On the product of derivatives
by
Richard J. Fleissner (Milwaukes, Wis.)

Abstract. In this note it is shown that the product-of a continuous function of
bounded variation with a derivative is a derivative. An example is then given of a dis-
continuous funetion whose product with every derivative is a derivative.

Introduction. Let A denote the class of real-valued funections defined
on the closed interval [0,1] whose product with every derivative is
a derivative. James Foran [1] has shown that every absolutely continu-
ous function belongs to 4. In the present note, we show that A includes
all continuous funetions of bounded variation. An example of a discontinm-
ous function which belongs to A is also presented.

We recall that if — oo < F'() = f(#) < + oo for each point w ¢ [a, b],
then f(#) is Denjoy-integrable on [a, 4] in both the wide and the restricted
sense. For a proof of this, see Theorem (10.5), Saks [2, p. 235], and the
descriptive definitions of the D and D, integrals, Saks [2, p. 241]. (in
this note I will use the wide sense D-integral, although the restricted
sense Dy-integral may be used throughout.) Noting then that a function
is a derivative if, and only if, it is the derivative of its indefinite D-inte-
gral, we are ready to proceed. .

Lemma 1. If F(x) 48 @ continuous function of bounded variation on
[a, b] and g(x) is D-integrable on [a, b], then F(z)g(z) is D-integrable on
[a, b] and

{) b
(1) (D) [ F(w)g(@)do = G0)F (b)— Ga)F (a)— [ G (2)dF (z)
[

a
% b
where @(x) == (D) [ g(t)dt and [ G(x)dF (v) denotes the Lebesgue-Stieltjes
a 43
wntegral of G(x) with respect to F(w).
Proof. This is a special case of Theorem (2.5), Saks [2, p. 246].
TEmoREM. If F(2) is a continuous function of bounded variation on

[0,1] and G'(x)= g() for each x in [0, 1], then F(x)g(w) is the derivative
of its indefinite Denjoy integral on [0, 1].
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Proof. It suffices to prove the theorem in the case where H(z) is
a continuous inereasing function on [0, 1]. Given #, in [0, 1], we shall
show that
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I = i (0— ) 6(0) P (@) — 6 (20) P ()~ [ G(8)aF (1)) — T () g ()

pamgoll] Zo

exists and equals 0. It follows from this and (1) that
11111 (z—r,)

1 fI'
Adding and subtracting F'(x ,)G(xo)(m-—-wo)“l yields
L= lim (z— o) "{F (@) G- (%)—F (%) G (a0))— T (t5) g (&5)+-

=Ty

T (@) g (,)-

+ m (o—a,) *([F (@) —F (@))€ () — f G)ar ()

L2
provided both limits exist. Since F(z) is continuous a,nrl G'(@y) = g (),
lim (5— a0) 7' (F () G (2)— F () G (@) — T (#) g (@) = O .
T—Tp .
Hence, we need only show that
T
L = lim (=) ({2 (o)~ F (00) 6 (a0) — [ 6()aF (1)
XLy xy
exists and equals 0. Since F () is continuous and increasing F'(z)— I (w,)
x
= [ dF(t). Therefore, L* becomes
Zo
lim (o— )~ f(G (#)— F (%)
T
5
= lim (— )™ [ (6 (20)— G(1)) (o— ) arg— 1) A (1) .
T—To g
We mnote that (G(m)— G()(@—1)"" = g(a)--¢(t), where &()—0 as
t—ay. For & # @, leb 5(2) = sup|e(t)|, where 0 < |t—my| =< |w—m,|. Then
[2
(#) > 0 a8 © -, and if ¢ is in the interval from @y 10 %, |G ()~ G (8)] |oy— 1| ™"
< g (m)] + &(@). Hence,
x
i o—af ™ [ 16 ) — 6 (1) |a— 1]~y 14 (1)
Ty £
111n|m—m0|_1|.0 ao|{1g (@) + & ( Udlﬂ ’
L
= 1im (|g(@) + (@) P (@)~ F (o) =0 . QB.D.

T2
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If F'(x) has a bounded derivative on [0,1], then F(z) is of bounded
variation and, consequently, belongs to A. To show thas differentiability
isnot a sufficient condition, we give the following example. For # ¢ (0,13,
let

F(z) = asin(z™*), §(x) = 27 %sin(z™Y) ,

G () = 1a® cos(w fzt cos (¢
0
J (%) = @°sin (%) cos (274
and
k(@) = ba'sin (54 cos (54— 4 .
Let F(0) = G(0) = 9(0)¥F(0)!/(0)==7( 0) =0 and let %(0) = —4. Tt is

easily verified that I'(»), G(z) and J(x) ave differentiable, that g(w) is
the derivative of G (), that %(z) is continuous and is, therefore, a de-
rivative, and that J'(x)—k(z)—8F (z)g(z) = 0 for #¢(0,1]. However,
J'(0)—%(0)—8F(0)g(0) = 4. Because this function does not possess the
Darboux property, and since J'(x) and k(2) are derivatives, it follows
that F(x)g(2) cannot be a derivative.
The example of a discontinuous function which belongs to A re-
quires two lemmas.
LeMMA 2. ]ﬂm an interval I =[a,Db], let ¢= 4(a+b) and lot hi()
= 2(b—a) " w—a) if ©c[a,c] and hi(w) = —2(b— a)~(z—b) ) if we[c, b].
(Geometrically, the graph of hi(w) consists of the two equal sides of an isosceles
triangle whose base is I and whose altitude is 1.) If g(x) is D-integrable,
then g(@)hi(x) is D- mtegrable by Lemma 1. Moreover, letting G (a)

@
= (D) [g@)dt and H(w fj 1), we have
a
(2)  OWH,I)<40(6,I), where O(F,T)=sup F(a)—F(g).
afel

Proof. If @, and @, are in [a, ¢], it follows from (1) that

ay

i(]))f g (;v)hz(m)dw‘ |G (i) () —

6 () haly)— fG @)l ()|
== ‘G(wl)h;(ml)——.f(%(w) (llu(as)—f—fG(w)dhl(m)—G(mD)hI(mo)l

< @ (@) ha(y)— f P (b— )76 (2)ds]+

20— 06 (0)do— 6 ()

[

-
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= |G (@) ha(wy)— 2 (b— @) (@, — @) G ()| +

+ [2(b— a) (@ a) G (§")— G () hu(o)|
= |G (@) — G (&) [ha(my) |+ |GH(E")— G (o) | [Fa(y)]
<20(6,[a,c])

since @, @, £ and £ are in [a, ¢] and 0 < Ju(z) < 1. The demonstration
that O(H, [e, b]) <20(@, [¢, b]) is identical and, since H and @ are
continuous on I, O(H,I)<40(G,I).

LevyA 3. Let In = [an, bu)] be a sequence of closed intervals contained
n (0,1] such that

(i) U1 < b <a<bp, u=1,2,3,..,
(if) lim b, = 0,
n—oo
by— n

(iii) <R, R>0,n=1,2,3,..

by,
Let G(x) be a continuous function defined on (0, 1] such that G(0) = 0 and
G'(0) ewists. Let O(@, I)b, = e,. Then
3) lim ey =0 .
n—>00

Proof. Without loss of gemerality, G'(0)= 0. For if G(0)=h,
letting F(x) = G (z)-hw, we have that F(z) is continuous, F(0) = F'(0)
=0 and O(@, In) < O(F, In)+ O (ha, I,). But condition (iii) implies that
the lemma is true for the function f(x) = he. Therefore, proving the result
for F'(x) would give the result for G () and we may assume that G'(0) = 0.

Since G(2) is continuous on [an, bs], O(&, I,) = @ (12)— G($n), where
Ty Sy € In. Since
1im%—)=0 and ‘g@\gﬂl @< by,
20 @ n L
li 16(%) = limwz 0.
n—>00 bll_ n—>o0Q n

Hence,
G (ra)— G (sn)

lim ey = lim — 22"
N0 N—=o n

Exampre. There exists a discontinuous funetion which belongs to A.

Construction. Let [@n, ba] De a sequence of intervals which satisfy
conditions (i), (i), and (iii) of Lemma 3 and in addition satisty

(iv) lim a3 Z bi=0.

Froo i=k+1

(For example, we could let [ay, by] = [1/ (2n)!, 1/(20) ! +1/(4n)1).
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Let f(#) = Ry, (@) if 2 eI, and let f(z) = 0 if 2€[0,1]— {J I,. Then
n
f(®) is discontinuous at » = 0 since fl0)=10 and flan+b,f2) = 1.
Let g(x) be a derivative and G(z) = (D) j g(t)dé. Since G'(%) = g(x)

for all #¢[0,1], G(x) satisties the condltxons of Lemma 3.

On any interval [4, 1] wheve 6 > 0, f(2) is a continuons function of
bounded variation and, by our theorem, f(x) g(») is the derivative of its
indefinite D-integral on [d,1]. Therefore, it suffices to show that

f fla)g(»)ds exists and that

k

im 27YD) [ f(z)g(@)de = F(0)g(0) =0 .
e 5

Let Q@ =[0,1]— U (an, ba). Then @ is a closed set and flz
n

every »e€). It follows that

(4) J flo

g(z)= 0 for

z)dy = 0.

bn
It follows from condition (iv) that Y bn< oo, By (2), (D J f(@)g (%) dw)

< 40(@, I,). Let‘mng en=0(G, I,)b; ,We have by (3), that llmenz 0 and

N—>00
(5) l ff(m)g(u’c)dw! <4Esnbn< +co.
”4* n=1
Letting Ha(x) j fg@®dt, (2) implies
(6) lim O(Hy, In) < lim 40(@, I,) = 0.
n—=co N—00

By (5), (6), (7) and Theorem (5.1
on [0, 1] and

), Saks [2, p. 257], f(#)g(2) is D-integrable

1 o bn
(1) (D) [f@)g@)dw = (D) [f@)g@)as+ 3 (D) [ f(@)g(@)da
[ Q n=1 n

3
To show that lim YD) f f(@)g(x)dr = 0, we first note that if
]

h—0
hoelby, ay_,], then

!ff

clwl ]h“l(D) }Nf(m) 9(x) dm\

by
< [p3* [ f(#)g (@) dal
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since f(@)g(®)=0 on [by,ay_,] and by <h. It suffices to consider
e [ay, byl By (7),

e [1@gto)]
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0 bi h
=i Y (@) [ @)g(@)da)+1D) [ flz)g(@)o]

k=N-+1 ak

< |8 3 40(6, In| + [470(6, I)| Dy (2)

T=N-+1

= lh" 2&; Abk5k| + |40 eyl

B=NA1
<ozt Y 4bpes|+ Maztbyeyl since ay <h.
k=N+1 o
Since lim e, = 0, 4e, is eventually less than 1 and |ay* 3 4byes[—0
n—>00 o= N4-1

as N-oo by condition (iv). By condition (iii), (by— ay)(byay)* < R.
Therefore, byay'—1< byR and byay* -1 as N — oo. Hence, |[4aybyeyl —0
a8 N — oo, This completes the proof.

It is easy to show that conditions (iil) and (iv) in the definition of

=]
the I, imply that # = 0 is a point of dispersion for the set \J In. Thus,
N=1
any function constructed in this fashion will be approximately continuous.

This is in agreement with the following result. If f() is a bounded function,
a necessary and sufficient condition that f(z)g(s) be a derivative for
every bounded derivative g(x), is that f(z) be approximately continuous.
This theorem is proved in Iosifescu [3]. The example, I (x) = a*sin(z™*),
given earlier shows that this condition is not sufficient for a function
to be in A.
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