52 M. Morse

[12] M. Morse, Topologically non-degenerate functions on a pact 1 -manifold,
. d’Analyse Math. 7 (1959), pp. 189-208. ]
idﬁ‘i?e;oZmatiom and P -tractions, Proc. Nat. Acad. Sei. USA (1973), pp.

5' 3 . .
163:;;62 8. Cairns, Singular homology over Z on topological manifolds, J. Dif-

tial Geometry 3 (1969), pp. 257-288. o ‘ )
fe—fei a'Criiiea.Z Po{m Theory in Global Analysis and Differential Topology, New

'k 1969. ) .
[16] :Y—O 1-— EBlementary quotients of abelian groups and singular homology on manifolds,

Nagoya Math. J. 39 (1970), pp. 167-198.

{13]
(14}

(1]

INSTITUTE FOR ADVANCED STUDY
Princeton, N.J.

Accepté par lo Rédaction le 19. 11. 1973

P-ideals and F-ideals in rings of continuous functions

s

by
David Rudd (Norfolk, Virginia)

Abstract. A ring of continuous functions is a ring of the form C(X), the ring of
all eontinuous real-valued functions on a completely-regular Hausdoxff space X.

The author defines two classes of ideals in C(X), P-ideals and F-ideals, which
are analogs of P-spaces and F-spaces. He then discusses properties of these ideals,
such as their structure spaces and zero-sets of their members, and characterizes those
spaces X for which there exist P-ideals (or F-ideals) in 0(X). :

Introduction. If X is a space so that every prime ideal in O(X) is
maximal, then X is said to be a P-space. We extend this concept to ideals
in rings of continuous funetions by defining a mon-zero ideal I to be
& P-ideal if every proper prime ideal in T is a maximal ideal in I. It is
known [2, 14.29] that C(X) is a P-ideal, i.e. X is a P-space, if and only
if its real structure space (vX) is a P-space. We show that a modified
version of this theorem holds for .P-ideals. We also characterize those
spaces whose rings of continuous funetions possess a P-ideal.

It X is a space so that mI (= {f] f ¢ fM}) is prime for every maximal
ideal A in C(X), then X is said to be an F'-space. We extend this coneept
also to ideals, by defining a non-zero ideal T to be an F-ideal if mM is
prime whenever 3 ;l_) I and M is a maximal ideal in @ (X). We are then
able to show that I is an F-ideal if and only if its structure space is an
F'-space, an analog to the theorem that X is an F-space if and only if
BX is an F-space. We are also able to characterize those spaces whose
rings of continuous functions possess an F-ideal.

Preliminaries and notations. The reader is referred to section 2 in [4]
for most of the preliminaries. Familiarity with [2] is also assumed.

It feC(X), then Z(f)={o| f(z)= "0}, posf= {al f(s) >0}, and
negf = {z| f(z) < 0}. If fe C*(X) (ie. fis bounded), then f denotes the
extension of f to SX. In general Z(f) D Z(f)’ (= clgx Z(f)) but intyxZ(f)
= intgx Z (f)".

We shall use the letter M for maximal ideals of C (X), and M,
= {fl f(=) = 0}.

We regard X as the structure space of ¢(X). Thus if U is open in f.X,
U= ~{M| M D I} for some ideal I in O(X).
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ideal I in O(X), the maximal ideals of I are precisely those
ideal:g‘ocff ?ii lf%f?n In M( ‘fo)r, M D I. These will be denoted Iloy {M. tThe
structure space of real jdeals of I is denoted by oI, and the sI ruc uﬁe
space of all maximal ideals of I is denoted by wI. The space pl can be
identified with an open subset of fX. (See [4:, 3.91.) .

A point » ¢ X is said to be a P-point of X if me = Mx (See 2, ?

A space X is said to be an I'-space if mMy is prime for every z ¢ X.
(Fee T[i;o&:lnii?empty subsets 4 and B o*{" X are said to be ch;mg_a_Zetely
separated in X if there exists fe C(X) with f(4)= {0} and f(B)= {1}.

. P-ideals.

1.1. DEFINITION. A non-zero ideal I is said to be a P-ideal of 0(X)
it every proper prime ideal of I is maximal in I. . .

1.9. Levmwma. I is a P-ideal if and only if every prime ideal of C(X)
which doesn’t contain I is mawimal in C(X). .

Proof. Suppose I is a P-ideal and P is prime in 0(X) Wlﬂll P ;Q I
Then I ~ P is maximal in I, whence by [4, 3.6], I n P =1I ~ I for some
maximal ideal M in O(X). It follows that P = M. The converse follows
easily. .

1.3. Remark. It follows easily from Lemma 1.2 that arbitrary sums
and products of P-ideals are P-ideals. s

1.4, Lemwva. If I is a P-ideal, then I = ml. .

Proof, Let f I, and assume f ¢ mI. Since ml is semiprime in € fX),
there exists P prime in O(X) with PDmlI and f¢ P. But then P %_)I,
whenece P is maximal in C(X). Since P 2 ml, we have a contradiction.

1.5. THEOREM. Let I be an ideal of O(X). Then the following are equi-
valent.

1) I is a P-ideal. o )

(2) For all ideals A in I, mA = A = A. (4 denotes the closure of A in
the relative m-topology on I.)

(3) For all fel, Z(f) is open. .

Proof. (1)= (2) Let A be a proper ideal in I. Sinqo I=ml, 4 is

contained in at least one maximal ideal of I by [4, 3.7]. We have

mA = (" {P| P is prime in I and PDmA}
= (N {K| K is maximal in I and K2 md}
= (" {M| M is maximal in C(X) and M D md} (by [4])
= md (by [2], 7Q)
= 4 (by [4], 2.5).
Since m4 C A C 4, we have equality.
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(2) =(3) Let f e I and form 4 = {nf+if| ie T and n= 0,41, £2,...},
an ideal of 7. Since f ¢ 4, f= fa for some a « 4, 50 f= f(nf-+if). It follows
that Z(f) is open.

(3) = (1) Let P be prime with P ?Q I, and let M be the maximal ideal
of C(X) which contains P. Tet feln M, and define 1= 0 on Z(f) and
t=1/f on ~Z(f). Then f=ifemI ~mM CP. Thus I ~ M=InP,
and it follows that P = M.

We remark that several other statements similar to the ones in
[2, 14.29] can be found which are equivalent to I being a P-ideal.

It is evident that every ideal in a P-space is a P-ideal. It is also
clear that if a maximal ideal M is a P-ideal in € (X), then X must be
a P-space. Below we list some easy examples of P-ideals in spaces which
are not P-spaces.

1.6. ExAMPLE. Let X = N*, the one-point compactification of the
diserete space of counting numbers N. Let I be the ideal of functions
which are eventually zero. Then I is a P-ideal and X is not a P-space.
(Nor is X an F-space.)

1.7. Examerg. The ideal 0, = mM, in the space X' [2, 4M] is a prime
P-ideal, and £ is not a P-space. (It is easily seen that Z(f) is open for
any femd,.)

‘We shall use the notation A7 for the (possibly empty) set of all a
with M, I. We then have

1.8. LeMwmA. If T is a P-ideal and o € X\AI, then « is a P-point of X.
In particular, if I is a free P-ideal, then X is a P-space.

Proof. Trivial.

It is evident that the natural isomorphism of C(X) onto C(vX)
breserves P-ideals. Thus if I is a P-ideal of ¢ (X), then I" (its image
under the natural isomorphism) is a P-ideal in C(vX). The structure
space of real ideals of I" is a collection of fixed ideals each of which can
be identified (by 1.8) with a P-point of nX.

1.9. TesorEM. If I is a P-ideal then ifs structure space of real ideals
(eI) is a P-space. Conversely, if ol is a P-space, then mI is a P-ideal.

Proof. The first part of the theorem follows from the above dis-
cussion.

For the second part of the theorem, we may assume without loss
of generality that X is realcompact. Consider f e mI. Then Z (F)2X\Z(h)
D Z(i)for someh e C(X)andiel. Hpe Z(i), then # e int Z(f). If o ¢ Z(3),
then M, ;[_) I, from which it follows that = is a P-point and & ¢ int Z(f).
‘We have shown that Z(f) is open, and hence the result follows by 1.5.
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1.10. Remark. The ideal I could be taken to be all of ¢(X) in the
above theorem, and we would then have that X is a P-space if and only
if vX is & P-space. Since vX = p(0(X)), we have a partial generalization
of this result. It is easy to obtain an example of an ideal I which is not
a P-ideal but whose structure space of real ideals is a P-space. (Let
I= M, in C(N*) where N* is the one-point compactification of N.)

We now characterize those spaces whose rings of continuous func-

tions have P-ideals.

1.11. TeEOREM. O(X) has a P-ideal if and only if the set of P-points
in vX has non-empty interior in vX,

Proof. Assume I is a P-ideal in C(X). Without loss of generality,
we may assume that X is realeompact. If 4] = @, then X is a P-space,
50 assume AI # @. Then XN\AI is contained in the set of all P-points
of X, and its complement AI can not equal X.

Conversely, suppose that the set of P-points in vX contains a non-
empty open set U in »X. Let I" == {g*] Z(g") D »X\U} and consider the
ideal mI® in O (vX). Clearly, I” is not the zero ideal. Arguing as in 1.9,
it follows that mI® iy a P-ideal, and hence ml is a P-ideal in O (X).

2. F-ideals. It is natural to attempt to extend the notion of F'-spaces
to jdeals just as it was done in the previous section with P-gpaces. The
gituation is somewhat more complicated, however.

2.1. DEFINITION. A non-zero ideal I of ((X) is called an I,-ideal
in O(X) if mK is prime in I for every maximal ideal K in I.

The above definition would seem to be the natural extension, but
unfortunately not. every ideal in an F'-space will be an F,-ideal.

2.2. LEMMA. If mIy is prime in I, then mIy = I ~ (mM) and mM is
prime in C(X).

Proof. Since mly is prime in I, there exists P prime in C(X) with
mly = (mI) ~n (mM)=1~P. Since M 2 I, there exist memM and
teml with m+4i=1. Thus for any peP, p=pm-+piemd, and it
follows that P = mM.

2.3. LiemmA, If mIy is prime in I for some mawimal ideal Iy in I,
then I = ml.

Proof. There exist m e mM and i eml so that m-+i= 1. For any
gel, g= gm+gi eml, since I~ (mM)= (mI) ~ (mM).

‘We note that it is possible for m to be prime in ¢(X) with mly
not prime in I. For example, choose I # mI in C(BN), where I is a free
ideal. Then for any maximal ideal M 1@ I, mM is prime but m(Iy) is
not prime in I by 2.3,

Since it is necessary that I = mI for I to be an F,-ideal, not every
ideal in an F-space will be an F,-ideal.
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To remedy this situation, we modify our definition, guided by
Lemma 1.2 in the previous section.

2.4. DEFINITION. A non-zero ideal I in O(X) is said to be an F-ideal
if mM is prime whenever M does not contain I.

Trivi.ally, every ideal in an F-space is an F -ideal, and every F, -ideal
ig an F-ideal. Also sums and produects of F -ideals are F-ideals.

2.5. LeymA. For any f e 0(X), posf and negf are completely separated
if and only if there is a function g« O(X) with f=yglfl.

Proof. See [2, 14.22].

2.6. THEOREM. An ideal I in C(X) is an F-ideal if and only if posf
and negf are completely separated for every f eml.

Proof. Suppose I is an F-ideal and feml. We form the ideals
E={ke0(X) posfCZE)} and J = {JeC(X)] negfCZ(j)}). Assume
K -+J is contained in a maximal ideal M in O (X). We claim that M D I.
To see this, assume M Q I. By hypothesis, either fv0 e m3f or A0 e mM.
If fv0 = (fv0)m for some m e M, then 1—m « K C M, a contradiction.
Similarly, we can not have fA0 ¢ mM ; and hence M D I. Thus the ideal
I~ (E4J) is contained in no maximal ideal of T s from which it follows
by [4, 3.7] that mI CI ~ (E+J). If f= fi where teml, then i = k4§
for some % e K and jedJ. It is easily verified that F=0G—"rI|fl

Conversely, suppose posf and negf are completely separated for
any feml, and consider M Q I. Tt suffices to show that mM is pseudo-
prime. To this end, suppose g-h = 0 with ¢ and % non-negative functions
in O(X). There exist m e mM and i e mI so that m-i = 1 with m and 4
non-negative. We let f= gi—hi e mI, and form the ideals J and X as
above. Since posf and negf are completely separated, it follows that
there exist § ¢ J and k ¢ K with j+k = 1. If j ¢ M, then for some a ¢ C(X)
and mye M, aj+m; =1, and hence Z(m,)C X Z(j) CZ(fv0)C Z(gi).
Thus gi e mM, from which it follows that g = gm-- gi e mM. Similarly,
if k¢ M, we could infer that h e m2.

We observe that I could be taken to be all of (X) for an F-space
X in the above proof.

It is possible to have a function f in an F-ideal so that posf and
negf are not completely separated.

2.7. ExAmPLE. Let X = [—1, 1] with every point discrete except 0,
and a neighborhood of 0 is a neighborhood in the usual topology. Then
My={g e C(X)| g(0)= 0} is an F-ideal since posf and negf are com-
pletely separated for any f e mM,. (Indeed, if f emdl,, then Z(f) is open.)
Of course, the identity function ¢ is in M, , and post and negi are not
completely separated. :
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We now wish to obtain a structure-space characterization of F'-ideals
similar to 1.9. We recall that O(X) is an F-ideal (i.e. X is an F-gpace)
if and only if its structure space (fX) is an F-space.

We first define an analog of a P-point in a space.

2.8. DeFInITION. Let y ¢ Y. Then y is an F-point in ¥ if for any
feC(Y) there exists a neighborhood U of y so ‘tham f does not change
sign on U. k .

2.9. LeMMA. The following are equivalent for any y e Y.
(1) y is an F-point of ¥.

(2) If f-g=0, then y eint Z(f) or y eintZ(g).

(3) mMM,, is prime.

Proof, (1)= (2) Suppose f-g= 0 and form h = [f|—|g]. Then there
exists an open set U with y e U and R(z) > 0 say, for all ¢ U. Then
g{w)=0 for all # in U. :

(2)= (3) It suffices to show that ml, is pseudoprime, so consider
fg= 0. Suppose y e¢intZ(f). Choosing h e C(X) so that h(y) =1 and
h=0 on ~(intZ(f)), we have that f= f(1—h)emMM,.

(3)= (1) Given fe O(X), (fv0)-(fA0)=0.

2.10. Remark. It is easily seen that X is an I"-space if and only
if every point in X iy an F'-point of X. Thus, for an F'-ideal I, if » ¢ X\AI,
then # is an F-point of X. In particular, if I is a free F'-ideal, then X is
an F'-space. It is also not hard to show that mM? is prime in ¢(X) if
and only if p is an F-point of X, and hence X is an F-gpace if and only
if every point in X is an F-point of gX.

2.11. THEOREM. An ideal I is an F-ideal if and only if wl is an
F'-space.

Proof. Suppose I is an F-ideal and let y e ul. Suppose fe C(ul)
and consider an open set U in pX so that y ¢ U C U (in fX) C ul. There
exists b e« C(BX) with h|U = f. Now y is an F'-point of fX so there exists V'
open in fX with ¥ €V so that % does not change sign on V. Clearly f does
not change sign on U V.

Conversely, suppose pI is an F'-space. Then for any p ¢ uI, p is an
F-point of uI. To see that p is an F-point of fX, consider 7 e C(X).
Then there exists U open in ul so that f|U does not change sign. Since
U is open in B.X, we have a neighborhood of p (in §X) on which f does not
change sign. Since p is an F-point of X, mM? is prime, and we have
that I is an ¥-ideal.

2.12. TROREM. Let A denote the set of F'-points of fX. Then O(X)
has an F-ideal if and only if A has non-empty interior in BX.
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Proof. If I is an F-ideal, then @ s pIC 4
Conversely if intAd = 9, consider. intA — -
‘ : ; - td = ~{M|M DD
non-zero ideal I in C(X). Clearly I is an F-ideal. AT for some
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