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On extending congruences from partial algebras
by
Isidore Fleischer (Montréal)

Abstract. A new proof, very much shorter and easier than ihose in the literature,
that every congruence on a partial universal algebra is the restriction of some congru-
ence on a containing total algebra, leads to a generalization in which the latter may
be chosen in an equational class defined by identities of a certain type whenever these
hold in the former. The analogue for strong congruences is pushed even further: viz,
to any total algebra in which the partial one is embedded in a not too special way. A third
yield is the extendability of every congruence on a partial distributive lattice to some
containing total distributive lattice, which settles a problem posed by Gritizer.

What follows had its origin in the observation that Theorem 13.3
of Gritzer’s “Universal Algebra”, to the effect that every congruence on
a partial algebra is the restriction of a congruence on a containing total
algebra (given an independent proof in [GW]; see also [W] for the ex-
tension to infinitary algebras) or rather its more precise and stronger
version, Theorem 15.1, that there exists a single containing algebra
(namely the freely generated one) which will do the job for all congru-
ences; and whose proof extends across five pages of that work, can be
very easily proved as follows: Embed the quotient of the partial algebra
P modulo its congruence § in a total algebra F in any way (either by
extending the operations for undefined arguments arbitrarily in P — this
is what [W] comes to — or by adjoining new elements as their values —
cf. 13.1 in [G]) and extend the quotient map to a homomorphism into F of
the total algebra F(P) freely generated by P: the kernel of this homo-
morphism is then a congruence on F(P) which meets P in 6. In addition,
the elaborate construction (*) of ¥ (P) occupying the seven pages of the
book immediately preceding 15.1 is not needed for the purpose at hand,
inasmuch as F(P), qua total algebra generated by P to which all homo-
morphisms of P into total algebras extend, may be obtained as the sub-
direct product generated by the image of P in a product of sufficiently
varied total algebras generated by images of P — the fact that P is
embedded in some total algebra (as seen above) ensuring that it will also
be in such a product. ,

This efficient argument begs to be generalized: Does a given P admit

' (*) A more graceful one can be found in [W].
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embeddings into total algebras F, other than the freely generated one,
to which every congruence 6 (possibly of a special type) extends? By the

above this means being able to embed PJ6 (for smeh congruences) in .

a total algebra so as to allow an extension of the quotient homomorphism
to F. Three results in this line are presented below.

1. Every partial algebra can be completed to be total by adjoining
one new element to serve as value for all not already defined operation
values (including those for which it is an argument). If the quotient
homomorphism on P were to extend to a homomorphism between
these respective one-element completions by making the new elements
correspond, P would become saturated for the enlarged kernel. Now any
subset P of an algebra, saturated for one of its congruences 6, must con-
tain, with any operation-value of a tuple of its elements, also all other
values obtained by modf changes of argument which remain in P—in
the terminology of [G], 0 induces & “gtrong” congruence on P. More
generally, a subset of a partial algebra ¥ is saturated only if it contains
all such values for those mod argument changes which remain in P as
well as in the domain of the operation’s definition in F — this might be
termed strong relative to the assignment to each (n-argument) operation
of those (n-tuple) changes in P not leading out of the operation’s domain
of definition in F.

Conversely let 6 be strong in P: Since the domains of definition of
operations in P are closed under mod f argument changes, so also are
their complements, and it follows that the extension of the quotient
homomorphism to the one-element completions obtained by making
correspond the new elements is indeed a homomorphism of these total
algebras. Thus every strong congruence extends fo the one-clement
completion. But more is true: for if a congruence on P extends to a (pos-
sibly partial) containing algebra F, so does it to every other containing
algebra which can be mapped homomorphically into I so as to induce
the identity on P (as the inverse image of the extending congruence);
moreover, P will retain the saturatedness it had in F if elements outside
it are mapped on outside elements; and this must happen for an algebra
generated by P mapped to the one-element completion over the identity
on P. Now the partial algebra extensions of P which can be mapped in
this way on the one-element completion are just those which share
with this completion the property of having operations take values in P
at most for arguments in P. This justifies )

TeEoREM S.C. Let the partial algebra P be embedded in the (possibly

partial) algebra F so that operations take values in P only for arguments
in P. Then every strong (relative to argument changes preserving pevformability
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in F) congruence on P is the restriction of a congruence on I for which P is
saturated.

Inasmuch as P is so embedded in its absolutely free completion,
this effects a broad generalization of Theorem 16.2 in [G].

2. When attempting to extend a congruence to containing total
algebras in an equational elass, it is natural to replace the absolutely freely
generated algebra by the one freely gemerated in the class. The required
homomorphism extending the quotient map would then be forthcoming
by freeness; whenee it would only be needed to be able to embed P/§ in
a member of the class. Such embeddability is also necessary: the con-
gruences 6 which extend to congruences in some eontaining total algebra
of an equational class are just those for which P/ is (like P) embeddable
in a total algebra of the class. (The same characterization holds for the
§ modulo whose extended congruence the total algebra is required to
belong to a subeclass.)

That this condition is not automatically fulfilled may be seen in
the partial group of positive integers: every semigroup congruence is
a partial group congruence (even a strong one) but there are certainly
quotients not embeddable in a group.

Success can clearly be expected where the conditions for embedding
a partial algebra in a total one from the class are preserved under passage
to quotient partial algebras: e.g. conditions whieh ean be put in the form
of an implication whose hypothesis can be carried back from the quotient
(an inequality, or the performability .of an operation) and whose con-
clusion carried forward to it (a form built up using arbitrary compositions
of the operations, equality, conjunction, disjunction, and quantification—
but not negation). Indeed, according to unpublished results of M. Makkail
[M] (for information about which I am indebted to Gonzalo Reyes) this
is effectively the only type of condition preserved under quotients.

An equational class may be singled out by stipulating that its members
satisfy a certain set of identities, i.e. equations between polynomials.
These may be construed here as “polynomial functions” which are of
course not functions in the usual sense, but formal entities having a fune-
tional interpretation in every algebra, on a par with the operations. In
fact, they are generated from the operations (including the unary identity)
by composition and equating of arguments; pub another way, they con-
stitute the smallest class including these operations and closed under
substitution for an argument of a member of the class or of another
argument. (Alternatively, they may also be obtained from the word
algebra built with the operations, as abstractions of the functions it
induces in every total algebra equipped with these operations: thus for-
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mally modulo the equivalence of inducing in every such algebra the same
funetion. The more elaborate definition [G] just comes to allowing extra
(spurious) arguments. To get ordinary ring polynomials, one must have
recourse to his more general “algebraic functions”.) As the result of such
a substitution, the polynomial no longer depends on the argument via
that place, depending instead on the substituted argument or on all
those arguments on which the substituted polynomial depends. The
point of emphasizing this is that in the one-element completion of P an
identity will hold if (and only if except for the trivial case that neither
side ever takes a value in P) both sides depend on the same arguments
and whenever one side can be evaluated in P, so can the other and the
two are equal. (Indeed, a polynomial takes a value in P if and only if
the arguments on which it depends do and it can be evaluated in P for
them). Thus with identities of this form holding (in this sense) in it, P can
be embedded in a total algebra in their equational clags, hence in the
algebra it freely generates in this class.

However, it is not to be expected that these identities will also hold
in P[6 — unless the evaluability at a tuple of P/§ of a polynomial ap-
pearing on one side of an identity were to entail its evaluability at some
tuple of P mapping on it. For pure operations (in which no substitutions
have been made) this follows from their definition in P/0; morc generally
it will follow if 0 is strong relative to an assignment, to each operation
which occurs in one of the identities with some substitutions made, of
all those changes in P for its substituted arguments which would result
in an instance of the oceurring form.

TurorREM IS. If each of a sel of identities, both sides of which depend
on the same arguments, holds (in the above sense) in the partial algebra P,
then it is embedded in F (P), the total algebra it freely generates in the equa-
tional class of the set. Moreover a congruence on P will ewtend fo F (P) if it
is strong relative to the assignment, for those arguments substitution for
which yields a polynomial form occurring in an identity, of their changes
in P which would realize this form.

Since the identity map on P extends to a homomorphism from F (P)
to the one-element completion, the case of (unqualified) strong congruences
already falls under the previous Theorem SC. It may be worthwhile
to state separately the case in which the identities equate operations
in which no substitutions have been made:

CoroLLARY. If identities between (pure) operations depending on the
same arguments hold in P, then each of its congruences extends to a congruence
of the algebra freely generated by P in their equational class.

The commutative law for a binary operation is an example of such
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an identity. The corollary also contains (for the void set of identities)
the original Theorem 15.1 of [G].

3. This by no means exhausts the applicability of the proposed proof
strategy, since the embeddability criterion may -well be preserved by
passage to quotients in an equational class to which the one-element
completion does not belong. Such is the case for the class of distributive
lattices construed as algebras with two binary operations (even though
one side of the absorption law depends on more variables then the other)
provided that the partial algebras have ome of them — say v — every-
where defined. Specifically they are to be v-semilattices in which an
additional binary operation A is partially defined by assigning certain
pairs having a greatest lower bound in the v-derived order (not neces-
garily all sueh) this g.l.b. as value.

Necessary for embedding such a structure, with preservation of v
and all defined A, in a distributive lattice is clearly: if aAf is defined,
then for every v, (aAf)vy is the glb. of avy and fvy; and then one
may as well extend A to such pairs since the embedding will certainly
preserve this assignment.

Conversely, this condition is then sufficient (*). One has to show
that for any a £ [ there is a vV and A preserving map to the two-element
chain gending o on 1 and p on 0; or, which comes to the same, that a
and B can be separated by a decomposition into an ideal and a comple-
mentary filter (the latter must be understood here as a non-void subset
closed under performable A’s of its elements and passage to larger
elements). Just as in the classical case, this results from an ideal maximal
with respect to excluding a filter having a filter complement: if «, § are
in the complement then their v with some — hence all sufficiently
large — ¢ of the ideal are in the filter; thus if eAp is defined, the filter
contains (aVy)A(BVy) = (aAB)Vy, whence aAf cannot be in the ideal.
(Note that the embedding preserves smallest and greatest elements —
they belong to all ideals and filters respectively — hence also any existing
complements).

Moreover, modulo a congruence for both operations, all of this sub-
sists: the quotient is again a V-semilattice; one in which the quotient A
functions (where defined) as g.Lb: for from (yve) 0 o, (yVvB) 8 8, and the
existence of apnf follows (yva)A(yvp)= yVv(arf) 6 (anp); and the eon-
dition is of the desired type: an implication of which the hypothesis is
the performability of an operation and the coneclusion an equality.

(*) This has also been observed by others: See B. M. Schein, On the definition
of distributive semilattices, Alg. Univ. 2 (1972), pp. 1-2. An even more general result
goes back to H. M. MacNeille, Trans. Am. Math. Soc. 42 (1837), p. 446 ff.
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TrrorEM DL. Let P be a v-semilattice with a partial A taking g.1.b.
as values such that the ewistence of anp implies (aVy)A(BVy) = (aAB)vy
for every y. Then P is embedded in the distributive lattice I it freely generaies,
and every congruence (for both the total and partial operation) of P is the
restriction of a lattice congruence on F. .

This furnishes in particular a solution for the distributive case of
Problem 20 in [G'].

References

[B] R. Balbes, 4 representation theory for prime and implicative semilabli Trans.
AM.S. 136 (1969), pp. 261-267.

[6] 6. Gratzer, Universal Algebra, Princeton 1968.

[G7 — ZLattice Theory, San Francisco 1971

[GW] — and G. H. Wenzel, On the concept of congruence relation in partial algebras,
Math. Scand. 20 (1967), pp. 275-280.

[M] M. Makkai, On the model theory of denumerably long formulas with finite sirings
of quantifiers, J. Symb. Logic 34 (1969), pp. 437-459.

[W]1 G. H. Wenzel, BEatensions of congruence relations on infinilary partial algebras.
A problem of G. Griizer, Fund. Math. 67 (1970), pp. 163-169.

Accepté par la Rédaction le 12. 11. 1973

icm°®

Topologically nondegenerate functions
by
"Marston Morse (Princeton, N. J.)

Abstract. Let M, be a compact, connected topological manifold and F a continu-
ous real valued function on M, that is topologically nondegenerate in the sense of
Morse [12]. Let ¢ be an arbitrary value of F and set

Fo={p ¢ Mu| F(p)<c}.

The “topological critical points” of ' on F, are finite in number and can be related to
the invariants of the homology groups of I, as in the differentiable case (Morse and
Caimns [14]). F-deformations and F-tractions make this possible. F-tractions are our
extensions of retracting deformations of Borsuk [1]. Kirby and Siebenmann in [7] have
affirmed the existence of topologically nondegenerate functions on M, when n # 4 or 5.
For the differentiable case see [15], Milnor [9] and Cerf [3]. Paper [16] reorganizes the
clagsical group structure of the singular homology theory of Eilenberg [5] for use in
this paper.

Introduction. This paper is concerned with continuous, real-valued,
topologically nondegenerate functions F, as distinguished from differentiably
nondegenerate functions. (See § 1 for definitions.) The domain of F is
taken as a compaet topological manifold M,. The paper [14] of Morse
and Cairns is here extended from the differentiable ease to the topological
case. A Dbrief abstract of this paper is found in [13].

Singular homology theory is used of the type first introduced by

‘Bilenberg in 1944. See reference [6]. No “friangulations” are needed.

Deformations termed “tractions”, are fundamental; they relax the con-
ditions on “retracting deformations” as commonly defined. For original
concepts see Borsuk [10]. The theorem of Kirby and Siebenmann on
the existence of topologically nondegenerate functions, when = # 4 or 5,
is a starting point. This paper draws heavily on Morse [12] in which
topologically nondegenerate functions were first defined. Paper [16] re-
organizes the classieal group structure for use in the necessary homology
theory.

To avoid complexity in a first treatment this study has been subjected
to many restrictions that can be readily removed. In particular, one
could greatly lighten the condition that the manifold be compact.. One
could also remove the condition th%topological critical values be of
singleton type in the sense of § 0./
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