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The pfoofs of (5.1) and. (5.2) are quite analogous to the ones of
Lemma 3, Theorem 4, and Theorem. b on p. b4 ff as well. as Corollary 1
on p. 53 of [1], and establish the fact that i(X, @, U) satisfies the homo-
topy and additivity axioms. The proof of the? count(?rpart'of Theorem 5
in [1, p. B9/60] requires that two usc acyclic multifunctions &, and 6,
which are related by an usc acyclic homotopy induce the same homo-

morphism _ B
& = o7 HME", E™N0) - H™V, VN8 (¢, U)) .

That this is true can be shown as in [8, Theorem 3]. It would be of interest
to cheek (but it is not needed in this paper) to what extent (X, ¢, U)
satisties other axioms often associated with a fixed point index, and how
it extends to more general spaces than polyhedra. Some modifications
will arise, e.g. in the commutativity axiom, as the composite of two
acyclic multifunctions need not be acyclie.
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Partition topologies for large cardinals
by
Erik Ellentuck * (New Brunswick, N. J.)

Abstract. Two topologics arvoe introduced on the power set of a large cardinal.
Partition thoorems in the style of Kleinberg-Shore are obtained for the first topology
and ones in the style of Galvin-Prikry for the second.

1. Introduction. Lot %, 1, be cardinal numbers and w,v,s,iCx.
@ i the order type of u and [s,v] = {u| sCuCsworm= 1} [s, v]< is
defined in the same way except @ = 4 in the definition of [s, v]* is replaced
by B<< A [@, v]* will be written as [v]* where @ is the empty set. We define
two topologies on [%]* where w < A s % and o ig the first infinite cardinal.
The classical topology (c-topology) is generated by a basis consisting of
[s, x—t]* where s, te[x]<“. If % is measurable let D C[»]" be a »-com-
plete normal ultrafilter. The measure topology (d-topology) is generated
by a basis consisting of [¢, «]* where s € [%]<® and u ¢ D. When we speak
of a topology without the ¢ or d prefix we mean either topology. § C [»]*
is Borel if it is generated from the open sets by comp]ement;tion
and < » intersections. It is meager if it ig the union of < » nowhere dense
sets and is Baire if its symmetric difference with an open set is meager.
8 C[#] is Ramsey if there is a u e [»]* such that [«]* C 8 or [u]* C [x]— 8.
Such a « is called homogencous for 8. - -

TuroreM L. If # is o Ramsey cardinal and S C [x]* is ¢-Borel then 8 is
Bamsey.

TugoreM 2. If % i o measurable cardinal and SC[x]* is d-Baire
then 8 s RBamsey. -

Our proof of Thoeorem 1 is hased on the work of Kleinberg-Shore [3]
and that of Theorem 2 on the work of Galvin-Prikry [2] and of the
author [1].

2. Details. Write w-<< v if every oclement of u is strictly less than
every clement of 0. (s,0)* = {u] sCuCsvoAT=AAs<u— s}. (s, 0
is defined in the same way except % = A in the definition of (s, o)t is

——

.

* Prepared while the author was p ur‘(iila.lly supported by NSF Grant Proposal 28348.
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replaced by @<<'A If f: 4B let fHu) = {f(@)| @ ew ~ A} and |u| = the
cardinal of w. x is a Ramsey cardinal if

)
Such a u is called homogeneous for f. Until further notice assume that » is
a Ramsey cardinal and 8 C [%]% As in [3] we say that 8 is regular if there
is & v < x and an fi [%]<°—» such that every u e [#]* which is homogene-
ous for f is also homogeneous for §.

v < %A i [#]°° =2 implies (Tu e [%])(Vn < @) [P = 1.

Imvva L. Every c-open seb s regulay.

Proof. Assume S is ¢-open and define f: [#]°"—2 by f(s)==0 if
(s,%)*C 8 and f(s)=1 otherwise. Liet u e[x]* be homogencous for f.
Case 1). There is an #< o such that f*([u]*) = {0}. If v e [ lot s be
the first n elements of » (recall that w < A). Then v € (s, »)* C S and hence
[u]* C 8. Case 2). (Vo< o) f"([u]")= {1}. We claim that [} C [#]— 8.
£ not there is a v e [u]* ~ 8. Since § is ¢-open. there are s, ¢ e [«]<” such
that v e [s, x—1*C 8. Let a e be an element laxger than every element
of s U t. Then (s u {a}, %)*C [s, x—1]* C § and hence f(s v {a}) = 0. But
s {a} Cu. Contradiction. Q.E.D.

LevMA 2. The complement of a regular set is regular.
Lenva 8. The intersection of << » regular sets is regular. -

~ Proof. Let (8, a<Cy) be a sequence of regular sets where y < .
For cach a< yp there is a »,<x and f: [#[®—w, such that every
u e [x]* which is homogeneous for f, is also homogeneous for §,. Define
g: [%]<® = II,», (the direct product of the »,) by letting the ath component
of g(s) be fi(s). Note that |II,»,|< » becanse » is strongly inaccessible
and that any u e [»]* which is homogeneous for ¢ is simultaneously homo-
geneous for each S,. It readily follows that any such v is homogeneous
for N S,. QED.

Proof of Theorem 1. Every c-Borel set is regular and the partition
property (1) immediately gives a u e [»]* which is homogeneous for §.
Q.E.D.

It is possible to somewhat strengthen Theorem L. fi [x]} -+ v i8 & Borel
funetion if f~"(a) is Borel for each a < . If e [#]* and |f*([u]")| == 1 then
u is homogeneous for f. Finally f is regular if there is »' < » and a ¢: [#]<"
— ' such that every u e [»]* which is homogeneous for g is also homogene-
ous for f.

LEMMA 4. If v < % and f: [%]*~v is ¢-Borel then f is regular.

Proof. f~!(a) is ¢-Borel and hence regular for cach «-<<». Hence
there are »,<<x and f,: [%]““-», such that every wu e[x]* which is
homogeneous for f, is also homogeneous for f~%(a). Define g as in the

icm
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proof of Lemma 3. Then just as in that proof it follows that any 1 e [x]*
which is homogencous for g is also homogeneous for f.  Q.E.D.

COROLLARY L. If w is a Bamsey cardinal, o <1< %, v < x, f: [ >
is @ ¢-Borel function, s € l:u:]"‘:“” and w e [%]* then there is a v e [u)* such that
If¥(Cs, o)) = 1.

Proof. Define ¢ on [#]* by g(v) = s 0. Let y< » be greater than
every eloment of & and let & bo o strietly increasing function mapping
onto w~y. Then ¢ o [xf=[x} is ¢-continnous making fogon*
¢o-Bovel. By Lemma 4 there is a o’ e [ which is homogeneous for f o g « ¥,
Then # == h*(v) I8 cusily soen to satisfy the corollary. Q.E.D.

Now assumne that » is o measurable eardinal and D C [x]* is a x-com-
plete normal ultratilier. The normality of D allows us to prove

@) it eD for y<Cx then {oa< s ae Q 4.} e D,
. y<a
(8)  v< xAf: [1]70—v implies (Hw e D)(Va< o) f*(u]™)] = 1.

Proofs of these rvesults as well ag a comprehensive discussion about
meagurable cardinals can De found in [4]. For the following definitions
let § Cx]* be fixed. Lf ¢ ¢ [%]<° and u e D then u accepts s if (s, uC8
and w rejects s if for no »e[ul* ~D does v accept s (cf. [2]).

Tmvma B (of. [21). (i) % accepts (vejects) s if and only if {a e u| s < {a}}
accepts (rejects) s. (i) If w accepls (rejects) s then so does every v e [u]* ~ D.
(i) For any ¢ ¢ [x]<" and u D there is a v ¢ [u]* ~.D which either accepts
or rejects s. )

Lumma 6. There is a w ¢ 1D which either accepts or rejects every s e [2]<°.

Proof. By Lemma B and the x-completeness of D we can find for
each y<x o u, el which accepty or rejects every s e[y+1]°° Let
w={a<u ae( ). By (2) weD. Lot se [#]<® have y as its largest

rea .
element. Then w, accopts or rejects s and if aeu and a >y then aeu,.

Hence % accepts o rejests 8. Q.E.D.
LEMMA 7. There is @ w ¢ 1) such that if u rejects @ then u rejects every
$e [,M‘]{(D'
Proof, Deline threo sots contained in [x]¢ as follows.
A wo {6 %)% (v e D) o aceopts s},
B {8 e |79 (B eD) v rojects s},
O e ]9 (A U B).
T s e A ~ B thon there oxist v, o' e 1 such that o accepts s and o' rejects s.
Then v ~ o' ¢ 1) and by Lemma 5 both accepts and. rejects s. Contra-

diction. Thus A ~ B == & so (4, B, 0) is a partition of [x]<*. By (3) we
can find o u « ) whiel is homogeneous for this partition, Le., (Vo< o)[ul”
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CA or [u*C B or [u]*C 0. Since D is closed under intersection we may
assume by Lemma 6 that % accepts or rejects each s ¢ [#]<“. Now suppose
that u rejects @ but does not reject some s e [u]” where n < w. trhen % ac-
cepts s and s ¢ A. If t e [%]" and » does not accept ¢ then u rejects ¢ and
teB. But % is homogeneons for (4, B, 0). Contradiction. Hence % ac-
cepts 1, i.e., u accepts every s e [u]". If v ¢ (@, w)* let s be the first » ele-
ments of ». Then s e [u]" s0 v ¢ (s, #)* C §, e, (@, ) C 8. But then u ac-
cepts @. Contradiction. Q.E.D.

Lemma 8. If § is d-open then there is a u e D such that [ul C S or
[u]* C [#}*~ 8.

Proof. Let ueD satisfy Lemmas 6 and 7. If u accepts @ then
[#]*C 8 and we are done. Otherwise u rejects every s e [#]<®. We claim
that [6]* ~ § = @. It not then there is a o' ¢ [u]* ~ 8. Since § is d@-open
there must be an s e [»]<° and a v « D such that v € [s, v]*C 8. But then
sCwu and (s,v*C 8 80 # o accepts s and hence w cannot reject s.
Contradiction. Q.E.D.

Leyvwa 9. If § is d-meager then there is a 4 ¢ D such that [4]* C [»]'— 8.

Proof. If § is d-nowhere dense then so is its closure S. By Lemma 8
there is a €D such that [u]*C S or [u]*C[»]*—58. Since the former
cannot occur we have [u]* C[#]'— 8. Now let (S,] a< y) be a sequence
of d-nowhere dense sets of length y < » whose union is 8, For cach a < y
choose u, ¢ D so that [u,]'C [x]*—S,. If u = (") u, then we clearly have

a<y
ueD and [#]*C[»x*—8. Q.E.D.

Lmava 10. If 8 is d-Baire then there is a w e D such that [w]*C 8 or
[w]* C [«]*— 8.

Proof. Let § = 8,48, where 8, is d-meager, 8, is d-open, and 4 is
symmetric difference. By Lemma 9 we can find a we.D such that [u]*
C[#]*— 8, and by Lemma 8 a v ¢ D such that [v]* C 8, or [0 C [x]*—8,.
It the former occurs then [u ~o]* C.§ while in the latter case [u ~ o]
C[%)*—8. Our proof is complete since 4 ~veD. QED.

Proof of Theorem 2 is now an immediate consequence of Lemma 10
since DC[«]*. QE.D.

This result may be strengthened as in Corollary 1. fr [%]* = is a Baire
Sunction if f~%(a) is Baire for each o< .

COROLLARY 2. If % is a measurable cardinal, D C [«]* is @ x-complete
normal ultrafilter and the d-topology is defined as above, w << A <5 u, v < %,
f: [#* v is a d- Baire Junction, s € [x]<° and u e D then there is a v e [u]* ~D
such that |f*(s, v = L.

Prootf. Define g on [«]* by g(v) = s U 0. We easily see that g is d-con-
tinuous 8o that f - g is d-Baire. Now (f 2 9)"Ya) is d-Baire for each a< »
so by Lemma 10 we may choose a v, € D o that [9,]*C (fog) Y(a) or

icm°
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[0 C [%*— (f o g)™a). Then v = (2.« D and is homogeneous for f o g.

a<y
It then follows that | (s, v]M] = 1. u ~ v satisfies our corollary. Q.E.D.

THEOREM 3. § 4s d-Baire if and only if for each s e[%]<® and u D
there is @ v e [ul ~ D such that [s, o' C 8 or [s, v]* C[x]*— 8 (ct. [1]).

Proof. If § is d-Baire then so is its characteristic function. Corol-
lary 2 then gives us a v e [u]* ~ D such that [s, o]} C 8 or s, v} C [«]*—8§.
Conversely if for every se[x]<® and % e D there is a » e [u]* ~ D such
that [s, 2] C § or [s, v]* C [»]*— § then § minus its interior is d-nowhere
dense making § d-Baire. Q.E.D.

‘We conclude with a word as to why in our definitions of Borel (Baire)
we used << » unions rather than < » unions. At first sight the latter
seems to be the correct generalization of the case where x — y = w;
however the following facts were pointed out in [3]. Let » be strongly
inaccessible and A = w. Then [%]* has cardinality =. Since every u e [»]*
is the intersection of x» c¢-open sets (neighborhoods in fact) this implies
that every S C[«x]* would belong to the class of sets generated from the
c-open sets by complementation and < » intersections. Then we could
not hope to obtain Theorem 1 because (as stated in [3]) every S C [x]* is
Ramsey violates the axiom of choice.
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