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On a question of Borsuk
concerning non-continuous retracts I*

by
Kenneth R. Kellum (Birmingham, Ala.)

‘Abstract. We are concerned with the question as to whether an acyelie plane
continuum is an almost continuous retract of a 2-cell. It is shown that there exists
a non-locally conneeted almost continuous retract of the unit square. On the other
hand, it is shown that no pseudo-arce is an almost continuous retract of a Peano continuum.

In [5] Stallings states a question due to Borsuk which snggests the
possibility of proving fixed point theorems using non-continuous retracts.
The question is whether an aeyelic plane continuum is an almost continuous
retract of a 2-cell. An affirmative answer to this question would settle
the long-standing question of whether such continua have the fixed point
property for continuous functions, since an almost continuous retract
of an #-cell has the fixed point property for continuous funetions.

In the present paper we obtain partial solutions to Borsuk’s question.
We show the existence of a non-locally connected almost continuous
retract of the unit square. On the other hand, we show that no pseudo-are
is an almost continuons retract of a Peano countinuum. The first result
contrasts sharply to a result of Cornette [1] that a connectivity retract
of a unicoherent Peano continuum is a unicoherent Peano continuum.

Preliminaries. Suppose f: A—>B. We make no distinction between f
and its graph. If each open set containing f also contains a continuous
function with domain 4, then f is almost continuous. If f|C is a connected
set whenever ¢ is a connected subset of A then f is a connectivity function.
Fvery connectivity function on an n-cube, with # >1, is almogt continu-
ous [3]. Now suppose BC 4. We say that B is an almost continuous
(connectivity) retract of A if there exists an almost continuous (con-
nectivity) function f; A—B such that f(b) = b for each b in B. The state-
ment that the subset K of Ax B is a blocking set of f means that K is
closed, K contains no point of f and K intersects g whenever g: A—Bis

* During a part of the time in which the research for this paper was done the
author was supported by U. $. National Science Foundation grant number GY-10729.
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continuous. If no proper subset of K is a blocking set of f, we say that € is
a minimal blocking set of f. Suppose ¢ C 4 x B. The projection of C into 4
will be denoted by p(0). If D C p(0), then C|D will denote the part of ¢
with A-projection D. .

The main results. For each n, let Ly, denote the line segment between
the points (Ijn, —%) and (1/n, 3). Let K denote the line segment joining
(0,1) and (4, 1). In the sequal M will denote the non-locally connected

continnum C1(E v L, w Ly v ...). In Theorem 2 we show that M is an
almost continuous retract of J° where J = [~1,1].

TuroreM 1. Suppose f: J*—~M is not almost continuous, then there
exists a minimal blocking set K of f and p(K) is a perfect subset of J*

Proof. The proof that the set K exists is essentially that given
in [2] for a more restricted case, and is ommitted. Clearly, p(K) is non-
degenerate.

To see that p(K) is perfect, assume that @ is an isolated point of p (X).
Then K— K}{Q} is & closed proper subset of K. By the minimality of K,
there exists a continuous function g: J*—M such that g contains no point
of K— K|{Q}. Let D be the interior of a circle ¢ with center ¢ such that
D ~ p(E) = {@}. Define a function h: J°—+M as follows. If P is in J*—D,
let 7(P) = g(P). Let h(Q)=f(Q). If P isin (D nJ*)—{Q}, let R denote
the point at which the radial line segment from @ through P meets C.
Let m be the length of the arc4 in M with end-points f(@) and ¢(R).
Finally, let h(P) be the point of 4 such that if » is the length of the subare
from g(R) to h(P) we have

nfm = dist(C, Q)/dist(R, Q) .

Then £ is continuous and contains no point of XK. This contradiction com-
pletes the proof.

THEOREM 2. M is an almost continuous retract of J=°.

Proof. Let B be the collection to which the subset B of J*x M
belongs if and only if B is closed and p (B)—(p(B) ~ M) has cardinality c.
We define a function f as follows. First, if P is in M, let f(P) = P. Next,
there exists a well-ordering B;, B,, ..., B,, ..., B,, ... of & such that cach
element of B is preceeded by fewer than c-many elements of B, Using
transfinite induction, for each B, in $ we may chooge a unique point
(P,,Q,) in B, such that P, is not in M w {Fp: g <a} and let f(P,)=¢,.
Finally if P is a point of I’—M for which f(P) is not yet defined, let
F(P)= (0, 0).

We will now complete the proof by showing that f is almost continu-
ous. Assume the contrary. Then there exists a minimal blocking set K
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of f. Since K is closed and p(K) is perfect, by the construetion of f, we
have that? (K) C 3. For each integer n > 2, let ga: J2— (M ~ [1/n, 1] % J)
be a continuous function such that if 0 <x << 1/n and —} <y < (%, then

gn(@, y) = (1/n, y) and such that g,(P) = P for each P in 3 ~ ([1/n, 1] %J).

" Then each g, interseets K in a point of the form P, = {(1],'(;1_;_",), ),

(Lfn, y)), where m is a positive integer. Some subsequence of P,, Py, P,, ...
converges to a point of the form ((0, ), (0,y)) in M. But since f{(0,y))
= (0, y) and K is closed, we have that K contains a point of f, a contra-
diction.

In the next theorem we prove that no-pseudo-are is an almost continu-
ous retract of a Peano continuum. First, we need some definitions. An
&-chain is a finite collection of open sets @, ..., Gy such that diamGs < e,
fort=1,..,n and G4~ G; # O if and only if |i—j < 1. A continuum
is called snake-like if for each positive number e it ean be covered by an
e-chain. A pseudo-arc is an hereditarilly indecomposable snake-like con-
tinuum. For definitions of terms not defined here and for information
and references concerning pseildo—ares, see [4, pp. 224-226]. The property
of pseudo-arcs needed in the next proof is that a pseudo-are contains
no arc and hence no non-degenerate Peano continuum.

THEOREM 3. Suppose 8 is a pseudo-arc and N is a Peano continuum.
Then 8 48 not an almost continuous refract of N.

Proof. Assume that §C N and that f: ¥—8 is almost continuous
and leaves points of § fixed. Let P and @ be two points of S and let
Ay, ..., Ap be an e-chain covering § such that P is in 4; and Q is in A;
where 7 < j—1. Let

D = (N x 8)—[({P} x €1) w ({@} x C,)] 4
‘where

C,=8— (A v .udy) and Co=8—(4dv..v4d; ).
Then D is an open set containing f. Since f is almost continuous, D con-
tains a continuous function g: N—8. But g(P) is in Ky = 4; v ... v 4y
and ¢(Q) is in K,= A;u..u 4d,. Since K, ~nK,=@, we have that
g(N)C 8 is a non-degenerate Peano continuum, 2 contradiction.

Remarks. 1. I conjecture that Theorem 2 is true whenever 3 is
an arc-wise connected acyclic plane continuum.

2. In [3] Kellum shows that almost continuous functions can behave
rather wildly nnder functional composition. In light of this fact and the
results of the present paper, it might be worth-while to study almost
continuous retracts of almost continuons retracts. It is conceivable that
a fixed point theorem might be found in this way.
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Contractive fixed points
by
Solomon Leader and Stephen L. Hoyle * (New Brunswick, N. J.)

Abstract. A contractive fixed point iz defined to be a fixed point to which all
orbits converge. Conditions giving contractive fixed points are studied for spaces equipped
with a suitable equivalence relation on their sequences. The results of this study are
then applied to uniform and metric spaces where they yield known as well as new

© generalizations of the Banach Contraction Principle.

1. Intreduction. Let f: X > X where X is equipped with a suitable
notion of sequential convergence. For each z in X we call the sequence
(@, fu, f*o,...> the orbit of x. We call p a contractive fized point if fp = p
and every orbit converges to p. Since convergent sequences in our spaces
have unique limits, a contractive fixed point must be a unique fixed point.

‘We are interested here in existence theorems for contractive fixed
points. The classical result of this type is the Banach contraction theorem
[2] which has inspired the search for fixed point principles in metric and
uniform spaces. In this search the contractive propelty of fixed points
hag sometimes been ignored by researchers.

Our main contribution here is to place the study of contractive
fixed points in a more general setting than uniform spaces, but with
sufficient structure to yield results. Specifically, we use the UL*-space
of A. Goetz [5] which we call S-space (sequential structure space). Our
results apply in particular to uniform spaces and thereby to metrie spaces
and topological groups.

2. S-spaces. Bold face capitals K, L, M will always denote infinite
subsets of the set N of all natural numbers. For any sequence <{x,) let
{@ndys be the subsequence obtained by composing the unique order-
preserving map of N onto M with the restriction of the sequence to M.

An §-space is a nonempty set X equipped with an equivalence re-
lation x> ~ (yn> on sequences in X sueh that:

(8;) Tor constant sequences, <>~ (¥ implies # = ¥.
(8)  If Caad~ (Ya) then {adpy~ Yndu for all M.
#* Part of this work is derived from the latter author’s 1971 Henry Rutgers Thesis.
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