a)e g7*{(0,1]) if
and only if aef(0,1]). It follows immediately from this fact that
dim®Pyx(4) = dim 4.

Now we shall return to the proof of Theorem b5.7.

Let {B:] i< N} be a countable closed covering of ¥ by compact
subsets. Since Y is a normal P-space, by Lemma 5.6 each subspace
X x By is 0-embedded in X x Y. Hence by Lemma 5.9 and Theorem 5.5
we have Theorem 5.7.

TreoREM 5.11. If X is a space and Y a countable CW complex, then
dGim(XX Y)= dimX+dim Y.

Proof. Suppose that dim ¥ = n. Then there is a compact subset B
of Y which is homeomorphic to the n-cube I". By Lemma 5.6, X x B is
O-embedded in Xx Y. Hence by Lemma 5.8 we have dim(X xY)
= dim(X x B).

On the other hand, by repeated application of Corollary 5.4 we
have dim (X X B) = dim X + .

These two inequalities, together with Theorem 5.7, imply the desired
equality of the theorem.

THEOREM 5.12. If X 45 a o-compact regular Hausdorff space and ¥
a space with AimY = 1, then dim(X X ¥) = dim X+ dim Y.

Proof. In view of Lemmas 5.6, 5.8 and Theorem 5.7, it suffices to
prove that dim(Xx Y)> dimX+1 in case X is itselt compact. Since
dim Y =1 there exists a continuous map h: Y—I such that C1V—V #0
for any open set V satisfying 27Y(0) CV C Y—1~I(1).

Suppose that dimX = n. Then by Theorem 5.1 there is an essential
map f: X—>I" Let X, be the space which is constructed in the proof of
Theorem 5.2. Then we have an essential map f: (Xo, o) — (8™, 8,). Let us
define a continuous map @: Xyx ¥—I by

Dz, y)= (l—h(y))fo(w)‘i‘h(y)so for weXy, ye Y,

where we regard S™ as the boundary j»*! of In+1,

e ©
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Since the set A = f~'(J") is a G,-set, there exist a countable number
of compact sets A; with ¢ ¢ N such that

X—A = J{4i ieN}.
Hence we have
Xo—ay= U {p(di)] 4N} .

Here ¢p: XX, is the map defined in the proof of Theorem 5.2; we note
that @(4:) is homeomorphbic to 4; for ieN.

Suppose that dim(XX Y)<n and n=>1; the theorem is obvious
in case 7 ==0. Sinco

XX Y =umxYu (U{(p(Ai)X Y| ie N},

it follows from Lemmas 5.6, 5.8 and Theorem 5.7 that dim(X,x ¥) < n.
Hence @ is inessential by Theorem 5.1. Thus, there exists a continuous
map P (X, %) X Y—(8", ) such thab
VP(o,y) = folr) for yehTHO),
Yz, y)=S8 for yeh™(1).
Let us put ¥y(z) = ¥(x,y) and denote by V the set of points y of ¥
such that ¥y: (X, @)~ (8" s) is not null homotopic. Then we have
~H{0)CV C ¥—h~(1). For each point y of Y there is an open neighbor-
hood U(y) such that ¥y and ¥, are homotopic for any point y' of Ugy),
since X, is compact. Therefore ¥ and Y—7V are open. This contradlc‘?s
the assumption that ClV—V # @. Thus, the proof of the theorem is
completed.
The following lemma iy sometimes useful.
Lemma 5.13. Let (X, ) be a pointed space of dimension n. Then
dimSX = n--1. :
Proof. For any point g, of I", there is a homotopy F: I"X I-I"
such that .
F(q,0) =g for gelI”,
T(g,1) =gq for gel®,
F(go, 1) € I .
Henco there exists an essential map f: X—I" such that. flo) e I™. Let
ug apply the arguments in the proof of Theorem 5.2 to this map f. Then
we have the commutative diagram

(¥, B) SN (1}, %o)
AN
v\ L
NS
(8%, 84)
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where y, and y, are quotient maps. Since ¢*: H"*Y(¥,, yo; Z)~H"*Y(Y, B; Z)
is an isomorphism by Corollary 6.3 below,

yis HYH( Yo, yo; Z)—H"H(8X, 84; Z)

is one-to-ome. Since g, is not null homotopie, H" (¥, 4 Z) # 0 by
Lemma 5.14 and Theorem 6.7 below. Hence H**(S8X, 84; Z) 5 0. This
shows that dimSX = n-+1. ‘

On the other hand, since dim (X X I) < n--1, we have dimSX < n+1
by Lemma 5.14 below. Therefore, dimSX = n+-1.

Lizvma 3.14. If A is o non-empty subset of a space X of finite dimension,
then dim X[/A < dimX.

Proof. Let f: X— X/A be the quotient map and let us put ¥ = X/4
and y,= f(4). Let %= {H i=1, .., m} be a finite covering of ¥ by
cozero-gets. Let I" be a subset of {1, 2, ..., m} such that I'= {i| y, « Hy}.
Then () {Hi| ¢ eI} is also a cozero-set and hence there iy a continuous
map ¢: ¥->I such that () {Hi i eI} = {ye Y| p(y) >0}. Let us put

C={ye¥| oly) =a},
Vo={y ¢ | 9(y) > 4o},
Vi=H—0C A

for ¢=1,2,..,m,

where o= ¢(y,) > 0. Theh {Vy| i=0,1,...,m} is a covering of ¥ by
cozero-sets and a refinement of i, and y, ¢ Ve for 4> 0. Suppose that
dim X < n. Since {f(Vy)| ¢=0,1,..,m} is a finite covering of X by
cozero-sets, there exists a finite covering §= {@,, Gy, ..., Gn} of X by
cozero-sets such that

GCFYV)  for i=0,1,..,m,

and the order of § does not exceed n+1. Let € be a normal open covering
of X which is a star-refinement of ¢ and let us put

Mi= J{Let| SH(L,L)C G} for i=0,1,..,m.

Then we have
St(M+, £) C G4 i=0,1,..
X= J{M| i=0,1,..,m}.

for ) M,

Since £ is normal, for each ¢ there is a continuous map ¢;: X—I such that ,

for
0 for

zveM;,

T) =
‘Pi( ) weX——Sfl(Mhﬁ)-
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Since Gy~ A4 =@ for i >0, we have St(M:,£)~ A =@ for >0 and
A C M, Let us put

Ui= {meX| piz) >0} i=0,1,..
vi(y) = (7 (w) ye¥.

Then y;: ¥—1I is single-valued for each 4 = 0, and ¢; = p.f. Hence vy is
continuous. Since

Ui=f7f(T:) and f(U}) = {y < ¥| pdy) >0},

{f(Uy)] i=0,1,...,m} is a finite covering of ¥ by cozero-sets which is
a refinement of & and has order <n-1. This proves Lemma 5.14.

for » M,

for

§ 6. Homotopical cohomology groups and the Kiinneth formula. Let G be
an abelian group and K = |K(G,n)| the geometric realization of the

. Rilenberg-MacLane complex K (&, n); let k, be the identity element of

the weak abelian group K. For any pair (X, 4) of spaces let us define
a map
TX,A: [X, 4; K, ko]éH"(Xa A; @)

by Px ([f]) = f¥(¢) where { is an n-characteristic element of H*(K, k; &).
It is known that [X, 4; K, k)] is an abelian group and that Py , is
a homomorphism. )

As is known, Py , is an isomorphism if (X, 4) is a simplicial pair.
Since ¥y 4 is natmral with respect to a pair (X, 4), by applying Theo-
rem 4.3 we have the following theorem.

THEOREM 6.1. ¥y 4 18 an isomorphism for any pair (X, 4).

In case A = @, we can define a natural homomorphism

Yy: [X; K]-HYX; @)
similarly and we have

THEOREM 6.2. Yx 18 an isomorphism for any space X.

For a pair (X, A) with A non-empty, let us denote by X|A the space
obtained from X by contracting 4 to a point ¢4, and ¢: (X, 4)—=(X/A4, q4)
the quotient map. Then we have a commutative diagram:

L' 4
[X,4; K, k] — HYX, 4; G)
¥

[X/4, a5 K5 bo] ——— HY(X[4, 445 ) -

o*

Since ¢ is bijective, ¢* is an isomorphism. Thus, we have
COROLLARY 6.3. H™X,4; ) = HYX[|A,q; ). In particular,
HYX,A; @) =~ HYX[A; @) for n>1.

4.— Fundamenta Mathematicae LXXXVII
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COROLLARY 6.4. If fx gt (X, 4)—~(Y, B), then f*= g*: HY(Y,B; ¢
—~H"X,A; @).
Proof is obvious from the fact that in this case we have
f#z‘g#; [Y,B; K, k]—[X, 4; K, k] .
Levma 6.5. If (¥, B) is a compact pair, then (K, k) ¥® has the
same homotopy type as X \K(H”'Q(Y,B; G‘),q)|.
g=0

Proof. Let ¥/B be the quotient space of ¥ obtained by identifying
all the points of B to a single point gs. Then (K, k)™® o (K, k)¥54m,
Hence we have only to deal with pointed spaces; we do so without making
explicit mention of base-points.

Let L = |K (G, n+1)] be the geometric realization of the Eilenberg-
MacLane complex E(@,n-+1). Then L¥ is a ‘weak abelian group. Let
M be the path-component of the identity element of the total singular
complex S(LY) of L¥. Then M is a connected group complex. Since
we have

g M) = Wq+1(Ly) o [87F LY] = [T QP
= [Y; |E(G, n—g)] = H""(Y; 6)

for 0 <g<n and m,, (M) =0 for ¢ >n, by Moore [16, Theorem 3.29]
we have ’

M~ | X EB"Y; &), ¢+1)].
g=0

Hence by taking the geometric realization we have

3 = | X E(E4T; 6), q+1)| = X |EE(T; @), ¢+1)) -
g=0 a=0

On the other hand, since Z¥ has the homotopy type of a CW complex,
by taking loop spaces we have

0\M| = Q|8(LY)| =~ Q(L¥) ~ (QL)¥ ~ K¥.

Thus, Lemma 6.5 is proved.
‘We are now in a position to prove the following Kiinneth formula.
TeROREM 6.6. If (¥, B) is a compact pair, then

=0

HY((X, 4)x (Y, B); @) = @ HI(X, 4; A" YY, B))

for any pair (X, 4).
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Proof. By Lemma 6.5 we have
(X, 4)x (Y, B); K, k] =2 [X, 4; (K, k)", £,T]
n
= ;?o [Xs 4; ‘K(Hn_q(y’ B; &), 9”7 ko] ’

and hence Theorem 6.6 follows from Theorem 6.1.
Next, let 8" be an n-sphere and p, a point of 8. For a pair (X, 4)

. of spaces with A closed we define a map

x4 [X, 4; S’"’,pd—)H"(X,A;Z)

by 0 4([f1) = f*(&), where £ is a genemtor' of H*(8", Z); 0 4 is natural
with respect to a pair (X, 4). Then we have the following generalization
of the Hopf classification theorem.

TemOREM 6.7. If (X, A4) is a pair of spaces with A non-empty and
dim X/A < n, then Oy, 4 i an isomorphism for n > 1.

Proof. Let ¢: (X, 4)>(X/4, q,) be the quotient map. Then we
have a commutative diagram

]
(X, 4; 8% p] —— HY(X, 4; 2)

¥

[X/A, q.45 8™, 1]

o*

- HYX[4, g4; Z)

;]

and ¢* and ¢* are bijective. Hence it is sufficient to deal with the case
of pointed spaces. It is known that if X is a simplicial complex, %, ¢ X
and dim X < n, then 0, is an isomorphism for # > 1. Hence we have
the theorem by Theorems 1.3 and 4.3.
- Finally, we shall prove the following theorem.

THEOREM 6.8. Let (X, A) be a pair of spaces and G an abelian group
which is generated by at most m elements (m = 8,). Then we have

HYX, 4; @) 2 Y {HYK;, L; &), (¢)*] 4,7 « A(m)},

where {Uy) e A(m)}, K,, L, and ¢} are the same as in Theorem 4.3.

Proof. The theorem follows from Theorems 4.3 and 6.1, since
|K (G5 m)| is chosen to be a simplicial complex with at most m vertices.
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Measurable relations
by -
C. J. Himmelberg (Lawrence, Kan.)

Abstract. The measurability properties of relations (= set valued functions) are
developed. First the logical relations among the various definitions of measurability
are worked out and used to determine sufficient conditions for the intersection of measur-
able relations to be measurable. These results are then used to generalize the selection
theorems of Kuratowski and Ryll-Nardzewski, Castaing, and Aumann, to generalize
Filippov’s implicit function theorem, and to prove the existence of a measurable selector
extending a given measurable partial selector. The paper concludes with some appli-
cations to relations with values in a locally convex space.

1. Introduction. Measurable relations, i.e., set valued functions which
assign to each element ¢ of a measurable space T a subset of a topological
space X in a manner satisfying any one of several possible definitions
of measurability, have been studied extensively in recent years by numer-
ous authors (Aumann [A-1,2], Castaing [C], Debreu [D], Jacobs [J],
Kuratowski and Ryll-Nardzewski [KR], McShane and Warfield [MW],
Rockafellar [R], Van Vleck and the author [HV-1, 2, 3] and many others.)
Much of this work either assumes that the measurable structure on T' is
that of a Radon measure on a locally compact space Or that X is a very
special kind of space, say compach metric or Fuclidean. The purpose of
this paper is to develop the properties of measurable relations in the
general situation where T is an abstract measurable space and X is
separable metric. It turns out that to work with 7' this general we must
usually (but not always) introduce compactness somewhere, either in X
or in the values of a multifunction with values in X. Alternatively, we
obtain a similar body of results assuming that X is a Souslin space and
that a o-finite meagure is defined on the measurable subsets of T.

In the main, we will confine our attention to the general properties
of meagurable relations, and to selection, extension, and implicit function

theorems. -

In Section 2 we give most of the necessary definitions and termi-
nology, and state without proof some, trivial but often used properties
of meagurable relations. Section 3 is an account of the logical relationships
among the various definitions of measurability. Section 4 is concerned

with measurability of the intersection, complement, and boundary of
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