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On the approximate Peano derivatives
by
S. N. Mukhopadhyay (Burdwan, West Bengal)

Abstract. It is known that a kth approximate Peano derivative belongs to Baire
class 1. In the present paper it is shown that the other properties of the ordinary kth
Peano derivative are also possessed by the kth approximate Peano derivative.

Introduction. Let a function f be defined in some neighbourhood
of the point @,. If there exist numbers 0, Uy ..., ar, depending on #, but
not on % such that

’

7! Lyt
(%) lmap 1 f (@ + k) —f () — —a;,]= 0,
k-0 h —
where limap denotes the approximate limit [13, p. 218], then a, is called
the appromimate Peano derivative of f at z, of order r and is denoted by
Sral®) (see [4]). The definition is such that if Jr,a(®) exists then all the
previous derivatives f; ,(#,) also exist and o = fralt), L<k<r Tt is
convenient to write a, = f, ,(#,) = f(,).
Let us now suppose that for a fixed r, Sral®) exigts. Writing

pr+1

r hk
(’r—|—1)!®f+1(f5 Ty; h) = f(@+h)— E 71 Jsa®o) 5
: = .

Umsup®@,.,(f; %, k) =_ﬁ+l(mo) ;  lminf®,  (f; @, &) = fra(®) ,
70 o0 J

limsupap®,,(f; @, h) = Jri1a(®), liminfap D, (5 @, ) = Ser1,a(%0)
0 B0 . =

where limsupap denotes the approximate upper limit [13; p. 218],
Frsa(o) and f. +1(%) Will be called the upper and the lower Peano derivates
of f at @, while f,,, (%) and f,,, (%) Will be called the upper and the
lower appromimate Peano derivates of f at @, of order »--1. (The upper
and the lower Peano derivates as defined in [14, 1, 2, 3] are different from
those defined here. For, in the former cases the existence of the Peano
derivatives f,(z,) was required. However, the upper and the lower Peano
derivates in the former sense are also the upper and the lower Peano
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derivates in this sense and hence this definition is more general.) If
Frir,al@0) = Fri1,a(®0); then the common value is the approximate Peano
derivative (possibly infinite) of f at @ of order r+1.

If the approximate limit in () is replaced by the ordinary limit then
one gets the definition of the ordinary Peano derivative (see [12]). Proper-
ties of ordinary Peano derivative have been studied by Marcinkiewicz
and Zygmund [8], Denjoy [4], Oliver [12], Weil [15], Verblunsky [14],
Bullen and Mukhopadhyay [1, 2, 3] and others. It is known that a Peano
derivative behaves in many respect like ordinary derivative. Properties
of approximate Peano derivative have been studied by Denjoy [4] and
recently by Evans [5]. Evans proved that a finite approximate Peano
derivative is an element of Baire clags 1 and asked whether or not an
approximate Peano derivative which exists on an interval also shares
the other properties of ordinary derivative. In the present paper we

- shall give an affirmative answer to the question of Evans by showing
that an approximate Peano derivative shares most of the properties
possessed by ordinary derivative.

2. Definitions. Let f have an approximate Peano derivative of order n
at each point in the closed interval [a,b]. Then f is said to have the
mean volue property ME in [a, b], 0 <k < n—1, if for each # and z+4h
in [a, b], there is #' between # and - % such that

—5)! o
(ﬁh% ‘fk,a(m"l' h)— Z mfr,a(m)l = f'n,,a(m,) -
re=k

. n—1
If f has the property JCE, we will write fe 6E. Set fon = () JMf.
=0
The funetion f is said to have the boundedness property Bk in [a, b),
1< k<mn, if f, , has the property that whenever f;, , is bounded at least
on one side in a subinterval of [a, bl, f, , is the ordinary kth derivative f®
in that subinterval. If f has the property Bf we write fe B. Set By
= .
k=1
Finally, if a function ¢ has the Darboux property, then we write g ¢ D.

3. The fundamental lemma.

Lovva 1. Let n > 2 and let f,_, , ewist finitely in [a, b] and fe Bp73,
Ja—1,a € D. Suppose that fu(w) >0 for all & e[a, b], emcept perhaps on o sub-
set $C [a, b] for which f,_, ,(S) does not contain an interval. Then f,_,,

is nondecreasing and continuous in [a, b] and f,_, , is the oydinary (n—1)-th
derivative of f. .

Proof. We prove the first part only, the last two parts follow from
the fact that f,_;,e¢D and fe B2} respectively.

n—1
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Let O be the set of all points @ in [a, b] with the property that there
is a neighbourhood of # in which f,,, is non decreasing. TLet
H = [a,b]—0. Then H is closed. Since f, ,,¢D, H cannot have an
isolated point. Hence H is perfect. We shall show that H is empty and
the lemma will be proved.

If possible, suppose H # 0. Since f,, , is in Baire class 1 [5], there
is a portion, say [a, §] ~ H, of H in which f,_, , is bounded [2]. Let (¢, d)
be any complementary interval of H in [a, f]. Then f, ,, is non de-
creasing in (¢, d) and since f,_,, €D, fo1,, s non decreasing in [e, d].
Thus f,_, i bounded in [a, f]. Since fe BT, fu1q I8 the ordinary
(n—1)-th derivative of f in [e,p] and all the previous derivatives
Fras foyar -os Fams,a 8T€ the ordinary derivatives f', f@, ..., which are
continuous in [a, 1.

Now if [a, f1C S then since fnjz¢D, fasalle,f]) is connected
and sinee f,_; ,[a, B]) does not contain intervals, f,_, [, A1) is a single
point, showing that f,_, , is constant on [a, ] which is a contradiction
since [a, §] ~H # 0. If [a, f] ¢ G, choose , € [a, f]—§. Then fu(z,) >0
and hence the function

! n—1 hk
Du(f; @y h) = Z—" \f(mo‘l‘ h)—z '];"fk,u,(mﬂ)]
k=0

is such that in every neighbourhood of the origin there are points & # 0
for which @u(f; @, b) > 0 and for each of these 7 there is 8, 0 << 6<1,
such that

; n-2,a%o+ k) —fns,d o) — O fu—1,al%0
- Du(f; mo;h)=f A= ]';*(9}0)(200) Fn-1al0)

and hence
fﬂ—2,a(w0+ Oh) = fn—z,a(@"o) 'i" eh’fnv-l,u,(wo) +

> fﬂ—z,a(m(l) + Bhfﬂ—l,a(mo) .

Thus f,_s o is such that for each £ e [a, f1— S, there are in every neighbour-
1h00d of (&, f—s,q(&)) points of the graph of f,_s,, above the line y— Frz,al&)
= fu_s,ql&) - (@—§&). So, by Lemma 8 of [1] (which is an improvement
of Lemma 1 of [14]), fu_s 4 i8 convex in [a, ] and so its derivative f—14
is non decreasing in [a, f]. But this is a contradiction since [a, B] contains
points of H in its interior. Hence H = 0 and f,_,, is nondecreasing in
[&, b], completing the proof.

(6R)?
2

Pu(f;5 @0, 1)

4, Properties of approximate Peano derivatives.

TeeorEM 1. If the approwimate Peano derivative fnq ewisis fimitely
in [a, b], then )
4 — Fundamenta Mathematicae LXXXVIIL
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(1) faa€D in [a, D],

() fe oy in [a, b],

(iii) f e By in [a, b].

Proof. We will prove by induction, proving (i), (i) and (iii) simultane-
ously.

For n =1, f,, is the approximate derivative of f and so by [6, 7]
Ji,a Dossesses Darboux property, mean value property and the bound-
edness property. So, the theorem is true for n == 1. Let us suppose that
the theorem is true for n = 1,2, ..., m—1, and we prove it for n=m

To prove that f, ,<D, we prove that the sets

B ={m: 2 ¢[0,0]; frol@) > 1}  and  By={2: 0 [a,b]; fpqln)< A}

have compact components for arbitrary 2.

Let Q be a nondegenerate component of B* with end points o and g,
Then f,,>d—e¢ in (a,f) where ¢ >0 is arbitrary. Set g(®) = f(w)—
—(A—2)a™/m!. Then g, ,>0 in (o, ). Since the theorem is true for
n=m—1; fpn 14D and geB, ;. So by Lemma 1, g, ., is non-
decreasing in (a, ). Since Im-1,a € Dy P, 18 nondecreasing in [a, §].
Sinee the theorem is frue for n = m—1, geMj,_, and hence for every
b >0 there is 6, 0 < § < 1, such that

Du(g; o, b) = gm—1,a(a+ Z:ib— 9m~1,a(a)

and since g,,_, , is nondecreasing in [a, 81, Pmlg; a, h) = 0 for sutficiently
small 2 > 0. Hence g, ,(a) > 0, 1.8.; fonal®) = A—e. Since ¢ is arbitrary,
fma(@) =3, showing that a ¢ B* Similarly B<B. So every component
of B* is compact. Similarly every component of B, is compact.

Now f,,,, is in Baire class 1 [5] and so by a result of [11], fra €D,
completing the proof of (i) for » = m. '

To prove (i), we first prove that fedm™ in [a,d]. Choose 2 and
2+h in [a, b]. We assume h > 0, the case when h < 0 is similar. We set

g(t) — f(t)_fm—l,a(m‘f'“ h) "‘fm—-l,a(m) . (t_ m)m .

k m!

Then

i

(t) = fm——l,a(t)—fm_l’a(w—'— h;)b_fm_l'a(m) (t

Iin—1,q! — )

and
(t) _ fm-—l,a(m+ h‘])z'—fm—l,a(w) i

Now by assumption g € Brps a0d g, e D. So, if Im,e >0 in (z, 24 h)
then by Lemma 1, Im-1,o Would be nondecreasing in [#, v+ 1] and since

gm,a(t) = fm,a
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Im—1,a@+P) = G—1,0{®); Gm—1,c Would be constant in [z, #--h] which is
a contradiction to our assumption that ¢,,>0 in (z,2+1). Hence
there i8 1, ¢ (#, £+ &) such that g,, (%) < 0. Similaxly there is #, ¢ (2, -+5)
such that g, .() = 0. Since g,,,¢D by (i), there is ¢, ¢ (#, #+h) such
that g,,.{f) = 0. That is,

h)—
i = el )

Thus fe Mop* in [a, b].
Let now 0 <<k < m—2. We prove fe 4. We again suppose that
h >0 and set

hm—k—l
Fua@ W)= @)= o = o me1al®) (y_gym
g(t) = f(&)— B R (m— k! m!
Then
hm—k—-l
1) Iral@+ D)= Gr,o@)— R 41,0(@)— oo — 1)t Imr1,al®) = 0.

Since the theorem is true for # = m—1, g ¢ f,_, and hence from (1)
there is @', # < &’ < ¢+, such that
(2) Im—1,6l%) = Gm,a(®) = 0 .

Since from the first part of this proof g e A,,_,, from (2) there is ",
< &' < a', such that g, (2")=0, ie.
hm—k—l
) Tra @+ B)—fro(@)— . — mfm—x,u(w)
fm,a(m )= ek ’

(m—T)!

showing that f e AE. Hence f e Moy in [a, b]. Now we turn to the proof
of (iii). We .require the following auxiliary lemma, which is interesting
in itself.

LemMA 2. If f, . exists in [a, b] and is bounded at least on one side
in [a, b] then for each » in [a, b] and for each k, k= 0,1, ..., m—1, there
is @ set B (x, k) with density 1 at 0 such that
m=—1 j—F

lim E Sral® 1) — mej,a(m)] = frn,a(®) -
heB(z,T) =k

Proof of the lemma. We may assume that f,, > 0 throughout
[a, b]. Let @, e[a, b]. For simplicity of notations we take z,= 0 and by
adding a suitable polynomial, if necessary, we may suppose that f(0)

4%

(m—Te)!
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=Jf1,0l0) = o = fn0,6(0) = 0. Let A= f,,(0). Then 4 >0. We have
to prove that i

(8) for each %, k=0,1,..,m—1, there exists a set By = 1(0, k)
such that '

F,alh) 4

lim = (—m .

a0 Jme I
heBy

For k= 0 the existence of the set %, follows from the fact that 4 is the
mth approximate Peano derivative of f at 0. We wish to prove the lemma,
by induction. So, we suppose that (3) is true for & = 0,1, ..,r—1, where
r<m and prove that (3) is true for &k = r.

Let & >0 be arbitrary. Since

3

limA- 1y (m) = 4
10 17 ml L \B S rlm—r)!’

i
<

we can choose a i)ositive and negative in turn, such that 0 < la] < 1 and

41 %(m) g A
k

a" m! ké./ ri{m—r)!
=r

€

{4) <3-

Choose and fix g 80 as to satisfy the relation (4). Then for any h # 0,
we have, since fe AL

r+12
1)
o -+ a1

(ah)"
e = ?‘!

fr,a( h)} = fr-;-l,a(]]”)

where k' lies between h and h- ah, i.e.

1 (ah)"
(5) (ah)m{f(h ) —gy—..— L 1 )
_ fm,a(h')(h')m-r-{ 1
- W 71/' mam .

Now I'[h > 0. Also Jorn, o WY1 > 0; for, if p4-1 = m, this is obvious;

otherwise, since fe ‘/fb;fl and fo14(0)= ... =f,_, (0), we have
JrralP) _ B
m“‘fm,a(l )

where " lies between 0 and 7’ and the

assertion follows. Hence the right
hand side of () has the same sign a

§ that of o™ "1 Ko, if m—r—1 ig
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even then the right hand side of (5) is positive and we get from (3)

(ah)r

Jrdh) 1
(r—1)!

P g

1 m{f(h—]—ah) —f(h)— . —

(6) W fr—l,a(h)} >

Sinee m—r—1 i§ even, m—r iy odd and so ¢™~" has the same sign as a.
So multiplying (6) by o™ :

=1 o foall
O e —m = g )z el

B (r—1)1TTRE T S =

according a8 a >0 or < 0. If m—r—1 is odd then ™" > 0 and multiply-
ing (B) by o™ " we have

1 (ah)" _ Trar o)W\
®) W{f(h-[—ah)-f(h)—-n-—jrfr,a(h)} = (h;;:n—-r——l 7 r+1)!

and the right hand side of (8) is positive or negative according as a > 0
or a< 0. Thus in any case the relation (7) is true. Now, by assumption,
(8) is true for k= 0,1, ..., 7—1. So, for each % there is a set ) of dens-
ity 1 at 0 such that

o JualP) A - _
(9) 17213 h’:"‘ =M’ k=0,1,..,r—1.
he Lk
‘Writing
) _.jﬁ@__jl
(10) elh) = ZmE ~ 1’
we have from. (9)
(11) lim ex(h)=0, k=0,1,..,r—1.

Fir0)
heEy

Lot B, = {h: (14 a)h € Ey}. Then E, has density 1 at 0 and

fh+ah) A

(12) 1;r% () = 0, where &,(h) = hran)™ ml
hs-l)ﬂa
Set

r—1
(13) E’,=EaﬁmEk.

k=0
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Then J, has density 1 at 0. Using (10) and (12) the left hand side of (7)

becomes
f(h+ah) N
L e 3 2
__-ai( +a(h)> (1 + ay"— 270 (

(b~ ah)™

r=1
A [(1+0a) ES!
z:{ ml g;kv o+ 7 e

TR ))}
1+ az)”"—-i-?1 %i: ak(h)}

I

k=0
_ émi Zm(g)ak_Sk' m; ’“}+e(h)
Ic=0
=T ) e,
where
(14) e(h) = —{ () (1 @) S’ }

Hence (7) becomes

4 1

T i (k) ez
k=1

according as a > 0 or ¢ << 0. Now using (11), (12) and (13) we get from (14)

llm e(h)=0.

hEEr

Hence corresponding o the ¢ >0, chosen at the beginning, there is
a 6 >0 such that

> fr,a

(15) Plp™T

(16) le(h)| < 4e  for heB,, 0<|h|< .
Choosing a<< 0 and « >0 we get from (15), (4) and (16)
4 Fr.alP) 4
Py e——r —e< EETERS ) +e for hel, 0< |Bj< 4.

This shows that
Hm Trdl) 4 .
nso BTN (m—7)!
heliy

This completes the proof of the lemma by induction on k.

icm
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Returning to the proof of (iil) we suppose that f,, is bounded, say
below, in an interval I C[a,b]. We may assume that f,, , >0 through-
out I. Then ginee by assumption feB,, , and f,_; ,eD, by Lemma 1,
frm—1,q I8 the ordinary (m—1)-th derivative of f in the closed interval I.
By Lemma 2, fp,, is the approximate derivative of f,_, , and since f,, , is
bounded in I, f,, is the ordinary first derivative of f,,_, , in I. So, f,, o i8
the ordinary mth derivative of f in I, showing that fe B in [a, b].

Thus Theorem 1 is true for % = m. The proof is now completed by
induction on #.

Now we turn to Lemma 1. As we have seen in Theorem 1 that if f hag
a finite nth approximate Peano derivative f,, then f,,e¢D and feBa,
the condition that fe $57} and f,_, ,¢D in Lemma 1 are automatically
satisfied. So, we state Liemma 1 in the following theorem. (Similar results
for ordinary Peano derivative are proved in [14, 1]).

TarorREM 2. Let n 2> 2 and let f,._, , ewist finitely in [a, b]. If fu(x)
for all » in [a, b] except perhaps on a subset S C [a, b] for which fn_m
does not contain interval, then f,_,, is nondecreasing and continuous in
[a, b].

We now congider the following natural extension of Theorem 2.

THEOREM 3. Let n = 2 and let f,_, , ewist finitely in [a, b]. Suppose that

(i) fu= 0 on [a, b] ewcept on o subset B C [a,b] of measure zero,

(i) fa > —oc0 on [a, b] except on o countable subset CC [a, b]. Then
Fre1,a 18 nondecreasing and continuous in [a, b].

Proof. Let T be a G, sot of measure zero containing F and let ¢ be
a continuous function on [a,b] such that o'(®) = oo, for ze¢ T and
0 <o) < oo for w¢ 7. (For the existence of such funetions we refer
to [16].) Set

€z

¥ 1 — . - -
W(m):(—y:z—)!.[(m—t)" Zo(tydt, a<ao<b.
. (z—a)*
Let & > 0 be arbitrary. Consider the function g (¢) = f(#)+ ¥ (2)+ 8=

Then g,_,, exists finitely everywhere in [a,b] and Ja(®) >0 for all
@« [a, b], except possibly for points on C. Hence from Theorem 2, g, 4
is nondecreaging in [a, b]. Since & iy arbitrary, fu_,. i nondecreasing
in [a,b]. The continuity follows from f, 4 €D.
COROLLARY 1. If f,, ewists finitely in [a,D] then fn.a has Denjoy
property in [a, b], i.e. for every pair of real numbers a, B, a < B, the set
{w: wela,b]; a< fn,a(m) < f}

is either void or of positive measure.
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- Proof. If f, ,=> 0 a.e. in an interval I C[a, ], then by Theorem 3,
fa—1,q is nondecreaging in I and therefore since by Theorem 1, fe A, _,,
for any two points # and @+ h in I there is a point, say @<k’ between g
and z-+h such that

. 1 Al )/ Te
o 0,0 = et Y )]
Te=0

— nfn—l.a(w + h,) '—fn«—lum(m)_ﬁ:rj 0 ,
h' h
showing that f, ,(#) = 0. Thus, if f,, , > 0, a.e. in an interval, then f, , 0
everywhere in that interval. Since f,, is an clemoent of the fivgh Baire
class, the result follows from [9].
From the proof of Corollary 1 we get the following

CoROLLARY 2. If f, ., ewists ﬁm’tely in [a, b] then f, , belongs 1o Zahor-
ski’s class M, (for definition of the class M, see [17]).

‘We consider another interesting property of f, , stated in the follow-
ing theorem.

TEEOREM 4. Let f, , ewist finitely in [a, b]. If for any two reals a, f,
a< B, (oo admitted), the set

B={n: vela,b]; a<f, @< p}

is nonemply, then for any interval IC [a,b], where I ~ T # 0, there is
another interval J C I such that

JnE#0, JnB=dJnH,
where

By={m: <[a,b]; f™x) ewists and o< f™(@)< §}.

This result is known for » = 1, ie. approximate derivative, as well as
for ordinary Peano derivative [10]. In that proof in [10] wo have used
only the three properties of these derivatives, namely, Jie hats the Durboux
property, f, o is of Baire class 1 and f,, is the ordinary derivative in
every interval in which it is bounded at least on one side. Sineo Joa ha8
all these three properties, we conclude that Theorem 4 iy true mx'd the
proof is omitted (see the remark at the end in [10]). Putting o = — oo,
B = oo, in the above theorem we get ‘

COROLLARY. Let f, , ewist finitely in [a, b] and let
E = {w: mc[a, b]; f™a) ewists} .

Then for every interval IC [a, bl, I~ B contains an interval.

[16]

[17]
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