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On movability and other similar shape properties
by

Juliusz Oledzki (Warszawa)

Abstract. The hereditary shape property called the R -movability has been defined.
Some relations between the R-movability and other shape properties: the movability,
the n-movability and the A -movability have been established. There are answers the
following questions:

10 Is it true that if compacta X and ¥ are R -movable, then XoY is R-movabled
2 Is it true that if a compactum X is A-movable and B-movable then X is
AoB-.movable?

where the binary operation o is the Cartesian product or the join or the one-point union
or the topological sum.

1. Introduction. K. Borsuk introduced hereditary shape properties:
n-movability and A-movability ([3] and [4]). Let R be a family of com-
pacta. In this paper we define R-movability, which is a generalization
of those shape properties. The aim of this paper is to study the properties )
of R-movability and to determine the relations between z-movability,
A -movability, ®-movability and movability.

2. R-movability. Let A and X be compacta and let X C M ¢ AR(I).
X is said to be A -movable if for every neighborhood U of X in M there
exists a neighborhood U, of X in M such that for every neighborhood U
of X in M every map a: AT, is homotopic in U to a map with values
in U. K. Borsuk showed ([4]) that A-movability does not depend upon
the choice of a space M and that A-movability is a hereditary shape
property, i.e., if Sh(X) < Sh(Y) and ¥ is 4-movable, then X is 4-mov-
able. To generalize this property, consider a family & of compacta. A com-
pactum X C I ¢ AR(IM) is said to be R-movadble if for every neighbor-
-hood U of X in M there exists a neighborhood U, of X in M such thatb
for every neighborhood U of X in M and for every A e R every mapa:
A — U, is homotrpic in U to a map with values in U. By a slight change
in the proofs of an analogous theorem for A-movability ([4]) one
proves that :
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(2.1) The choice of the space M and the embedding of X into M are
not important for the definition of R-movability
and that :

(2.2) If X is R-movable and Sh(X) > Sh(

Tt is easy to see that

Y), then Y 48 R-movable.

@23) If a compactum X is movable, then X is K-movable for every
Sfamily R.

A compactum X lying in the Hilbert cube @ is said to be n-movable
([3], p. 859) if for every neighborhood U of X in @ there exists a neighbor-
hood U, of X in @ such that for every compactum 4 C U, with dimA < »
“and for every neighborhood U of X in @ there exists a homotopy
@: AX[0,1]-T satisfying eonditions: ¢(z,0)= o and ¢(z,1)e T for
every point # e A. Put M = @ in the definition of R-movability. Since
for every compactum A4 C @ and its neighborhood U, in @ every map
a: A - T, is homotopic in U, to an embedding of 4 into U,, we get
(2.4) If R is o family of all compacta of dimension
ability is equivalent to n-movability.

Let R and &' be families of compacta. R is said to be M -dominated
by R (R < R') if every R'-movable compactum X is also R-movable.

IR < .'K’ and R < :l{ then & and R’ are said to be M- equivalent (R 57 R').

If fammes R and J{’ consist of single elements A and A’ respectively,
~ then we write 4 < A’ (4 77 A') instead of & S R (R 5 R').

< n, then R-mov-

(2.5) TEEOREM. Let R and R' be families of compacta. If for every
. A e R there exists B e R’ such that Sh(A) < Sh(B), then .‘R TR
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Proof. Suppose that a compactum X is R'-movable and that X is

. lying in the Hilbert cube @. It is sufficient to prove that X is K-movable.
Let U be a neighborhood of X in Q. Since X is R'-movable, there exists
a neighborhood U, of X in @ such that for every B ¢ R’ and for every
map f: BT, and for every neighborhood U of X in @ there exists
@ homotopy ¢: Bx[0,1]-U satisfying the conditions: ¢(p, 0y = B(p)
and ¢(p,1) e U for every point p ¢ B. We shall show that U, satisties
the required condition in the definition of the R-movability of X. Take
4 ¢ R and a map a: 4 - U,. We can find an embedding a': A — U, such that

(2.6) a~a in T,

Let A’ = o'(4). There exists a BeR' such that Sh(B)> Sh(4)
= 8h(4'). Assume that B C N ¢ AR(). Then there exist fundamental
sequences f = {fu, 4', B}y, v and g = {ga, B, A'}y o Such that gofiy.

" Dbe defined by the formula Fy(p
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Hence for the neighborhood U, of A’ in ¢ there exists a neighborhood V,
of B in N and an integer n, such that

(2'7) gano = g'n—H]Vo in Uo ’ for

Let U be a neighborhood of X in . Since Gnolp carries B into T,
and X is R'-movable, there exists a homotopy @: Bx[0,1]—T such
that ¢(p, 0) = Jm( ) and ¢(p, 1) € U for every point p ¢ B. Define a map
F: (Bx[0,1]) v (Nx{0})»U by ] :

p(p,t) for (p,?)eBx[0,1],
Onokp)  for  (p,1) e NX{0}.

Since. Bx [0, 1] v N x {0} is 2 compactum and U is open in ¢, there
exists a neighborhood W of Bx[0,1] v ¥ x {0} in N x [0, 1] and a map
F: W—TU extending F. There exists a neighborhood V of B in N satisfying
three conditions: ¥V CV,, ¥x[0,1]CW and Fx{1})C U. Since J_° is
a fundamental sequence and § o f~ %, there exists an n; > n, such that

n=ng .

F(p,1)=

(2.8) Ju(A)CV

and

(2.9) Og oI o= id,e im T,
By (2.7) and (2.8) it follows that

(2'10) Gno °fm‘A’ = Gny °fn1!4' in v.

A')x[0,1]-U is a homotopy satisfying conditions

Fly, ot fuol
. Let Fy: f(A')»T

F(p,0)= go(p) and F(p,1) ¢ U for every P efold
=F(p, 1 Therefore

(2.11) Gno °fm,[A’gF1 ofpley m U

By (2.6), (2.9), (2.10) and (2.11), a is homotopic in T to a map with
values in U, and thus X is R-movable.
(2.12) CoroLraRY. If Sh{4) < Sh(B), then 4 <

(2.13) Examrre. Let 8§ be ¢-dimensional spheres for i=1,2,
jzl,aandletS'nS‘,~®f0r('L,]) (@'y§"). Liet A = SluSIUSzand
B=28tv §2u S8

Shapes of 4 and B are not comparable but one can easily see that
A 5 B.

If follows, by Corollary (2.12) and Example (2. 13), that the classes
of all M-equivalent compacta are larger than the classes of compacta
of the same shape and that the relation of the ‘fandamental domination
is a proper subset of the relation of M -domination, where these relations
are congidered as subsets of the family of all pairs of compacta.

.
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(2.14) Exawprr. Let & be a family of solenoids and let a
consist of a single circle S*. Then R < s {84.

Assume that a compactum XCNHN eAR(ﬂR) is 8-movable. By
Corollary (2.12), X is T-movable, where T is a solid torus. Let U be
a neighborhood of X in N. There exists a neighborhood U, of X in N
such that for every neighborhood U of X in N every map a: T'—T, is
homotopic in U to a map with values in 7. Let U be a neighborhood.
of X in N and take 8 ¢ R and 8: §—U,. The solenoid § can be described
as an intersection of a decreasing sequence of solid tori T4, ¢=1,2, ...
There exist an integer n, and a map A" l’m—-)U0 extending 8. Since g’ is
homotopic in U to a map with values in U, g is homotopie in U to such
a map. Thus X is KR-movable.

(2:15) ProBLEM. Is the family of all solenoids M -equivalent to a circle?

a family. {84}

3. Relatlons between movability, %-meovability, 4 -movability and R -mova-
bility. S. Mardeiié and J..Segal ({8], p. 651) proved the [ollowmg

(3.1) LeMmA. If X = lim {X,,, Py}, where Xn e ANR for n=1,2, ..,

then X is movable if and only if for every integer m there exisits an Ny > n
such that for every n = n there emists a map r: X, —X; satisfying the con-
dition pus ot ™ Dppg -

By a slight modification of the proof of this lemma one can easily
show the following:.

(3.2) LemMA. If X = lim{X,, p,.}, where X» ¢ ANR for n=1, 2,
and R is a family of compacta, then X is R.- mowble 'b‘f and only if for every
integer n there ewists an ny = n such that for every 1 = n and for every 4 « R
and for every map a: A—X, there ewists a map o': A= X satisfying the
condition:

(33)

?nAOa —pnﬂn°

(3.4) COROLTARY. If X =1lim(X,,p,s), where XnecANR for n

and R is o family of compacta and for almost all n and for gvery
A e R every map f:- A —X, is homotopic to a constant map, then X is
R-movable. v : ’ _

(3.8) LemwA. Let X = Hm{X,, p,.}, where Xy e ANR forn = 1,2, ...
and let R={Xn; n=1,2,.} If X is R-movable, then X is movable.

Proof. Let n be an integer. It follows by Lemma (3.2) that there
exists an n, > n guch that for every u > n and for every A ¢ R and for
every map a: A-X, there exists a map a': A—X; satisfying. condi-
tion (3.3). Let # > n. Take A = X, ¢ R and a = idy,,. Hence there exists
a map ao': X, X satisfying condition (3.3). Thus p,,, ~ Pu; 0 @’
r=a. By Lemma (3.1), X is movable. ’

=1,2,..

. Put
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(3.6) THEOREM. There exists a countable family W of polyhedra such
that W-movability is equivalent to movability.

Proof. One knows that there are only countably many homotopy
types of polyhedra. Let W consist of elements taken singly from all homo-
topy types of polyhedra. Let a compactum X be W-movable. X can be
described as an inverse limit of a sequence of polyhedra: let X
= m{W,, p,,}. Therefore, by Theorem (2.5), R = {Wa; n=1,2,..} is

I - dominated by W. Thus X is K -movable. By Lemma (3.8), X is movable.
Conversely, if X is movable, then by (2.3) X is R-movable for every
family & of compacta, in particular for W.
' (3.7) COROLLARY. There emists a compactum T such that W-morvability
is equivalent to movability.

Proof. Let W be a one-point compactification of a disjoint union
of elements of W. It is clear that the family consisting of the single ele-
ment W is M-equivalent to W.

(3.8) CorOLLARY. There exists a mazimal element (the family W of
compacta or the compactum W) in the partial ordering “<”.
. M

(3.9) ProBLEM. Does there exist, for every family R of compacta,
a compactum A such that {4} 57 RY

(3.10) THEOREM. For n=1,2,.
of polyhedra of dimension
n-movability.

.. there exists a countable family W™
< n such that W™ movability is equivalent to

Proof. There is only a countable number of homotopy types of
polyhedra of dimension < n. Let W" consist of polyhedra taken singly
from all these types. Let R be a family of all compacta of dimension < n.
By (2.4), n-movability is equivalent to R-movability. Since W"C R,
n-movability implies W movability. Assume now that X is W"-movable.
Let X CN ¢« AR(M) and let U be a neighborhood of X in . Since X is
W™ movable, there exists a neighborhood T, of X in N such that for
every neighborhood U of X in N and for every K ¢ W* and for every map
¢: KT, there exists & map ¢': K »T, satisfying the conditions:

(3.11) _ p=¢ in U and ¢E)CU.

Take A ¢ R and a map a: 4 »U, and let U be a neighborhood of X
in N. Since dimAd < n, there exist polyhedra K; for i=1,2,.., and
maps p,: Ky —XK, for 4/ > such that dimK; < » and 4 = IEJ{K“ Dk

Let the maps pi: A —K; for ¢=1,2,.. be projections such that p;
= gy o P, for i< i'. Since T, i§ open in N ¢ AR (M), there exist an in-
teger 4, and a map a: K, — U, such that oo py, =~ a
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Let K, be homotopically equivalent to K « W™ Hence there exist
maps f: K; »K and g: K—K, such that g of=~ idg, Take gp=uog.
Since X is W"-movable, there exists a ¢': K —U, satisfying (3.11). Thus
@ ofep,xdogefep, ~a in U and ¢ ofop;(4)CTU. Then X is
R-movable, and thus by (2.4) X is n-movable.

Let W™ be a one-point compactification of a disjoint union of
polyhedra belonging to W™ The family W" is M - dominated by the family
congisting of the single element W”. Combining this with Theorem 17
in [4] and with Theorem (3.10) we get the following

(3.12) CoroLrARY. The following conditions are equivalent:

(a) X is n-movable, .

(b) X 4s A-movable for every compactum A of dimension <,

(¢) X is W™ movable.

By Corollary (2.12) we can replace “dimA” by “Fd(4)” in con-
dition (b). .

(3.13) TrEOREM. If a compactum X is n-movable and Fd(X) < n,
then X is movable.

Proof. Since Fd(X) < n, there exists a compactum Y such that
Sh(Y) = Sh(X) and dim ¥ < n ([9]). Hence there exist polyhedra ¥, for
i=1,2,.. and maps p,: ¥, —¥; for 4’ >4 such that dim Y, = n for
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4=1,2,.. and Y:l‘iin{lf,.,p”;}. Y is m-movable ([3], p. 860). Then -

it follows by Theorem (3.10) that Y is W*-movable. Let R
={Y¥: i=1,2,..}. By Theorem (2.5), ¥ is R-movable. Finally, by
Lemma (3.5), ¥ is movable. Movability is a shape property ([1], p. 142),
and thus X is movable. -

It is easy to see that if a compactum X is R-movable, then X is
A-movable for every 4 ¢ R. But the converse implication fails:

(3.14) Exampre. There exist a family R of compacta and a com-
pactum X which is A-movable for every 4 e R, but is not R-movable.

Tor every natural n let T be the orientable surface with » handles.
Put R={Th: n=1,2,..} and let X be a non-movable continuum
described by K. Borsuk in:[2]. The compactum X can be obtained as an
inverse limit of a sequence {T',, p,,} satistying the condition: for n < n’
there exists a point a, e Ty for which Panlany 18 an embedding. By
Lemma, (3.5), X is not R-movable. It remains to prove that X is Ti-mov-
able for every Ty e R. Let # be an integer and let n, be greater than n
and k. Take # =n, and let « carry Ty into T,. Since the number of
handless of Ty is greater than the number of handles of T,,, «is homotopic
to & map B with values in T, —{a,}. Define o’: Ty—T; by d(a)

—1,

= pri{B(#)); thus (3.3) is satistied. By Lemma (3.2) X is Ty-movable.
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4, Some properties of R-movability.

(4.1) Examrre. For n=2,3,..., there exists a continuum X,
which is (n—1)-movable but is not n-movable.

Let Xy, be an inverse limit of a sequence {S%, p,,}, where 8% is a n-di-
mensional sphere for k =1, 2, ... and the maps py: 8% — 8%, for &' >k,
are such that |degpg,| > 1. X, is a solenoid and X, is the suspension of
& solenoid. Since the homotopy classes of the maps p,, are given, the
shape of X, is completely determined. X, is non-movable ([8], p. 652);
therefore by Theorem (3.13), X, is not n-movable. By Corollary (3.4)
and Theorem (3.10), X, is (n—1)-movable. This example is an answer
to the Problem (4.6) from [3], p. 864.

For a family R of compacta and for an arbitrary binary operation o in
the family of all compacta, the following two problems arise:

1° Is it true that if X and Y are R-movable, then X o ¥ is R-mov-
able?

2° Iy it true that if X is A-movable and B-movable, then X is
A o B-movable?

First, we are going to answer these two questions for o being the
Cartesian product. By a slight change of the proof that if X and Y are
movable, then XX ¥ is movable ([1], p. 142) one proves the following

(4.2) TomorEM. X and Y are R-movable if and only if XX Y is
R -movadle.

(4.3) CoroLLARY. X and ¥ are n-movable if and only if XX Y is °
n-movable. P

By Example (4.1), for n=1,2,... there exists a n-movable com-
pactum which is not (n-1)-movable. Therefore

(4.4) If X is n-movadle and X is m-movable, then X x Y is min(n, m)-
movable and the last number cannot be increased in general.

The statement (4.4) is an answer to Problem (1.6) from [3], p. 860.
Tt is not true that if X is A-movable and B-movable, then X is
A X B-movable.

(4.5) Bxamprm. There exists a compactum X which is §'-movable
but is not S*x S*-movable. Furthermore the non-movable compaetum
X is R-movable, where R is a family of spheres of all dimensions.

Let {%,} and {A;} be sequences of prime nwmbers greater than 1.
Let 8, and 8 be circles for k=1,2,.. and let g €8, and ay e 8.
Denote (S, % {ay}) v ({ax} X 8;) by 8 & S;. Liet 8, 0 8, for k=2,3, ...
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and 8, X 8, be pairvise-disjoint sets. Put Xy = §; X §; and Xp = 8 X §; v

n
w U 8, 8y, for n> 2. Define maps Py, p41t Xpyy =X, DY
k=2

Py y2(2) for  we S, O 8,
, £ 8 .
pn,az+1(w) = (pm ]9,,,,)(-7/’) or Ze %1 X Sl H
@ for zelUS, 8,
c k=9

where the map hn: S & 8,—~8 8, is a homeomorphism and maps
pa: 8;—8; and p,: 8;—8; are such that degps = 1, and degp,, == A, for
n=1,2,.. PUb Dpp = Punr1® e ® Py : Xy > X, for n' >n. Let
X = lim{Xn, p,,}. Let R be a family of spheres of all dimensions. We

will prove that X is K-movable. Let n be an integer and put #,= n.
Take 7 =% and amap o: §” =X, . If m > 1, then aishomotopic to a con-
stant map. Let o': 8™ — X be a constant map such that the sets p,3 o «’(8™)
and o(8™) are both included in the same component of X,. Then con-
dition (3.3) is satisfied. In the case of # = n, we put o’ = a; then con-

n
dition (3.3) is also satistied. Consider m = 1 and # >n. If a(8) C |J 8 O
)
U 8y, then define o' §*— X by () = a(z) for & ¢ S'. Thus p,a o a’ = a.
If a(8)C8,;x8;, then o is homotopic to some map a: S'—X, with
values in 8, & 8;. Then define o: 8'->X; by o(w)=h;*d(a). Thus
Ppncd =a~a and by Lemma (3.2), X iz K-movable. We will now
prove that X is not S8'x 8'-movable. Put » =1 and for =,z 1 put
i = ny+1. Let a map a: §'x §— X, be an embedding; then o(8*x 8%
" =8,%8;. Assume that a map a’s S*x 8= X, ,,. Since §*x & is con-
¥ no+1
nected, o'(§'x 8)C 8, x 8] or «'(§*x 8YC Y 8, O 8;. In the first case,
k=2
since ,, and 1, are greater than 1, p,, o a and Prmgs1 © ¢ are not homo-
topic. In the second case, py; o a'(§*x 8) C 8, & 8, & 8, 8;. But p,,, o a
is homotopic to no map with values in a proper subset of 8, x &;. By
Lemma (3.2) we infer that X is not §'x §-movable. Thus X is non-
movable. Since X is R-movable, X is 8”-movable for n =1, 2, ... Ix-
ample (4.5) is an answer to Problem 19 from [4].

Now consider the join of two spaces as the operation o. The join X« X
of two compacta X,Y is the quotient space (X x ¥ x [0, 11)e, where
G is the decomposition of X' x ¥ x[0,1] into sets-of the form {a} x
X ¥ % {1} or X'x {b} x {0} (where @ ¢ X and b ¢ ¥) and into single points.
The shape of X * ¥ depends only upon Sh(X) and Sh(Y) ([10], p. 8o4).

In general for the operation of the join the answers to questions 1°
and 2° are negative. Indeed, the join § % 8% of a solenoid § and @ n-di-
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mensional sphere S8 (i.e., the space X, in Example (4.1)) is not movable.
S % 8™ is a inverse limit of a sequence of n--2-dimensional spheres. By
Lemma (3.5) § * 87 is not §***-movable, while by Corollary (3.4) § and 8™
are 8™T2-movable. Also it is easy to see that the join A * B of two two-
point spaces A and B is a circle §*. By Corollary (3.4) & solenoid is A-mov-
able and B-movable, but is not S*-movable.

(4.6) THEOREM. Let R be a family of compacta such that if A « R and
a compactum B is the closure of an open subset of A, then B ¢ R. If compacia
X and Y are R-movable, then the join X = ¥ is K-movable.

Proof. Let @ and Q' be the Hilbert cubes. Assume that X CQ and
YCQ. M=Q+Q ¢AR ([10], p. 854). Let U be a neighborhood of
X % Y in M. There exists a neighborhood U of X in @ and a neighbor-
hood UZ? of ¥ in Q' and a number & e (0, 1] such that the sets U+ U”
={{(z,y,t)]e M;2e U,ye T, K(U, &)= {{(2,y,)]e MxeU,yeq,
1—e<t<1}and K'(T% ) = {[(@,y,0)] e M; v @, ye U? 0 <t< e} are
subset of U.

Since X and Y are R-movable, for U and U* there exist neighbor-
hoods: U2 of X in @ and UZ of ¥ in @' satisfying rvequired conditions of
the definition of the R-movability. The set U, = K (U}, &) v K'(Ug, &) v
O Usx U2x[0,1]¢ is a neighborhood of X+ ¥ in M ([10], p. 854).
Let T be a neighborhood of X # ¥ in M. There exists a neighborhood U
of X in § and a neighborhood U? of Y in @' such that U« U?C U. Take
AeR and a map a: A-T,. The sets B=a (U;x UgX (e, 1)) and
B = o (Uix U:x [0, 1—e)g) belong to K. Let & map p: QXX
X (0, 1],¢ be defined by py(l(z, ¥, t])=2 for [(z,y,9)]e@xQ X (0, 1]
and let & map pa: @ X Q' X[0,1)e be defined by py[(#, y,0)])=y for

@, 9,11 €@XQ X0, 1)g-

. 7%@%}1@ maps: f: B—/>U0 by B(b) = py(a(b)) for beB and B B'—on-
by B'(b) = pa(a(b)) for @ « B’ Since X and ¥ are R-movable, there exists
a homotopy F: Bx[0,1]-U" satisfying conditions: (b, 0) = B(b) anc}-
F(b,1)e U* for beB and there exists a homotopy F': B'X[0,1] —>'U‘
satistying conditions: F'(b, 0) = §'(b) and F'(b,1) e U* for b ¢ B'. Define
a map g: Mo[0,1] by gl®,9,0)=1 for [(m,y,0]e M =QxQ X
%[0, 1))e. For se[0,1] let & map ¢s: [0,1]-[0,1] be defined Dby:

[0 for 0<t< s,

| 3t—8 i
@slt) = i 375 for fs<ti<l—3s,

|1 for 1—ls<t<1.
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Define a homotopy H: A4 X[0,1]-U by the formula:

[9:(a(a)), pa{a(@)), gus o q(a(a))] I 0<s<$and
0< gla(a) <1,
a(a) if 0<s<}and

g(a(a)) =0 or 1,
31<s$=<1 and
< .(l(a(a'))< %y

[#(a, 25—1), F'(a, 25—1), g, o gla(a))] it

{F(a,25—1)}x Q' x {1} if f<ss1 and
gf(a(@)= ,
QX {I'(a, 2s—1)} x {0} if f<s=<1 and

cgla(a)) < §.
This homotopy satisties conditions: H(a, 0) = a(a) and H(a , 1) e Uty 02
C U for every acA, Thus X * Y is R-movable.
(4.7) CoROLLARY. If the compacta X and ¥ are n-movable, then the
join X % Y is n-movable. '
P_roof. n-movability is equivalent to R-movability, where R is
@ family of all compacta of the dimension < (cf. (2.4)). If 4 ¢ R and

icm

@ compactum B C A, then dimB <t n, then B e R. Hence R satisties the

assumption of Theorem (4.6).

) (4.8) BExampre. There exist compacta X%, X% A' and A° such that
X X = {m}, A~ A= {ap}, X' is AU A% movable and X* U X° is
A*movable for ¢ =1,2 but X* U X2 is not 4w 4% movable.

~ The main idea of this example is due C. Cox [B]. Let ¢ =1, 2. Let
{41} be sequences of prime number different from 1. For J = 1,2,
'Ie.t 8} be p'fmirwise. disjoint %-dimensional spheres, except the pair 8%, 87
with the point a, in common. Let f}: 87 -9 be a map such that degfi= Al
E 1, 7 i :
and fia,) = a, for j =1, 2, ... and let Bi: 8L, 8 be a homeomorphism
for k=1,2,.. T i (st ine pf, .. Xi [é

» 2, . Put X7 1:91 8j. Define pl,,,;: Xi  »Xi by

W) - for  weSt,

I
1, | .
Prna(®) = i @ for @elsi,
k=2
{

Biz)  for we 8.,
i — mt i r . N
Let pry=piugioopi_ i, for n<a' and Dn = idgt . Put X
“n

= lim{X?%, p2 1. Let n be an integer and put n, = n. Let 7 > n. Define

2 map o' X} X% by

no .
rim) =% . for @ ekszzs;;,
(h)™Mx) for ge St
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Then pi; o+ = idyt = pi,,. By Lemma (3.1) X’ is movable; then
Xt is B-movable for every compactum B. Let A'= S and A= &2,
It is easy to see that a compactum X = X'u X2 is A'movable and
A*-movable. It remains to prove that X is not S! v S§2-movable. Let
StuSi=A, We have X = PEH{X"’ Gy}, Where X, = XL U X2 and
Guu(®) = DLp(w) for @« Xi. Take n=1 and let ny=1. Put 4= n,+1
and let a: A—X, be an inclusion map. Take a map a': -4 -X, .,. For
i=1,2, 8 is reeled (-..-A% ) times in 8! by pi, o «. Since 4 is
connected, a'(4) is contained in some component of X, .. If o’(4) C 8}
for k > 1, then o'l for j £ 4 is homotopic to a constant map. If a'(4)
C 8w 82, then for ¢ =1, S¢ is reeled A*times in 87 by o« for some inte-
ger 1% Since A%, >1, 4 .. -2, and A}- ..-AL-A' are different. Thus
D1, © @ a0d py3 0 ¢’ are not homotopic. By Lemma (3.2), X is not 4' v 4>
movable.

(4.9) TuEOREM. If every component of a compactum X is R-movable,
then X is R-movable.

Proof. Assume that X CN ¢ AR(M). Let U be a neighborhood
of X in N. As in the proof of a similar theorem for movability ([1], p. 140)
we can choose a finite system of components X, ..., X, of X and pairwise
disjoint open sets Uy, ..., U, satisfying three conditions:

U; is a neighborhood of X; in N for i=1,2,..,%n,

U,= U U; is a neighborhood of X in W,

i=1

for i=1,2,...,n, for every neighborhood U; of X;in N and for every
A e R every map a,: A ~T,;is homotopic in U to a map with values in Us.

Let U be a neighborhood of X in N and take 4 ¢ R and a map
a: A—=T,. Put 4;= ¢ }(Us). Define a: A -T; for i=1,2,..,% by

a(x)

@y for

for zedq,

aile) = # ¢ A¢, where o is a fixed point of X;.

For i=1,2,..,n, let Hi: Ax[0,1]-T be a homotopy such that
Hila, 0) = ai{a) and Hyfa, 1) e U for every a e A. Define H: 4 X [0, 1] -U
by H(a,t)= Hya,t) for acd; H{a,0)= ala) and H(e,1)eU for
every a e A, then X is R-movable.

On the other hand, it is not true that if X is &-movable, then-every
component of X is R-movable. There exists a movable compactum with
a solencid as a component (K. Borsuk’s Example [1], p. 140, also the
compactum X* in Hxample (4.8)). As in Example (£.8), for every com-
pactum X which is not R-movable one can construct an K -movable
compactum ¥ with X as a component.
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(4.10) TEEOREM. If R is a family of all componenis of a compactum A,
then {A} and R are M -equivalent.

Proof. Assume that X C N ¢ AR (). Let U, U, and U be neighbor-
hoods of X in N. Assume that a map a: 4 -T, and that for every B <R
there exists a homotopy ¢s: Bx[0,1]—-U such that gg(a, 0)= a(a)
and pgp(a;1) e U for every a e B. Since a component B is closed in 4
and U is open’in N, a homotopy ¢z can be extend over a set B’ [0, 1]
such that B’ is a closed-open neighborhood of B. As in the proof of
Theorem (4.9), one can choose a finite system of components By, ..., B,
such that the sets By, ..., B;, constructed for them are pairwise disjoint

n
and U Bj; = A.Define a homotopy H: Ax [0,1]1-U by H(a, t) = ¢z(a, t)

for 1oz]eB;; then H(a,0) = a(a) and H(a,1)e U for every aeA. Con-
versely, assume that B ¢ R, a map f: B—~U, a,Pd that every map a: A -U,
is homotopic in U to a map with values in U. There exists a closed-open
neighborhood B’ of B in A and a map f': B’ » U, extending 5. Let u, ¢ U,,
and define a: 4 -U, by

f'(a) for aeB,

aae)=
U, for ae¢d—B'.

Terefore, f = o|z is homotopic in U to a map with values in T,

Thus 4-movability and R-movability are equivalent. '
The notion of n-movability has recently been studied by Kodama
and Watanabe and by Kozlowski and Segal (see [6] and [7]). They obtained
independently the following results contained in the present paper:
Theorems (3.6), (3.10) and (3.13), Example (4.1) and Corollary (4.3).
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