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On some examples of monostratic i-dendroids
by
T. Mackowiak (Wroclaw)

Abstract. A 1-dendroid X is said to be monestratic if it has no non-trivial upper
semi-continuous decomposition into continua with an arewise connected decomposition
space. In the paper an example is described of a monostratic A-dendroid N such that
the set of all its terminal points is nowhere dense (a negative answer to the question
asked in [6], p. 367) and such that there is an open mapping f of it onto an are (a negative
answer to the question asked in [5], p. 340). Moreover, we show an example of a 1-den-
droid L such that it contains no non-degenerate monostratic 1-dendroid and has a stra-
tum with a non-void interior (a negative answer to the question asked in [7], of. [8],
Problem 16); and an example of a A-dendroid R such that each its stratum has a void
interior and sueh that there is an open mapping of it onto a monostratic A-dendroid
(a megative answer to Problem 18 in [8]).

I A continuum means a compact connected metric spaee. A heredi-
tarily decomposable and hereditarily uniccherent continuum is said to
be a A-dendroid (see [3]). An arcwise conmected A-dendroid is said to
be a dendroid.

It is proved in [3], Corollary 2, p. 29, that for every A-dendroid X
there exists a unique decomposition D of X (called the camonical de-
composition):

X = {8;: de 4(X)}
such that
(i) D is upper semi-continuous,

(ii) the elements S; of D are continua,

(iii) the decomposition space 4(X) of X is a dendroid,

(iv) O is the finest possible decomposition among all decompositions
satisfying (i), (ii) and (iii).

The elements §; of D are called sérata of X. A A-dendroid X is called
‘monostratic if it consists of only one stratum, i.e., if 4(X) is a point (see [2],
P. 933 and [4], p. 75, where the term. “monostratiform” was used in the
same sense).

A point p of a continuum X is said to be a terminal point of X if
every irreducible continuum in X which contains p is irreducible from p to
some point (see [13], p. 190). It is known (see [6], p. 367) that each mono-
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stratic A-dendroid has uncountably many terminal points. The following
question is asked in [6], p. 367 (cf. [8], Problem 9): It is true that, for
any monostratic A-dendroid X, the set of all terminal points of X is
deilse in X? The answer is negative; moreover, it can happen that the
set of all terminal points of a monostratic A-dendroid is nowhere dense.
This can be seen from Example 1. .

Recall that a continuous mapping f from a topological space X onto
a topological space Y is said to be

(i) monotone if for any subcontinuum @ in ¥ the sef F7H(@) is a con-
tinuum in X (see [10], p. 123);

(ii) open if f maps every open set in X onto an open set in Y

(iii) confluent if for every continuum @ C ¥ and each component ¢ of
the inverse image @) we have f(C) =@ (see [1], p. 213).

It is known (see [1], . 214) that any monotone mapping is confluent,
and that any open mapping of a compact spaee is confluent. It is proved
(see [8], Property 7, p. 340; see also [7], Proposition 19) that monostraticity
of 1-dendroids is an invariant nunder monotone mappings. Prof. J. B. Fu-
gate hag asked the following question (see [5], p. 340; cf. [8], Problems 10
and 11): iy monostraticity of A-dendroids an invariant under confluent
or open mappings? The answer in both cases is negative. We define in
Example 2 an open mapping f from a monostratic A-dendroid N such
that f(V) is an arc. Hence, we have also a negative answer if f is confluent.

A 2-dendroid X is said to belong to the class L if each stratum of X
has a void interior (see [7]). It is known (see [7], Proposition 24) that
if a A-dendroid X is in the class £, then every monostratic A-dendroid
contained in X has a void interior. Dr. J. J. Charatonik has asked the
following question (see [7]; cf. [8], Problem 16): does it follow that, if
every monostratic A-dendroid contained in a A-dendroid X has a void
interior, then X is in £% The answer is negative. It can be seen from
Example 3.

In Example 4 we define an open mapping f from a A-dendroid R
belonging to the class £ such that f(R) is a monostratic - dendroid. There-
fore we see that an open image of a 1-dendroid of the class £ need not.
be in the elass £. This is a negative answer to Problem 18 in [8].

Reeall that a mapping f from a topological space X to a topological
space Y is said to be a local homeomorphism if for every point x ¢ X there
exists a neighborhood U of x such that f(U) is a neighborhood of f(x)
and such that f restricted to U is a homeomorphism between U and f(U)
(see [14], p. 199). It is proved (see [12], Corollary 10) that a local homeo-
morphism of a A-dendroid is a homeomorphism. Therefore we get the
following immediate corollaries.

(1) The monostraticity of A-dendroids is an invariant under local
homeomorphism (cf. [8], Problem 12).
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(2) If a 2-dendroid X belongs to ¢ and f is a loe i
‘ / 1 X 5 a local homeomorphism -
defined on X, then f(X) is also in the class £ (cf. [8], Problem 17).

The author is very much indebted to Dr J. J i
[ \ 3 . J. J. Charat
contributed to these investigations. Hontls who

II. In ac exan PI deserib d in thi s Y, 2
each 3 e SCribe thig section let (J; y ) denote
a pOlﬂt of the Euchdean 3-.\[)3(‘8 E having Ly Y and z a its Ieebang ulazr
coordinates. o ’

ExAMPLE 1. We denote the straight line i al joini i
and v of E® by uwv, and its lengt}:tll);lb}ﬁi:fe mierval loining points u
To describe the example we first define some three subsets 4. B
?md C of the plane z = 0. To do this, let P be an arbitrary rectaﬁgle (lv’ing
in tl}e plane 2z = 0) with the ratio of its sides equal to 1: 3. Denoter'the
vertices of P by a, b, ¢, d in such a way that ab, be, ed, da are sides of P
and ja—b| = fe—d| = §}b—¢| = 3jd—a|. For i=1,2 take points «
bieab and c¢;, diecd such that ’ ’
la—a,] =

and =0 = [b—b| = 3la;— o] = 3|a,— by| = 3|b,— b}

ld—d\] = |, —e| = ler— el = 3ld,— o} = 3]dy— 6] = 3le—eay] .

Further, take points e ad and e; € a;d; such that 2

a—el = le—d|
2la;— &) = le,—d,] (see Fig. 1). ! =l and

d d 4 e e ¢
- |
P, P,
e €
Py
a a4y by b, b
Fig. 1

Observe that points a, a,, e, ¢ are the vertices of some rectangle
with the ratio of its sides equal to 1:3. Denote this rectangle by P;.
Similarly, points a,, a,, d,, d; and b, by, €5, ¢, are the vertices of rectangles
P, and P, which are congruent to P,. .

Remark that the choice of rectangles P,, P, and P; for the rectangle P

depends on the choice of one longer side of P and on the choice of oné
1%
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end-point of this side. Denote by (P, ab, ) the rectangle P with the
distinguished side ab and with the distinguished end-point a of ab.

Let R be the family of all triples (P, ab, a) described above. We
define a five-valued function @: R —» R which assigns to a triple (P, ab, a)
five triples (elements of R) as follows:

(P, ab, a))
= {(Pla aal: Cb), (P27 aldla a’l): (sz aldla dl)i (Pay b1017 bl)’ (Pai b101, 01)} .
As usual in the theory of multi-valued functions we define
(+) D(4) = U {B(4): 4 et}

for every subset 4 of R.
Put
(P, ab, a)) = (P, ab, @)
and
" ((P, ab, a)) = B(D"(P, ab, a))) .

Thus, in particular, @" is a multi-valued function from R into R
which assigns to a triple (P, ab, a) 5™ triples which are elements of R.

Now we define on R three multi-valued functions whose values are
some closed subsets of the plane z = 0. Namely, let

(P, ab, a)} = a;b,C P,

Q((P,ab,a)=abCP, and

(P, ab, a)) = {a, b} C P.

If + is a set of triples which is contained in R, then ¥(4), Q(+#) and
Z(#) are defined in the same way as it was done for @(4) by (x).

Now take in the plane 2 = 0 the rectangle @ with vertices p = (0, 0, 0),
¢=(1,0,0), r=(1,%,0), s= (0, %,0) and the subset $ contained in
the family of triples R defined as follows:

3= 010, 24, 7)) » (@, 56 0] -

Put

A=Y(3), B=Q@®) ad (=2I(H).

The set 4 is represented in Figure 2, in which the thickest lines
represent the set B and the little circle the points of the set C.
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OO0

Fig, 2

Observe that C is the set of end-points of the distinguished sides
of all the rectangles which are considered in the construction. We have

(1.1) The set C is a totally disconnected closed set.

Now let us go into the 3-space and define
D={®,y,1) ¢ B (z,y,0) e B\A},
E={,y,2)eE: (#,y,0)eC and 0 <2 <1},
M=AJUDuUE.

and

Thus M is the union of the sets A and D and of all the straight line
intervals joining points (z,y,0) of ¢ with (z,y, 1) respectively. These
intervals dre components of the set K.

Observe that the intersection of the set M and of the plane y = 0
is homeomorphic to the plane continnum H defined by the formula

H={(z,y,0)e B 0<z<1and y=sin(afx)}
u{(#,y,0) el 1 <z<2and y= —sin(z/2—a)]} v
i@, y,0)eB 2=0o0r s=2, and —1<y<1}.

Further,

(1.2) Each component of the set B is one of two non-degenerate layers
of some irreducible continwwm contained in M and homeomorphic to H.

It is easy to observe that

(1.3) The set M is a hereditarily decomposable continuum.

Since for each two points @,y ¢ M there exists a unique subcontinuum
of M irreducible between @ and ¥, we have by Theorem 1.1 in [13], p. 179
that

(1.4) The continuum M is hereditarily unicoherent.
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Thus, by (1.3) and (1.4),

(1.5) M is a A-dendroid.

Tt follows from (1.2) and Theorem 5 in [3], p. 26, that

(1.8) The strata 8; of the ecanonical decomposition of M have the follow-
ing form:

() if 83~ F = O, then Sy is a component of the set H,

(ii) if 8; ~E =0, then S; is a one-point set.

Let u, v e M. We define the equivalence relation o on M as follows:

ugv if and only if either % = v or the points » and » both belong to
the same component of the set A v D.

It is easy to verify that

(1.7) The decomposition of M into equivalence classes of the relation o
is upper semi-continuous, and the equivalence classes of the relation o are
continua.

It follows from (1.7) by Theorem 4 in [3], p. 25, that

(1.8) The decomposition space N = M[p is a i-dendroid.

Denote the canonical mapping from M onto M/p by . We infer by
(1.6) and by the definition of p that

(1.9) The image under v of a stratum of M s contained in some
stratum of N.

Observe that since each component of F is a stratum of M by (1.6),
and since the mapping y identifies the two end-points of each component
of A w D (these components are straight line intervals), we infer by (1.9)
that the image under v of an arbitrary stratum of M is contained in the
same stratum of N. Therefore

(1.10) The A-dendroid N is monostratic.

Further, it is easy to observe that

(1.11) The set p(A v D) is nowhere dense in N.

In fact, the set 4 v D is closed in M; thus the set y(4 U D) is closed
in ¥, and we have N\y(4d v D)= p(M\(4 v D). Since IM\(4 v D)
is dense in M, we conclude -that zp(]lI\(AuD)) is dense in N, i.e.,
M (4 v D) is dense in N; thus the set p(4 v D) is nowhere dense in .N.

(1.12) If a point of N is o terminal point of N, then it belongs to the
set w(4 v D).

Indeed, if we NM\yp(4 v D), then, by the definition of y, y~*(w) is
a one-point set and ¢~ (w) e M\(4 v D). Therefore, there exists an arc J
contained in MN\(4 v D) such that p~w)eJ and yp~*(w) is neither of
the two end-points of the arc J. Then the point w belongs to the arc y(J)
and it is not an end-point of y(J); thus w is not a point of the irredueibﬂity
of the arc »(J)C N, i.e., wis not a terminal point of N.

On some examples of monosivatic 3-dendroids 85

‘v.Ve Goncmde,.by (1.11) and (1.12), that the set of all terminal points
of N is contalpea na set which is nowhere dense in N. Sinee each subset
of the set which is nowhere dense is also nowhere dense, we have -

.(1.13) The set of all terminal points of the monostratic L-dendroid
N is mowhere dense in N.

' EXAMP.LE 2.* Adopt the notation of Example 1. Define a projec-
tion mapping f* of the A-dendroid M onto the straight line interval
I={0,0,2):0<z<<1):

M-I
by
f*((w, ¥,2)=(0,0,2) for each point (z,y,2) of M.

Observe that

(2.1) The mapping f* is continuous.

Since ecach non-degenerate equivalence class with respect to the
relation o is contained in the set 4w D, and since f*(4)= {(0, 0, 0})
and f*(D) = {(0, 0,1)}, we have

(2.2) The equivalence classes with respect to the relation o are mapped
under f* onto points in I.

It is easy to see that

(2.3) The mapping f* is such that for each open set U of N the set
F (7)) is open in I.

Define the mapping f of the A-dendroid N onto I as follows:

(#+) flw) = f*p~*w)} for each point we N .

Let G be an open subset of I. It follows from (2.1) that (f*)~Y(&)
is open in M. Moreover, (2.2) implies that (f*)~*(@) is such that if an
equivalence class with respect to the relation ¢ has a non-empty inter-
section with (f*)")(&), then it is contained in (f*)"(@). Therefore
P{(f*)"Y(@)) is open in N, ie., f7(@) is open in N. This implies that

(2.4) The mapping f is continuous.

Further, let U be an open subset of N. It follows from (2.3) that
F*lp~Y(U)) is open in I, ie., f(U) is open in I thus

(2.8) The mapping f is open.

Since the A-dendroid N is monostratic (cf. (1.10) here), we infer by
(2.5) that

(2.6) The open mapping f maps the monostratic A-dendroid N onto
the straight line interval 1.

Remark. Another proof of the openness of f runs as follows. It is
easy to observe that the mapping f defined by (s¢) is confluent and 0-di-
mensional (i.e., light, see [14], p. 130) onto a locally connected space.
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Thus it follows from Corollary 5.2 in [11] that f is a light 03 -mapping.
Therefore f is open.

ExAMPLE 3. Adopt the notation of Example 1. For each component
I of the set A we take in the half-gpace 2 < 0 a square (a 2-cell) Sx such
that the component K is a side of Sk and Sk is perpendicular to the plane
2= 0. In this square Sx we take a continuum Hg such that Hy iy the
union of K and the side of Sk opposite to K, and a line lying in the square
Sk which approximates both sides. Observe that Hyx is homeomorphie
to the continuum H described in Example 1.

Further, for each component K of the set D we take in the half-space
2z>1 a square Sg such that the component K is a side of 8x and Sk is
perpendicular to the plane z=1. In this square Sx we take a con-
tinuum Hgx such that as above, ie., Hg is a continuum lying in Sx
which is homeomorphic to H and which approximates K and the side
of Sk opposite to K.

Put

L=MvlJ{Hg K is a component of 4w D}.

It is easy to see by construction (in the same way as for the con-
tinnum M) that

(3.1) The continuum L is a A-dendroid.

Moreover,

(3.2) The A-dendroid L contains no non-degenerate monostratic A-den-
droid. ’

In fact, let @’ be an arbitrary non-degenerate subcontinuum of the
2A-dendroid L. If the intersection ' ~ (INM) is non-empty, then there
are points of @’ ~ (INM) which are strata of @', i.e., @' is not monostratic.
If the continuum @' is contained in I, then either @' ~ (M \F) == J or
Q'CE holds. If Q' ~ (M\E) % @, then points of the set Q' ~ (M\E)
are the strata of @', i.e., @ is not monostratic. If @' C E, then @' is an
are, i.e., @' is not monostratic. Therefore the A-dendroid L contains no
non-degenerate monostratic 1-dendroid.

Obviously we have

(3.3) The continuum M has a non-void interior in L.

Now, we shall observe that

(3.4) The continuum M is a stratum of L.

Indeed, each straight line interval contained in ¥ is a layer of some
irreducible continwum which is contained in M and is homeomorphic
to H (cf. (1.2)); similarly, each component K of 4 v D is a layer of the
irreducible continuum Hy described above. Moreover, they intersect
in the sense that for each component of B there is a component of 4 w D
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which intersects it and vice versa. Thus we infer Dby Theorem 5 in {3],
p. 26, that the continuum M must be contained at some stratum of L.
It is easy to verify that the inverse inelusion also holds.

It follows from (3.3) and (3.4) that

(8.5) The i-dendroid L is not contained in the class €.

Thus, by (3.2), we have

(3.6) The A-dendroid L contains no non-degenerate monostratic A-den-
droid and it is not contained in the class £.

ExaMmpLE 4. Take a plane monostratic A-dendroid T (for example
that one which is described in [4]) lying in the triangle which has points
(0,0,0),(0,1,0) and (0, %, 1) as its vertices, and is such that the straight
line interval joining points (0, 0, 0) and (0,1, 0) is contained in 7.

Let Nv be the irreducible eontinuum lying in the unit square with
vertices (0,0, 0), (0,1, 0), (1,1, 0) and (1, 0, 0) deseribed by B. Knaster
in [9], Section 2, p. 570 (see also [10], § 48, I, Example 5, p. 191).

‘We define a continuum R as follows:

R=/{(x,y,2)eE* (#,y,0)e Ny and (0,y,2)e T},

i.e., R consists of the continuum Ny and of the homeomorphic images
of T such that each of them has in common with Ny only exactly one
maximal straight line interval contained in Ny, and each maximal straight
line interval contained in Ny is also contained in exactly one monostratic
A-dendroid, which is a homeomorphic image of 7.

In the same way as for M in Example 1 we conclude that

(4.1) The continuum R is a A-dendroid.

It follows by construction that

(4+.2) Bach stratum of B has a void interior #n R, i.e., Be £,

We define a projection mapping f of R onto T as follows

f((""‘;f‘/rz))= 0,9,2)
It is easy to verify that
(4.3) The mapping f is open.
Therefore, we have by (4.2)
(4.4) The open mapping f maps the A-demdroid R belonging to the
class £ onto the monostratic A-dendroid T.

for each (#,y,2) e R.
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On a question of Borsuk
concerning non-continuous retracts I*

by
Kenneth R. Kellum (Birmingham, Ala.)

‘Abstract. We are concerned with the question as to whether an acyelie plane
continuum is an almost continuous retract of a 2-cell. It is shown that there exists
a non-locally conneeted almost continuous retract of the unit square. On the other
hand, it is shown that no pseudo-arce is an almost continuous retract of a Peano continuum.

In [5] Stallings states a question due to Borsuk which snggests the
possibility of proving fixed point theorems using non-continuous retracts.
The question is whether an aeyelic plane continuum is an almost continuous
retract of a 2-cell. An affirmative answer to this question would settle
the long-standing question of whether such continua have the fixed point
property for continuous functions, since an almost continuous retract
of an #-cell has the fixed point property for continuous funetions.

In the present paper we obtain partial solutions to Borsuk’s question.
We show the existence of a non-locally connected almost continuous
retract of the unit square. On the other hand, we show that no pseudo-are
is an almost continuons retract of a Peano countinuum. The first result
contrasts sharply to a result of Cornette [1] that a connectivity retract
of a unicoherent Peano continuum is a unicoherent Peano continuum.

Preliminaries. Suppose f: A—>B. We make no distinction between f
and its graph. If each open set containing f also contains a continuous
function with domain 4, then f is almost continuous. If f|C is a connected
set whenever ¢ is a connected subset of A then f is a connectivity function.
Fvery connectivity function on an n-cube, with # >1, is almogt continu-
ous [3]. Now suppose BC 4. We say that B is an almost continuous
(connectivity) retract of A if there exists an almost continuous (con-
nectivity) function f; A—B such that f(b) = b for each b in B. The state-
ment that the subset K of Ax B is a blocking set of f means that K is
closed, K contains no point of f and K intersects g whenever g: A—Bis

* During a part of the time in which the research for this paper was done the
author was supported by U. $. National Science Foundation grant number GY-10729.
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