

On movability and other similar shape properties

bу

Juliusz Olędzki (Warszawa)

Abstract. The hereditary shape property called the $\mathcal R$ -movability has been defined. Some relations between the $\mathcal R$ -movability and other shape properties: the movability, the n-movability and the A-movability have been established. There are answers the following questions:

- 1º Is it true that if compacta X and Y are R-movable, then $X \circ Y$ is R-movable?
- 2º Is it true that if a compactum X is A-movable and B-movable then X is $A \circ B$ -movable?

where the binary operation \circ is the Cartesian product or the join or the one-point union or the topological sum.

- 1. Introduction. K. Borsuk introduced hereditary shape properties: n-movability and A-movability ([3] and [4]). Let \mathcal{R} be a family of compacta. In this paper we define \mathcal{R} -movability, which is a generalization of those shape properties. The aim of this paper is to study the properties of \mathcal{R} -movability and to determine the relations between n-movability, A-movability, \mathcal{R} -movability and movability.
- 2. \mathcal{R} -movability. Let A and X be compacta and let $X \subset M$ ϵ $AR(\mathfrak{M})$. X is said to be A-movable if for every neighborhood U of X in M there exists a neighborhood U_0 of X in M such that for every neighborhood \widehat{U} of X in M every map α : $A \to U_0$ is homotopic in U to a map with values in \widehat{U} . K. Borsuk showed ([4]) that A-movability does not depend upon the choice of a space M and that A-movability is a hereditary shape property, i.e., if $Sh(X) \leq Sh(Y)$ and Y is A-movable, then X is A-movable. To generalize this property, consider a family \mathcal{R} of compacta. A compactum $X \subset M$ ϵ $AR(\mathfrak{M})$ is said to be \mathcal{R} -movable if for every neighborhood U of X in M there exists a neighborhood U_0 of X in M such that for every neighborhood \widehat{U} of X in M and for every $A \in \mathcal{R}$ every map α : $A \to U_0$ is homotopic in U to a map with values in \widehat{U} . By a slight change in the proofs of an analogous theorem for A-movability ([4]) one proves that

(2.1) The choice of the space M and the embedding of X into M are not important for the definition of \mathcal{R} -movability and that

(2.2) If X is R-movable and $\mathrm{Sh}(X) \geqslant \mathrm{Sh}(Y)$, then Y is R-movable. It is easy to see that

(2.3) If a compactum X is movable, then X is \mathcal{R} -movable for every family \mathcal{R} .

A compactum X lying in the Hilbert cube Q is said to be n-movable ([3], p. 859) if for every neighborhood U of X in Q there exists a neighborhood U_0 of X in Q such that for every compactum $A \subset U_0$ with $\dim A \leqslant n$ and for every neighborhood \hat{U} of X in Q there exists a homotopy $\varphi \colon A \times [0,1] \to U$ satisfying conditions: $\varphi(x,0) = x$ and $\varphi(x,1) \in \hat{U}$ for every point $x \in A$. Put M = Q in the definition of \mathcal{R} -movability. Since for every compactum $A \subset Q$ and its neighborhood U_0 in Q every map $a \colon A \to U_0$ is homotopic in U_0 to an embedding of A into U_0 , we get

(2.4) If \mathcal{R} is a family of all compacts of dimension $\leq n$, then \mathcal{R} -movability is equivalent to n-movability.

Let $\mathcal R$ and $\mathcal R'$ be families of compacta. $\mathcal R$ is said to be M-dominated by $\mathcal R'$ ($\mathcal R \leqslant \mathcal R'$) if every $\mathcal R'$ -movable compactum X is also $\mathcal R$ -movable. If $\mathcal R \leqslant \mathcal R'$ and $\mathcal R' \leqslant \mathcal R$, then $\mathcal R$ and $\mathcal R'$ are said to be M-equivalent ($\mathcal R$ \overline{M} $\mathcal R'$). If families $\mathcal R$ and $\mathcal R'$ consist of single elements A and A' respectively, then we write $A \leqslant A'$ ($A \ \overline{M} \ A'$) instead of $\mathcal R \leqslant \mathcal R'$ ($\mathcal R \ \overline{M} \ R'$).

(2.5) THEOREM. Let \mathcal{R} and \mathcal{R}' be families of compacta. If for every $A \in \mathcal{R}$ there exists $B \in \mathcal{R}'$ such that $Sh(A) \leq Sh(B)$, then $\mathcal{R} \leq \mathcal{R}'$.

Proof. Suppose that a compactum X is \mathcal{R}' -movable and that X is lying in the Hilbert cube Q. It is sufficient to prove that X is \mathcal{R} -movable. Let U be a neighborhood of X in Q. Since X is \mathcal{R}' -movable, there exists a neighborhood U_0 of X in Q such that for every $B \in R'$ and for every map $\beta \colon B \to U_0$ and for every neighborhood \hat{U} of X in Q there exists a homotopy $\varphi \colon B \times [0,1] \to U$ satisfying the conditions: $\varphi(p,0) = \beta(p)$ and $\varphi(p,1) \in \hat{U}$ for every point $p \in B$. We shall show that U_0 satisfies the required condition in the definition of the \mathcal{R} -movability of X. Take $A \in \mathcal{R}$ and a map $\alpha \colon A \to U_0$. We can find an embedding $\alpha' \colon A \to U_0$ such that

$$(2.6) a \simeq a' in U.$$

Let A' = a'(A). There exists a $B \in \mathcal{R}'$ such that $\mathrm{Sh}(B) \geqslant \mathrm{Sh}(A) = \mathrm{Sh}(A')$. Assume that $B \subseteq N \in \mathrm{AR}(\mathfrak{M})$. Then there exist fundamental sequences $\underline{f} = \{f_n, A', B\}_{Q,N}$ and $\underline{g} = \{g_n, B, A'\}_{N,Q}$ such that $\underline{g} \circ \underline{f} \simeq \underline{i}_{A'}$.

Hence for the neighborhood U_0 of A' in Q there exists a neighborhood V_0 of B in N and an integer n_0 such that

$$(2.7) \hspace{1cm} g_n|_{\mathcal{V}_0} \simeq g_{n+1}|_{\mathcal{V}_0} \quad \text{in} \quad U_0 \;, \quad \text{for} \quad n \geqslant n_0 \;.$$

Let \hat{U} be a neighborhood of X in Q. Since $g_{n_0|B}$ carries B into U_0 and X is E'-movable, there exists a homotopy $\varphi \colon B \times [0,1] \to U$ such that $\varphi(p,0) = g_{n_0}(p)$ and $\varphi(p,1) \in \hat{U}$ for every point $p \in B$. Define a map $F \colon (B \times [0,1]) \cup (N \times \{0\}) \to U$ by

$$F(p,t) = egin{cases} arphi(p,t) & ext{for} & (p,t) \in B imes [0,1] \ g_{no}(p) & ext{for} & (p,t) \in N imes \{0\} \ . \end{cases}$$

Since $B \times [0,1] \cup N \times \{0\}$ is a compactum and U is open in Q, there exists a neighborhood W of $B \times [0,1] \cup N \times \{0\}$ in $N \times [0,1]$ and a map $\overline{F} \colon W \to U$ extending F. There exists a neighborhood V of B in N satisfying three conditions: $V \subset V_0$, $V \times [0,1] \subset W$ and $\overline{F}(V \times \{1\}) \subset \widehat{U}$. Since \underline{f} is a fundamental sequence and $\underline{g} \circ \underline{f} \simeq \underline{i}_{A'}$, there exists an $n_1 \geq n_0$ such that

$$(2.8) f_{n_1}(A') \subset V$$

and

$$(2.9) g_{n_1} \circ f_{n_1}|_{\mathcal{A}'} \simeq \mathrm{id}_{\mathcal{A}'} \quad \text{in} \quad U.$$

By (2.7) and (2.8) it follows that

$$(2.10) g_{n_0} \circ f_{n_1}|_{A'} \simeq g_{n_1} \circ f_{n_2}|_{A'} in U.$$

 $\overline{F}|_{f_{n_1}(A')\times[0,1]}\colon f_{n_2}(A')\times[0,1]\to U$ is a homotopy satisfying conditions $\overline{F}(p,0)=g_{n_0}(p)$ and $\overline{F}(p,1)\in \widehat{U}$ for every $p\in f_{n_1}(A')$. Let $\overline{F}_1\colon f_{n_1}(A')\to U$ be defined by the formula $\overline{F}_1(p)=\overline{F}(p,1)$. Therefore

$$(2.11) g_{n_0} \circ f_{n_1}|_{\mathcal{A}'} \simeq \overline{F}_1 \circ f_{n_1}|_{\mathcal{A}'} in U.$$

By (2.6), (2.9), (2.10) and (2.11), a is homotopic in U to a map with values in \hat{U} , and thus X is \mathcal{R} -movable.

(2.12) COROLLARY. If $Sh(A) \leq Sh(B)$, then $A \leq B$.

(2.13) Example. Let S_j^i be i-dimensional spheres for i=1,2, j=1,2 and let $S_j^i \cap S_{j'}^{i'} = \emptyset$ for $(i,j) \neq (i',j')$. Let $A = S_1^1 \cup S_2^1 \cup S_2^1$ and $B = S_1^1 \cup S_1^2 \cup S_2^2$.

Shapes of A and B are not comparable but one can easily see that $A \ \overline{M} \ B$.

If follows, by Corollary (2.12) and Example (2.13), that the classes of all M-equivalent compacta are larger than the classes of compacta of the same shape and that the relation of the fundamental domination is a proper subset of the relation of M-domination, where these relations are considered as subsets of the family of all pairs of compacta.

182

(2.14) Example. Let \mathcal{R} be a family of solenoids and let a family $\{S^1\}$ consist of a single circle S^1 . Then $\mathcal{R} \leq \{S^1\}$.

Assume that a compactum $X \subseteq N \in AR(\mathfrak{M})$ is S^1 -movable. By Corollary (2.12), X is T-movable, where T is a solid torus. Let U be a neighborhood of X in N. There exists a neighborhood U_0 of X in N such that for every neighborhood \hat{U} of X in N every map $\alpha \colon T \to U_0$ is homotopic in U to a map with values in \hat{U} . Let \hat{U} be a neighborhood of X in N and take $S \in \mathcal{R}$ and $\beta \colon S \to U_0$. The solenoid S can be described as an intersection of a decreasing sequence of solid tori T_i , i=1,2,...There exist an integer n_0 and a map β' : $T_{n_0} \to U_0$ extending β . Since β' is homotopic in U to a map with values in \hat{U} , β is homotopic in U to such a map. Thus X is \mathcal{R} -movable.

- (2.15) PROBLEM. Is the family of all solenoids M-equivalent to a circle?
- 3. Relations between movability, n-movability, A-movability and R-movability. S. Mardešić and J. Segal ([8], p. 651) proved the following
- (3.1) LEMMA. If $X = \lim \{X_n, p_{nn'}\}$, where $X_n \in ANR$ for n = 1, 2, ...,then X is movable if and only if for every integer n there exists an $n_0 \geqslant n$ such that for every $\hat{n} \ge n$ there exists a map $r: X_{n_0} \to X_{\hat{n}}$ satisfying the condition $p_{n\hat{n}} \circ r \simeq p_{nn_0}$.

By a slight modification of the proof of this lemma one can easily show the following:

(3.2) LEMMA. If $X = \lim\{X_n, p_{nn'}\}$, where $X_n \in ANR$ for n = 1, 2, ...and R is a family of compacta, then X is R-movable if and only if for every integer n there exists an $n_0 \geqslant n$ such that for every $\hat{n} \geqslant n$ and for every $A \in \mathcal{R}$ and for every map $a: A \to X_{n_0}$ there exists a map $a': A \to X_{\hat{n}}$ satisfying the condition:

$$(3.3) p_{n\hat{n}} \circ \alpha' \simeq p_{nn_0} \circ \alpha.$$

(3.4) Corollary. If $X = \lim_{\leftarrow} \{X_n, p_{nn}\}$, where $X_n \in \text{ANR}$ for n= 1, 2, ... and R is a family of compacta and for almost all n and for every $A \in \mathcal{R}$ every map $f: A \to X_n$ is homotopic to a constant map, then X is R-movable.

(3.5) LEMMA. Let $X = \lim \{X_n, p_{nn'}\}$, where $X_n \in ANR$ for n = 1, 2, ...and let $\mathcal{R} = \{X_n; n = 1, 2, ...\}$. If X is \mathcal{R} -movable, then X is movable.

Proof. Let n be an integer. It follows by Lemma (3.2) that there exists an $n_0 \ge n$ such that for every $\hat{n} \ge n$ and for every $A \in \mathcal{R}$ and for every map $\alpha: A \to X_{n_0}$ there exists a map $\alpha': A \to X_n$ satisfying condition (3.3). Let $\hat{n} \ge n$. Take $A = X_{n_0} \in \mathcal{R}$ and $\alpha = \mathrm{id}_{X_{n_0}}$. Hence there exists a map α' : $X_{n_0} \to X_{\widehat{n}}$ satisfying condition (3.3). Thus $p_{nn_0} \simeq p_{n\widehat{n}} \circ \alpha'$. Put r = a'. By Lemma (3.1), X is movable.

(3.6) THEOREM. There exists a countable family W of polyhedra such that W-movability is equivalent to movability.

Proof. One knows that there are only countably many homotopy types of polyhedra. Let W consist of elements taken singly from all homotopy types of polyhedra. Let a compactum X be w-movable. X can be described as an inverse limit of a sequence of polyhedra: let X $=\lim\{W_n,\,p_{nn'}\}.$ Therefore, by Theorem (2.5), $\mathfrak{K}=\{W_n;\,n=1,2,\ldots\}$ is M-dominated by W. Thus X is R-movable. By Lemma (3.5), X is movable.

Conversely, if X is movable, then by (2.3) X is \Re -movable for every family R of compacta, in particular for W.

(3.7) COROLLARY. There exists a compactum W such that W-movability is equivalent to movability.

Proof. Let W be a one-point compactification of a disjoint union of elements of W. It is clear that the family consisting of the single element W is M-equivalent to W.

- (3.8) COROLLARY. There exists a maximal element (the family W of compacta or the compactum W) in the partial ordering "\sec".
- (3.9) Problem. Does there exist, for every family & of compacta, a compactum A such that $\{A\} \equiv \Re$?
- (3.10) Theorem. For n=1,2,... there exists a countable family \mathfrak{W}^n of polyhedra of dimension $\leq n$ such that \mathfrak{W}^n -movability is equivalent to n-movability.

Proof. There is only a countable number of homotopy types of polyhedra of dimension $\leq n$. Let \mathbb{W}^n consist of polyhedra taken singly from all these types. Let \mathcal{R} be a family of all compacts of dimension $\leq n$. By (2.4), n-movability is equivalent to \mathcal{R} -movability. Since $\mathcal{W}^n \subset \mathcal{R}$, n-movability implies \mathfrak{W}^n -movability. Assume now that X is \mathfrak{W}^n -movable. Let $X \subset N \in AR(\mathfrak{M})$ and let U be a neighborhood of X in N. Since X is \mathfrak{W}^n -movable, there exists a neighborhood U_0 of X in N such that for every neighborhood \hat{U} of X in N and for every $K \in \mathbb{W}^n$ and for every map $\varphi \colon K \to U_0$ there exists a map $\varphi' \colon K \to U_0$ satisfying the conditions:

$$(3.11) \varphi \simeq \varphi' \quad \text{in } U \quad \text{and} \quad \varphi'(K) \subset \hat{U}.$$

Take $A \in \mathcal{R}$ and a map $\alpha: A \to U_0$ and let \hat{U} be a neighborhood of Xin N. Since dim $A \leq n$, there exist polyhedra K_i for i = 1, 2, ..., and maps $p_{ii'}: K_{i'} \to K_i$ for i' > i such that $\dim K_i \leqslant n$ and $A = \lim \{K_i, p_{ii'}\}$. Let the maps p_i : $A \to K_i$ for i = 1, 2, ... be projections such that p_i $=p_{ii'} \circ p_{i'}$ for i < i'. Since U_0 is open in $N \in AR(\mathfrak{M})$, there exist an integer i_0 and a map \overline{a} : $K_{i_0} \to U_0$ such that $\overline{a} \circ p_{i_0} \simeq a$.

Let K_{i_n} be homotopically equivalent to $K \in \mathbb{W}^n$. Hence there exist maps $f \colon K_{i_0} \to K$ and $g \colon K \to K_{i_0}$ such that $g \circ f \simeq \mathrm{id}_{K_{i_0}}$. Take $\varphi = \overline{a} \circ g$. Since X is \mathbb{W}^n -movable, there exists a φ' : $K \to U_0$ satisfying (3.11). Thus $\varphi' \circ f \circ p_{i_0} \simeq \overline{a} \circ g \circ f \circ p_{i_0} \simeq a$ in U and $\varphi' \circ f \circ p_{i_0}(A) \subset \hat{U}$. Then X is \mathcal{R} -movable, and thus by (2.4) X is n-movable.

Let W^n be a one-point compactification of a disjoint union of polyhedra belonging to W^n . The family W^n is M-dominated by the family consisting of the single element W^n . Combining this with Theorem 17 in [4] and with Theorem (3.10) we get the following

(3.12) COROLLARY. The following conditions are equivalent:

(a) X is n-movable,

184

- (b) X is A-movable for every compactum A of dimension $\leq n$,
- (c) X is W^n -movable.

By Corollary (2.12) we can replace "dim A" by "Fd(A)" in condition (b).

(3.13) THEOREM. If a compactum X is n-movable and $\operatorname{Fd}(X) \leq n$. then X is movable.

Proof. Since $\operatorname{Fd}(X) \leq n$, there exists a compactum Y such that Sh(Y) = Sh(X) and dim $Y \leq n$ ([9]). Hence there exist polyhedra Y_i for i=1,2,... and maps $p_{ii'}: Y_{i'} \rightarrow Y_i$ for i'>i such that dim $Y_i \leqslant n$ for i = 1, 2, ... and $Y = \lim \{Y_i, p_{ii'}\}$. Y is n-movable ([3], p. 860). Then it follows by Theorem (3.10) that Y is \mathbb{W}^n -movable. Let \mathcal{R} $= \{Y_i: i = 1, 2, ...\}$. By Theorem (2.5), Y is \mathcal{R} -movable. Finally, by Lemma (3.5), Y is movable. Movability is a shape property ([1], p. 142), and thus X is movable.

It is easy to see that if a compactum X is \mathcal{R} -movable, then X is A-movable for every $A \in \mathcal{R}$. But the converse implication fails:

(3.14) Example. There exist a family R of compacta and a compactum X which is A-movable for every $A \in \mathcal{R}$, but is not \mathcal{R} -movable.

For every natural n let T_n be the orientable surface with n handles. Put $\mathcal{R} = \{T_n: n = 1, 2, ...\}$ and let X be a non-movable continuum described by K. Borsuk in [2]. The compactum X can be obtained as an inverse limit of a sequence $\{T_n, p_{nn'}\}$ satisfying the condition: for $n \leq n'$ there exists a point $a_n \in T_n$ for which $p_{nn'|p_{nn'}(a_n)}$ is an embedding. By Lemma (3.5), X is not \mathcal{R} -movable. It remains to prove that X is T_k -movable for every $T_k \in \mathcal{R}$. Let n be an integer and let n_0 be greater than n and k. Take $\hat{n} \ge n_0$ and let α carry T_k into T_{n_0} . Since the number of handless of T_k is greater than the number of handles of T_{n_0} , α is homotopic to a map β with values in $T_{n_0} - \{a_{n_0}\}$. Define $\alpha' : T_k \to T_{\widehat{n}}$ by $\alpha'(x)$ $=p_{n_0}^{-1}(\beta(x));$ thus (3.3) is satisfied. By Lemma (3.2) X is T_k -movable.

4. Some properties of R-movability.

(4.1) Example. For n=2,3,..., there exists a continuum X_n which is (n-1)-movable but is not n-movable.

Let X_n be an inverse limit of a sequence $\{S_k^n, p_{kk'}\}$, where S_k^n is a n-dimensional sphere for k = 1, 2, ... and the maps $p_{kk'}: S_{k'}^n \to S_k^n$, for k' > k, are such that $|\deg p_{kk'}| > 1$. X_1 is a solenoid and X_2 is the suspension of a solenoid. Since the homotopy classes of the maps $p_{kk'}$ are given, the shape of X_n is completely determined. X_n is non-movable ([8], p. 652); therefore by Theorem (3.13), X_n is not n-movable. By Corollary (3.4) and Theorem (3.10), X_n is (n-1)-movable. This example is an answer to the Problem (4.6) from [3], p. 864.

For a family R of compacta and for an arbitrary binary operation o in the family of all compacta, the following two problems arise:

1° Is it true that if X and Y are R-movable, then $X \circ Y$ is R-movable?

2° Is it true that if X is A-movable and B-movable, then X is $A \circ B$ -movable?

First, we are going to answer these two questions for o being the Cartesian product. By a slight change of the proof that if X and Y are movable, then $X \times Y$ is movable ([1], p. 142) one proves the following

- (4.2) THEOREM. X and Y are R-movable if and only if $X \times Y$ is R-movable.
- (4.3) COROLLARY. X and Y are n-movable if and only if $X \times Y$ is n - movable.

By Example (4.1), for n = 1, 2, ... there exists a n-movable compactum which is not (n+1)-movable. Therefore

(4.4) If X is n-movable and Y is m-movable, then $X \times Y$ is $\min(n, m)$ movable and the last number cannot be increased in general.

The statement (4.4) is an answer to Problem (1.6) from [3], p. 860. It is not true that if X is A-movable and B-movable, then X is $A \times B$ - movable.

(4.5) Example. There exists a compactum X which is S^1 -movable but is not $S^1 \times S^1$ -movable. Furthermore the non-movable compactum X is \mathcal{R} -movable, where \mathcal{R} is a family of spheres of all dimensions.

Let $\{\lambda_k\}$ and $\{\lambda_k'\}$ be sequences of prime numbers greater than 1. Let S_k and S_k' be circles for k = 1, 2, ... and let $a_k \in S_k$ and $a_k' \in S_k'$. Denote $(S_k \times \{a_k'\}) \cup (\{a_k\} \times S_k')$ by $S_k \stackrel{\cdot}{\cup} S_k'$. Let $S_k \stackrel{\cdot}{\cup} S_k'$, for k = 2, 3, ...

and $S_1 \times S_1'$ be pairvise disjoint sets. Put $X_1 = S_1 \times S_1'$ and $X_n = S_1 \times S_1' \cup \bigcup_{k=2}^n S_k \dot{\cup} S_k'$ for $n \geq 2$. Define maps $p_{n,n+1}$: $X_{n+1} \to X_n$ by

$$p_{n,n+1}(x) = egin{cases} h_{n+1}(x) & ext{for} & x \in S_{n+1} \mathrel{\dot{\circ}} S'_{n+1} \;, \ (p_n,p'_n)(x) & ext{for} & x \in S_1 imes S'_1 \;, \ x & ext{for} & x \in \bigcup_{k=2}^n S_k \mathrel{\dot{\circ}} S'_k \;, \end{cases}$$

where the map $h_n: S_n \cup S'_n \to S_1 \cup S_1$ is a homeomorphism and maps $p_n: S_1 \to S_1$ and $p'_n: S'_1 \to S'_1$ are such that $\deg p_n = \lambda_n$ and $\deg p'_n = \lambda'_n$ for $n=1,2,\ldots$ Put $p_{nn'}=p_{n,n+1}\circ\ldots\circ p_{n'-1,n'}\colon\ X_{n'}\to X_n$ for n'>n. Let $X = \lim \{X_n, p_{nn'}\}$. Let \mathcal{R} be a family of spheres of all dimensions. We will prove that X is \mathcal{R} -movable. Let n be an integer and put $n_0 = n$. Take $\hat{n} \ge n$ and a map $\alpha: S^m \to X_{na}$. If m > 1, then α is homotopic to a constant map. Let $\alpha': S^m \to X_{\widehat{n}}$ be a constant map such that the sets $p_{n\widehat{n}} \circ \alpha'(S^m)$ and $\alpha(S^m)$ are both included in the same component of X_n . Then condition (3.3) is satisfied. In the case of $\hat{n} = n$, we put $\alpha' = \alpha$; then condition (3.3) is also satisfied. Consider m=1 and $\hat{n}>n$. If $\alpha(S^1)\subset \bigcup_{k=1}^n S_k$ $\dot{\cup}$ $\circ S_k'$, then define $a': S^1 \to X_n$ by a'(x) = a(x) for $x \in S^1$. Thus $p_{n\hat{n}} \circ a' = a$. If $a(S^1) \subset S_1 \times S_1$, then a is homotopic to some map $\bar{a}: S^1 \to X_n$ with values in $S_1 \circ S_1'$. Then define $a': S^1 \to X_n$ by $a'(x) = h_n^{-1}(\overline{a}(x))$. Thus $p_{n\hat{n}} \circ a' = \bar{a} \simeq a$ and by Lemma (3.2), X is R-movable. We will now prove that X is not $S^1 \times S^1$ -movable. Put n=1 and for $n_0 \ge 1$ put $\hat{n} = n_0 + 1$. Let a map $\alpha: S^1 \times S^1 \to X_{n_0}$ be an embedding; then $\alpha(S^1 \times S^1)$ $=S_1 \times S_1'$. Assume that a map $\alpha' : S^1 \times S^1 \to X_{n_0+1}$. Since $S^1 \times S^1$ is connected, $\alpha'(S^1 \times S^1) \subset S_1 \times S_1'$ or $\alpha'(S^1 \times S^1) \subset \bigcup_{k=2}^{n_0+1} S_k \stackrel{\cdot}{\smile} S_k'$. In the first case, since λ_{n_0} and λ'_{n_0} are greater than 1, $p_{1n_0} \circ a$ and $p_{1,n_{0+1}} \circ a'$ are not homotopic. In the second case, $p_{1\hat{n}} \circ \alpha'(S^1 \times S^1) \subset S_1 \circ S_1' \not\subseteq S_1 \times S_1'$. But $p_{1n_0} \circ \alpha$ is homotopic to no map with values in a proper subset of $S_1 \times S_1'$. By Lemma (3.2) we infer that X is not $S^1 \times S^1$ -movable. Thus X is nonmovable. Since X is \mathcal{R} -movable, X is S^n -movable for n=1,2,... Example (4.5) is an answer to Problem 19 from [4].

Now consider the join of two spaces as the operation \circ . The $join\ X*\ Y$ of two compacts X,Y is the quotient space $(X\times Y\times [0,1])_{/G}$, where G is the decomposition of $X\times Y\times [0,1]$ into sets of the form $\{a\}\times Y\times \{1\}$ or $X\times \{b\}\times \{0\}$ (where $a\in X$ and $b\in Y$) and into single points. The shape of X*Y depends only upon $\mathrm{Sh}(X)$ and $\mathrm{Sh}(Y)$ ([10], p. 854).

In general for the operation of the join the answers to questions 1° and 2° are negative. Indeed, the join $S*S^n$ of a solenoid S and a n-di-

mensional sphere S^n (i.e., the space X_n in Example (4.1)) is not movable. $S*S^n$ is a inverse limit of a sequence of n+2-dimensional spheres. By Lemma (3.5) $S*S^n$ is not S^{n+2} -movable, while by Corollary (3.4) S and S^n are S^{n+2} -movable. Also it is easy to see that the join A*B of two two-point spaces A and B is a circle S^1 . By Corollary (3.4) a solenoid is A-movable and B-movable, but is not S^1 -movable.

(4.6) THEOREM. Let $\mathcal R$ be a family of compacta such that if $A \in \mathcal R$ and a compactum B is the closure of an open subset of A, then $B \in \mathcal R$. If compacta X and Y are $\mathcal R$ -movable, then the join X * Y is $\mathcal R$ -movable.

Proof. Let Q and Q' be the Hilbert cubes. Assume that $X \subset Q$ and $Y \subset Q'$. $M = Q * Q' \in AR$ ([10], p. 854). Let U be a neighborhood of X * Y in M. There exists a neighborhood U^1 of X in Q and a neighborhood U^2 of Y in Q' and a number $\varepsilon \in (0, \frac{1}{\varepsilon}]$ such that the sets $U^1 * U^2 = \{[(x,y,t)] \in M; x \in U^1, y \in U^2\}, K(U^1,\varepsilon) = \{[(x,y,t)] \in M; x \in U^1, y \in Q', 1-\varepsilon < t \le 1\}$ and $K'(U^2,\varepsilon) = \{[(x,y,t)] \in M; x \in Q, y \in U^2, 0 \le t < \varepsilon\}$ are subset of U.

Since X and Y are \mathcal{R} -movable, for U^1 and U^2 there exist neighborhoods: U^0_0 of X in Q and U^0_0 of Y in Q' satisfying required conditions of the definition of the \mathcal{R} -movability. The set $U_0=K(U^0_0,\varepsilon)\cup K'(U^0_0,\varepsilon)\cup U^0_0\times U^0_0\times [0,1]_{/G}$ is a neighborhood of X*Y in M ([10], p. 854). Let \hat{U} be a neighborhood of X*Y in M. There exists a neighborhood \hat{U}^1 of X in Q and a neighborhood \hat{U}^2 of Y in Q' such that $\hat{U}^1*\hat{U}^2\subset \hat{U}$. Take $A\in\mathcal{R}$ and a map $a\colon A\to U_0$. The sets $B=a^{-1}(U^0_0\times U^0_0\times (\varepsilon,1]_{/G})$ and $B'=\overline{a^{-1}(U^0_0\times U^0_0\times [0,1-\varepsilon)_{/G}})$ belong to \mathcal{R} . Let a map $p_1\colon Q\times Q'\times (0,1]_{/G}$ be defined by $p_1[[(x,y,t)]]=x$ for $[(x,y,t)]\in Q\times Q'\times (0,1]_{/G}$, and let a map $p_2\colon Q\times Q'\times [0,1)_{/G}$ be defined by $p_2[[(x,y,t)]=y$ for $[(x,y,t)]\in Q\times Q'\times [0,1)_{/G}$.

Define maps: $\beta\colon B\to U_0$ by $\beta(b)=p_1(\alpha(b))$ for $b\in B$ and $\beta'\colon B'\to U_0$ by $\beta'(b)=p_2(\alpha(b))$ for $x\in B'$. Since X and Y are $\mathcal R$ -movable, there exists a homotopy $F\colon B\times [0\,,1]\to U^1$ satisfying conditions: $F(b\,,0)=\beta(b)$ and $F(b\,,1)\in \hat{\mathcal U}^1$ for $b\in B$ and there exists a homotopy $F'\colon B'\times [0\,,1]\to U^2$ satisfying conditions: $F'(b\,,0)=\beta'(b)$ and $F'(b\,,1)\in \hat{\mathcal U}^2$ for $b\in B'$. Define a map $g\colon M\to [0\,,1]$ by $q[(x\,,y\,,t)]=t$ for $[(x\,,y\,,t)]\in M=Q\times Q'\times [0\,,1]_{G}$. For $s\in [0\,,1]$ let a map $\varphi_s\colon [0\,,1]\to [0\,,1]$ be defined by:

$$arphi_{s}(t) = \left\{ egin{array}{ll} 0 & ext{for} & 0 \leqslant t \leqslant rac{1}{3}s \; , \ & & & & rac{3t-s}{3-2s} & ext{for} & rac{1}{3}s < t < 1 - rac{1}{3}s \; , \ & & & & & & & \end{array}
ight.$$

Define a homotopy $H: A \times [0,1] \rightarrow U$ by the formula:

$$H(a,s) = \begin{cases} [p_1(a(a)), p_2(a(a)), \varphi_{2s} \circ q(a(a))] & \text{if} \quad 0 \leqslant s \leqslant \frac{1}{2} \text{ and} \\ \quad 0 < q(a(a)) < 1 \text{ ,} \\ \quad 1 \text{ if} \quad 0 \leqslant s \leqslant \frac{1}{2} \text{ and} \\ \quad q(a(a)) = 0 \text{ or } 1 \text{ ,} \\ [F(a,2s-1), F'(a,2s-1), \varphi_1 \circ q(a(a))] & \text{if} \quad \frac{1}{2} < s \leqslant 1 \text{ and} \\ \quad \frac{1}{3} < q(a(a)) < \frac{2}{3} \text{ ,} \\ [F(a,2s-1)] \times Q' \times \{1\} & \text{if} \quad \frac{1}{2} < s \leqslant 1 \text{ and} \\ \quad q((a(a)) \geqslant \frac{2}{3} \text{ ,} \\ Q \times \{F'(a,2s-1)\} \times \{0\} & \text{if} \quad \frac{1}{2} < s \leqslant 1 \text{ and} \\ \quad q(a(a)) \leqslant \frac{1}{3} \text{ .} \end{cases}$$

This homotopy satisfies conditions: H(a,0)=a(a) and $H(a,1)\in \hat{U}^1*\hat{U}^2\subset \hat{U}$ for every $a\in A$. Thus X*Y is \mathcal{R} -movable.

(4.7) COROLLARY. If the compacts X and Y are n-movable, then the join X*Y is n-movable.

Proof. *n*-movability is equivalent to \mathcal{R} -movability, where \mathcal{R} is a family of all compacts of the dimension $\leq n$ (cf. (2.4)). If $A \in \mathcal{R}$ and a compactum $B \subset A$, then $\dim B \leq n$, then $B \in \mathcal{R}$. Hence \mathcal{R} satisfies the assumption of Theorem (4.6).

(4.8) EXAMPLE. There exist compacta X^1 , X^2 , A^1 and A^2 such that $X^1 \cap X^2 = \{x_0\}$, $A^1 \cap A^2 = \{a_0\}$, X^i is $A^1 \cup A^2$ -movable and $X^1 \cup X^2$ is A^i -movable for i=1,2 but $X^1 \cup X^2$ is not $A^1 \cup A^2$ -movable.

The main idea of this example is due C. Cox [5]. Let i=1,2. Let $\{\lambda_{j}^{i}\}$ be sequences of prime number different from 1. For k=1,2,..., let S_k^i be pairwise disjoint k-dimensional spheres, except the pair S_1^i, S_1^2 with the point a_0 in common. Let $f_j^i \colon S_1^i \to S_1^i$ be a map such that $\deg f_j^i = \lambda_j^i$ and $f_j^i(a_0) = a_0$ for j=1,2,... and let $h_k^i \colon S_{k+1}^i \to S_1^i$ be a homeomorphism

for
$$k=1\,,2\,,\ldots$$
 Put $X_n^i=\bigcup_{k=1}^n S_k^i.$ Define $p_{nn+1}^i\colon\, X_{n+1}^i\to X_n^i$ by

$$p_{nn+1}^i(x) = \left\{ egin{array}{ll} f_n^i(x) & ext{for} & x \in S_1^i \ x & ext{for} & x \in igcup_{k=2}^i S_k^i \ h_n^i(x) & ext{for} & x \in S_{n+1}^i \ . \end{array}
ight.$$

Let $p_{nn'}^i = p_{nn+1}^i \circ \dots \circ p_{n'-1n'}^i$ for n < n' and $p_{nn}^i = \operatorname{id}_{X_n^i}$. Put $X^i = \lim \{X_n^i, \, p_{nn'}^i\}$. Let n be an integer and put $n_0 = n$. Let $\hat{n} > n$. Define a map $n^i \colon X_{n_0}^i \to X_{n_0}^i$ by

$$r^i(x) = egin{cases} x & ext{for} & x \in igcup_0^{n_0} S_k^i \,, \ (h_n^i)^{-1}(x) & ext{for} & x \in S_k^i \,. \end{cases}$$

Then $p_{n\hat{n}}^i \circ r^i = \operatorname{id}_{X_n^i} = p_{nn_0}^i$. By Lemma (3.1) X^i is movable; then X^i is B-movable for every compactum B. Let $A^1 = S_1^1$ and $A^2 = S_1^2$. It is easy to see that a compactum $X = X^1 \cup X^2$ is A^1 -movable and A^2 -movable. It remains to prove that X is not $S_1^1 \cup S_1^2$ -movable. Let $S_1^1 \cup S_1^2 = A$. We have $X = \lim_{i \to \infty} \{X_n, q_{nn'}\}$, where $X_n = X_n^1 \cup X_n^2$ and $q_{nn'}(x) = p_{nn'}^i(x)$ for $x \in X_n^i$. Take n = 1 and let $n_0 \ge 1$. Put $\hat{n} = n_0 + 1$ and let $\alpha \colon A \to X_{n_0}$ be an inclusion map. Take a map $\alpha' \colon A \to X_{n_0+1}$. For $i = 1, 2, S_1^i$ is receled $(\lambda_1^i \dots \lambda_{n_0-1}^i)$ times in S_1^i by $p_{1n_0}^i \circ \alpha$. Since A is connected, $\alpha'(A)$ is contained in some component of X_{n_0+1} . If $\alpha'(A) \subset S_k^i$ for k > 1, then $\alpha'|_{S_1^j}$ for $j \ne i$ is homotopic to a constant map. If $\alpha'(A) \subset S_k^i$ for $S_1^1 \cup S_1^2$, then for $i = 1, S_1^i$ is recled λ^i -times in S_1^i by α' for some integer λ^i . Since $\lambda_{n_0}^i > 1$, $\lambda_1^1 \dots \lambda_{n_0-1}^i$ and $\lambda_1^1 \dots \lambda_{n_0}^i$ are different. Thus $p_{1n_0} \circ \alpha$ and $p_{1\widehat{n}} \circ \alpha'$ are not homotopic. By Lemma (3.2), X is not $A^1 \cup A^2$ -movable.

(4.9) THEOREM. If every component of a compactum X is \mathcal{R} -movable, then X is \mathcal{R} -movable.

Proof. Assume that $X \subset N \in AR(\mathfrak{M})$. Let U be a neighborhood of X in N. As in the proof of a similar theorem for movability ([1], p. 140) we can choose a finite system of components X_1, \ldots, X_n of X and pairwise disjoint open sets U_1, \ldots, U_n satisfying three conditions:

 U_i is a neighborhood of X_i in N for i = 1, 2, ..., n,

$$U_0 = \bigcup_{i=1}^n U_i$$
 is a neighborhood of X in N ,

for i = 1, 2, ..., n, for every neighborhood \hat{U}_i of X_i in N and for every $A \in \mathcal{R}$ every map $a_i : A \to U_i$ is homotopic in U to a map with values in \hat{U}_i .

Let \hat{U} be a neighborhood of X in N and take $A \in \mathcal{R}$ and a map $\alpha \colon A \to U_0$. Put $A_i = \alpha^{-1}(U_i)$. Define $a_i \colon A \to U_i$ for i = 1, 2, ..., n by

$$a_i(x) = \left\{ egin{array}{ll} a(x) & ext{for} & x \in A_i \ , \ & x_i & ext{for} & x \notin A_i, ext{ where } x_i ext{ is a fixed point of } X_i \ . \end{array}
ight.$$

For i=1,2,...,n, let H_i : $A \times [0,1] \to U$ be a homotopy such that $H_i(a,0) = \alpha_i(a)$ and $H_i(a,1) \in \hat{U}$ for every $a \in A$. Define $H: A \times [0,1] \to U$ by $H(a,t) = H_i(a,t)$ for $a \in A_i$. $H(a,0) = \alpha(a)$ and $H(a,1) \in \hat{U}$ for every $a \in A$, then X is \Re -movable.

On the other hand, it is not true that if X is \mathcal{K} -movable, then every component of X is \mathcal{K} -movable. There exists a movable compactum with a solenoid as a component (K. Borsuk's Example [1], p. 140, also the compactum X^1 in Example (4.8)). As in Example (4.8), for every compactum X which is not \mathcal{K} -movable one can construct an \mathcal{K} -movable compactum Y with X as a component.

(4.10) THEOREM. If \Re is a family of all components of a compactum A, then $\{A\}$ and \Re are M-equivalent.

Proof. Assume that $X \subset N \in AR(\mathfrak{M})$. Let U, U_0 and \hat{U} be neighborhoods of X in N. Assume that a map $\alpha \colon A \to U_0$ and that for every $B \in \mathcal{R}$ there exists a homotopy $\varphi_B \colon B \times [0,1] \to U$ such that $\varphi_B(\alpha,0) = \alpha(\alpha)$ and $\varphi_B(\alpha,1) \in \hat{U}$ for every $a \in B$. Since a component B is closed in A and U is open in N, a homotopy φ_B can be extend over a set $B' \times [0,1]$ such that B' is a closed-open neighborhood of B. As in the proof of Theorem (4.9), one can choose a finite system of components B_1, \ldots, B_n such that the sets B'_1, \ldots, B'_n constructed for them are pairwise disjoint and $\bigcup_{i=1}^n B'_i = A$. Define a homotopy $H \colon A \times [0,1] \to U$ by $H(\alpha,t) = \varphi_{B'_i}(\alpha,t)$ for $\alpha \in B'_i$; then $H(\alpha,0) = \alpha(\alpha)$ and $H(\alpha,1) \in \hat{U}$ for every $\alpha \in A$. Conversely, assume that $B \in \mathcal{R}$, a map $\beta \colon B \to U_0$ and that every map $\alpha \colon A \to U_0$ is homotopic in U to a map with values in \hat{U} . There exists a closed-open neighborhood B' of B in A and a map $\beta' \colon B' \to U_0$ extending β . Let $u_0 \in U_0$, and define $\alpha \colon A \to U_0$ by

$$a(a) = \begin{cases} \beta'(a) & \text{for} \quad a \in B', \\ U_0 & \text{for} \quad a \in A - B'. \end{cases}$$

Terefore, $\beta = a|_B$ is homotopic in U to a map with values in \hat{U} . Thus A-movability and \Re -movability are equivalent.

The notion of n-movability has recently been studied by Kodama and Watanabe and by Kozlowski and Segal (see [6] and [7]). They obtained independently the following results contained in the present paper: Theorems (3.6), (3.10) and (3.13), Example (4.1) and Corollary (4.3).

References

[1] K. Borsuk, On movable compacta, Fund. Math. 66 (1969), pp. 137-146.

[2] — On a locally connected non-movable continuum, Bull. Acad. Polon. Sci. 17 (1969), pp. 425-430.

[3] — On the n-movability, ibidem 20 (1972), pp. 859-864.

[4] — On some hereditary shape properties, Ann. Polon. Math. 29 (1974), pp. 83-86.
 [5] C. Cox, Three questions of Borsuk concerning movability and fundamental retraction,

Fund. Math. (to appear).
[6] Y. Kodama and T. Watanabe, A note on Borsuk's n-movability, Bull. Acad. Polon. Sci. (to appear).

[7] G. Kozlowski and J. Segal, n-movable compacta and ANR-systems, Fund. Math. 85 (1974), pp. 235-243.

- [8] S. Mardešić and J. Segal, Movable compacta and ANR systems, Bull. Acad. Polon. Sci. 18 (1970), pp. 649-654.
- [9] S. Nowak, Some properties of fundamental dimension, Fund. Math. 85 (1974), pp. 211-227.
- [10] J. Oledzki, On shape of the join of compacta, Bull. Acad. Polon. Sci. 20 (1972), pp. 853-858.

Accepté par la Rédaction le 23. 10. 1973