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On Cartesian factors and the topological classification
of linear metric spaces

by
H. Torunczyk (Warszawa)

Abstract. In one part of the paper we improve the results of [26] to show that if E is
a locally convex metrizable TVS such that B o~ XF (resp. B o E®) then XXHB =~ B
for each retract (resp. complete retract) X of E; see Theorem 8.1. The remaining part
is concerned with the topological classification of metrizable TVS’s, We show that if
{Xi: i € N} is any family of such spaces and F is a coordinate space homeomorphic to I,
then ITgX; is homeomorphic to the Cartesian produet of the X¢s. If, in addition,
X, o Xy oo o2 X and X is & complete AR (M) then IgX; is topologically a Hilbert
space; see Theorems 1.1, 1.7, and 4.1.

We shall be concerned here with two topics, as indicated in the title.
The first one is the characterization of Cartesian factors of a given in-
finite-dimensional linear metric space; in this respect the paper is a con-
tinuation of author’s papers [25] and [26], cf. also J. E. West [29]. We
prove a theorem slightly more general than the following:

(A) Let B be a locally convex linear metric space and let X be
a retract of F. If either B o ZE = {(#:) ¢ B®: @y = 0 for almost all i}
or X is complete-metrizable and E ~ F>, then X% E =~ F (= stands
for “is homeomorphic to”).

We use this theorem to extend the results of D. W. Henderson and
J. E. West on representing a manifold as a product of its model with
some locally finite-dimensional simplicial complex (metric topology) and
also to obtain some other corollaries on infinite-dimensional manifolds;
see § 3. It should be noted that (A), when combined with some embedding
theorems (see 1.4 in [26]), contains as & special case the main result of [26].

The second topic is related to the topological classification of linear
metric spaces. Continuing the investigations of . Bessaga [1] and
W. E. Terry [22], we show in § 1 that if a coordinate space ¥ is homeo-
morphic to I,, then the strong B-product of any countable family of
linear metric spaces is homeomorphic to the Carbesian product of that
family. This fact is proved by using & factor theorem of [26] and, on the
other hand, it is a tool in proving the general factor theorem (A). In turn,
(A) allows us to establish in § 4 the following topological characterization
of the Hilbert spaces: A complete linear metric space B is homeomorphic
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to an infinite-dimensional Hilbert space iff Fe AR(M) and F =~ B,
A corollary of this fact is that for any Fréchet space B the product E*
is topologically a Hilbert space (*).

In the paper we prove also a theorem on embedding a retract of
a linear metric space B as a regular retract (*) of an F-normed space
homeomorphic to B* (§ 2); this theorem enables us to apply the results
of [25] in proving (A).

§ 0. Preliminaries. The notation and terminology not specified below
is as in [26]. By X* we denote the set of all functions of 4 into X. If
2 e X4 then we write also @, = #(a), a ¢ 4, and & = (x,); similarly, if o is
a point of a product PX, of a family of spaces, then %, is the ath co-
ordinate of z and we write # = (a,). If f: X—>PX, is a function, then
we write = (f,) where f,(#) = (f(#)),; “map” means “continuous func-
tion”. R denotes the set of reals.

Let F be a linear space and let 4 be a set. We consider B4 as an
R4-module with natural operations, and for 4, ue¢R* we let A< u if
() < u(a) for all a e A. ype R4 is the characteristic function of a set
BCA. :

A linear metric space means here a metrizable topological vector
space. After [14, p. 163] by an F-norm on a vector space X we mean
a function @+ o] such that o >0, Limjua = 0 and |Ao-+y] <[]+

for all le[—1,1] and @,y ¢ X, # % 0. An “F-normed space” means
a pair (X, || ||) where || || is an F'-norm on the vector space X and X is
given the | ||-topology. Tt is known that every linear metric space X ad-
mits an F-norm which generates the topology of X; moreover, a theorem
of V. L. Klee asserts that it X is complete-metrizable (briefly: complete),
then each admissible F-norm on X is complete [14, p. 165].

The Tichonov product of a family of topological spaces is denoted
by ] X, or 1 X, in contrast to P X,, which is treated as a set only. If

aed aed
A = N, the set of integers, and (X, |||ls), <N, are F-normed spaces,
then ITX; will always be considered in the F-norm

) @il = ) min (s, 275 ,
ieN
and X; XX, in the F-norm (@, )| = ||l -+ @yl
The subspace {(#,) e [1.X,: ©,= 0 for almost all a} of J1.X, is denoted
by ) X, or ZX,. We afbbrewate VX to ZX and [| X, to X*if A =N

aed aed

and X,= X for all a. The f.ollowmg facts hold:

. (*) This corollary was announced in [26]. Independently, it has been proved also
by W. E. Terry [23].
(*) See [25] for the definition.
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0.1. LemumA. If X, ieN, are non-degenerate linear metric spaces,
then IITX; = RPXITX; =1, X ITX; and ZX; o~ SRX T X;.

Proof. By a result of E. Michael (see [16], p. 753) for each ie N
there is a linear metric space ¥; with X; o~ Rx ¥;. Thus IIX; o~ R® X
XITY; = R X R X IIY; o~ R® X ITX; and similarly XX; ~ YR X ZX;.
Now the assertion follows from Anderson’s theorem [0], stating that
R> = Zz-

0.2. (Dugundji theorem [6, p. 77]). If X is a convex subset of a locally
conver linear melric space then X ¢ AR(IN).

By a Fréchet space we mean any locally convex linear metric space.

§ 1. The topological type of coordinate products. Following [1] and [5]
we call an F-normed space (E, | |) a coordinate space over a set A if B
is a linear subspace of R4 and

(i) Given feF and 1eR4 with sup{li{a)]: a e 4} <
AefeB and -l < |Ifl;

(ii) For every £>0 and feE there is a finite set BC A with
lzanafll < &

(iii) E is contained in no hyperplane Hy = {1 ¢ B4: A(a)= 0}, acA.

Tt follows from (iii) and (i) that B D {1 e B4: A(a) = 0 for ahnost all a}.
Thus, by (ii) and (i), the space E is separable iff A is a ‘countable set.

Let {(X,, |l l): acA} be a family of F-normed spaces. Given z
= (@,) e P X,, denote

1 we have

] = (lll) € [0, o0)“.

If (E,[ |)) is a coordinate space over A, we consider the following
linear spaces (%)

Ip( Xy |1 la) = {w e P X2 | ¢ B}

and

Zu( Xy ) = {(z,) e P X,: 3,= 0 for almost all a},

both eqquipped with the F-norm
[l = 171 | ¢ B .

These spaces will be called, respectively, the stromg and the weak co-
ordinate product of the X’s in the sense of I or, briefly, the (strong and
weak) B-products of the X,'s. If the F-norms || Hu, ae A, are fixed or are
not lmportant in the discussion, then we shall write I7pX, instead of
Ig(X,, || Il and ZpX, instead of Xp(X,,|l|l,), and we shall abbreviate
Iz X, to IIzX and ZpX, to ZpX if (X, [ l) = (X,|l[) for all aeA.

where f=

() The notation is different from that. of [1] and [5].
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The aim of this section is to show that if F is a complete separable
coordinate space then, under rather weak additional assumptions, the
topological types of Iz X, and XX, depend only on the family {X }
and not on the linear-topological type of E. Earlier, results in this direction
were obtained by C. Bessaga [1] who showed that if the X ’s are all Banach
spaces then IIzX, o~ I, X, for E,F ¢{c), 1y, Kothe spaces}, and by
W. E. Terry who recently showed in [22] that Bessaga’s result remaing
true if the X’s are complete linear metric spaces with strictly increasing
F-norms, and that under these assumptions I, X I} X, ~ ITX.

1.1. TeEorEM. Let B be a complete coordinate space over a countable
set A and assume that the cone .

Cg={f e B: f(a) >0 for all acA}

is an AR (M)-space. Then, given a family {(X,, [ .): « € A} of F-normed
spaces, the pairs (X IpX,, bx XpX,) and (LX [] X, L,x 3 X} are
aed A4 .

. € ae
homeomorphic. In particular, L X IIzX, o [] X, if oll the X)s are non-
aed

degenerate.

1.2. Remark. In 1.1, the cone Oy is an AR(M) if and only if ¥ is.

In the proofs we shall assume without loss of generality 4 = N.
Tirst of all we observe

1.3. LemmA. If B is a complete coordinate space over N then the
space Cg is non-empty and complete.

Proof. Denote

EB* = {feE: f(i) >0 for all 5} H:= {f < E: f(i)= 0};

we have to show that {Hs: ¢ ¢ ¥} is not a cover of B*. Assume the con-
trary; then for some n ¢ N the set H, contains a relatively open subset

of E*. The map f £>| f| being a continuous retraction (see (i) of B onto B+
with p~H,) C Hy, H, contains an open subset of K. Since H, is a closed
linear subspace of F, we infer that H, ~ = E. This contradicts (1ii).
The completeness of Uz follows from the fact that (' is a @,-subspace
of a complete space.

We need also

1.4. Levma. Let (F, || ||} be a coordinate space over A, let {(Hg, 1l
aed} be a family of F-normed spaces and let Z be o topological space.
If v: ZoFt={feF: fla)=0 for all a} and u: Z— [l H, are maps

aed

such that

and

Wua@)lle < v(2)  for all (a,2) eAx 7,

then image(u) CITLH, and w is continuous as a map into I H,.
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Proof. The first assertion is clear. To prove the second, fix z,¢Z
and e > 0 and let B C A De a finite set such that ¢ == ANB satisfies
lxclu () < te
Then for all ze Z we have

and  lzev(z)] < fe.

[6(2) = (20)l— Kz [0 (#)— 1 (2)] < yolw(20)] + xolu(2)]

, Zelw (@)l + 200 (20) 4 76(v (2)— v(2))
whence, by (i), ’

i (&)= e (@)lll < Je+llyplu (2)— w ()|l + o (2)— v (2] -

Thus, if ¥ is a neighbourhood of £, such that the (eontinuous) function
2 b llyglu(@)—u(2o)l|+ v (2)—»(2)| does not exceed i on V, then
[u(z)—u(z)||] < e for all zeV.

Finally, the third step in proving 1.1 is

1.5. PrROPOSITION. Let (B, | (|5) and (F,||p) be coordinate spaces

over N, let (X, || ll2), ie N, be F-normed spaces and let f = (f,, fo): Lx
X O’E—m—lt—ilzx Cr be a homeomorphism. Then the formulas

(1) 2@, s,) [0, o)V, l(tdsam)'s+|7‘(t:8:w)'m|=f2(t:8+[55!)7
and
(2) f(t7 8, @) = (fl(t7 s+1x), A(t, s, 3)-s, A, s, '7")'77)

X OpX T X (250, % Cp X T Xi such that
FloX Opx Zp X)) = I, X Op X ZpXi.

Proof. Observe that for each 7 ¢ ¥ and (s, #) e Cz X IIzX; the map
¥ B y8,+llyw,lln is strictly increasing and unbounded on [0, o). There-
fore formula (1) uniquely determines a function A: X Opx g X;—R"Y;
thus f is well-defined.

Now set Z = I, X Cp X IIpX;, (Hi, | |s) = (B XXy, the “sum” norm) (%),
o(t, s, ) = fi(t, s+ |z]) and w(t,s,s) = ((si, @) ¢ P Hi. Given ¢ eN the
function A;: Z—R is defined by |hi(e)wi(e)s = vi(2), z€Z, and thus is
continuous by Lemma 4 of Terry [22](%). Thus, by 1.4, zsz(z)-w(z)
is a map of Z into ITzH;. This is equivalent to saying that f is a map
of Z into I, X Cp X ITpX;.

define a homeomorphism J:

) Le. Iy, D= lyl-+ 12 _ ,
(%) For the sake of completeness we insert here a reformulation of this lemma:

let (H,|[) be an F-normed space, let y, ¢ H satisfy lim y, = , and suppose that || is

700

strietly increasing on the ray [0, co)-9;. If (un) € [0, co)¥ is a sequence With lim [un gy
00

N>
= |tagal, then limpu, = p;. A proof follows immediately from the fact that (u,) cannot
have any cluster point in [0, o\ {m}-
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Denoting by g: I, x Op—1,x Cg the inverse of f, we infer (by sym-
metry) that § is also Well—deﬁ.nédﬂ and continuous. Moreover, given
(t,s,2) elbx Opx e Xy, we have f(t,s, )= (fi(¢, s-+]a]), is, Am) and
i, s, x) = (gl(fl(t, s+ [o]), As+[Aw|), pAs, ,ulm), where A, ue [0, o)V sat-
Isfy 25+ o] = fo(t, s+ J2l) and wds+|piz| = giffi(t, s+ |ol), fo(t, s+ o))
= s+ [#|. The latter defines ul e [0, co)” uniquely (for the maps g + s
@i ave strictly increasing on [0, oo)), whence ui=1, §f = id and,
by symmetry, fj=id. Since F(lx Crx LzX:)ClLX OpX ZpX; and
FlX Cpx ZpXy) Clx O x ZgX;, the result follows.

Now we finish the proof of 11. Set F=R® and [(A)r
= X min(27"", |4;]). Theorem 3.2 of [26] and 1.3 imply that I, X Cg
=t l, X Op ¢ ;. Combining this with 1.5, we obtain the first assertion
of 1.1, and applying a part of 0.1, we get the second one.

Before passing to the proof of 1.2, we note that neither 1.2 nor the
results 1.7-1.8 below are used in the subsequent sections and the
following observation is quite sufficient for our purposes:

1.6. Remark. If F is a loeally convex coordinate space then COg
¢ AR (M) by Dugundji theorem 0.2.

Proof of 1.2. We use the notation of 1.3. If E is a complete AR ()
then so is B as a retract of E. Hence in order to prove that Og
=E™NUH, e AR (M) it sufficies to show that every map f: [0, 1]°—E*

neN
is @ uniform limit of Cz-valued maps (see [27]). To this end fix
f:[0,17°—E* and let t he a point of Cg; it is clear that the maps

fu(@) = fl@)+n7%, we[0,1]%,

have the property that supifa(z)—f(z)] < lln~"| and image(fs) C Cx for
all nelN. “

Conversely, if (g e AR (M) then I, X [Tz R ~ R® by 1.1, whence Z is
a refract of the space R™ e« AR(M).

A partial refinement of 1.1 is the following:

1.7. TEwoREM. Let E be a coordinate space over a countable set A and
assume that E is homeomorphic to a Fréchet space. Then, given T - normed
spaces (X, || L), a e A, we have ITpX, = ITx,.

aed
Proof. Without loss of generality assume that 4 — N and all the
&;’s are non-degenerate. For each i ¢ ¥ choose an a; € XN\{0}, denote by

(¥, 11 Hly) the quotient space X;[Ra; and by p;: X,—Y, the projection.

We need the following.

Leyya. There are maps gi: Yi—X; i eN, such

that p;q;=id and
lae@lls< £]llyllls for y < Yi.
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Proof. Fix ¢ € N. By Michael’s theorem ([16], p. 753) there is a map
ri ¥;—X,; with pg =id. Put for y e YN0}

v(y) = sup (I (y)+ A, < 211
#y) = it (s o)+ dagl, < 2yl

where sup k= co and infR == —co, The get
{0, 2) €« (TNOY X B: ly) < 4 < y(y)}

is open in ¥,X K. Therefore there exists a map y: ¥ \{0}—R such that
p <y <g(sce [10], p. 170). We let 7;(0) =0 and q,(y) = 7(y)+y(y)a,; for
¥ e TN0}. Given 4 € ¥ \{0} there are Ay A € B such that A<y < Ay
and [l (y)-+4ad; < 2|lylll; for j=1,2. Writing y(y)= Uy +(1—1)4, with
te[0,1], we get

la:(@ll; < |Ht(i‘(ﬁ/)Jrllai)H[¢+Ill(1—fv)(f‘(y)+7uzai]iH < 4{llyilly,

as required.

We continue the proof of 1.7. Let 4; be the maps of the Lemma.
It follows from 1.4 that the map

(1) H((Pi(%)), (o~ !Zipi(wi)))

is a homeomorphism of TzX; onto @ x H, where G'=II3Y; and H
= {(21) e ITs Xy w; ¢ Ray for all i}, Thus it remains o show that H has B®
as & factor (for by Anderson’s theorem we would then get IgX; ~GxXH
2 GXH XR® o X Hy X RO X Iy e T Xy % 1 = [IX;, see1.1,1.2 and 0.2).

Clearly, H o~ ITy(R, v;) where v,(2) = lAadl; for i€ N, 4 ¢ R. Writing
B, = II,(R, w;) for any system w — (w,) of F-norms on E we infer from
1.4 that, given two such systems w and w’, the following facts hold:

(1) If, for each ¢ ¢ N, w; and w; are strictly inereasing on [0, o)
and satisfy ‘

sup{ws(A): 1 e R} = sup {wj(1):1 < R},
then
(4 > sign (2o 1))

Is a homeomorphism of B, onto E,.
(2) If, for cach ieN, w; and w; satisfy dw; < w} < 2w;, then the
identity map iy a homeomorphism of Z, onto F,. -
Also note that if || is an F-norm on R then ¢ =inf{|Al/|4: A¢[0,1]}
> 0 and the F-norm [A" = |4+l (1]A)™" is strictly increasing on
[0, e0) and satisties || < [|' < 2]|[. Therefore, applying successively (2),
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(1) and (2), we infer thatfor some system (c;) « (0, co¥ we have B, ~ By,
where

wid) =min(|A],e;) for LeR, ieXN.

Let 2 = sup{||2ed|: |4] < e}, where e; ¢ B is the ith versor of R*®, and let
¢=1inf{Z:: 4 e N}. We consider two cases:

{a) ¢= 0. Let A be an infinite set with 2 8<< o0, g6t B= N \4

ied

and let Fu= {yf: feB,} and Fz = {y5f: fe B,} be the subspaces of 7.
By (i) and (ii), By Fax Fp and P4 coincides (as a topological space)
with R%. Hence H o B, o~ R®x Fz has R™ as a factor.

(b) ¢> 0. Then, the identity map i: E— By, is an isometry on every
Dball of radius ¢ and hence it is a homeomorphism of E onto ¥, (use the
linearity of ). Thus H o2 By ~ F =~ R® by the Kadec—Anderson theorem.
This completes the proof.

1.9. CorOLLARY. If in addition to the data of 1.7, all the X ’s are
homeomorphic 1o a space X < AR (M), then ZpX, ~ XX, .

Proof. By 1.1, 1.2 and the Anderson theorem we have R*x ZpX,
= RB*x XX, whence TR®x Y3 X, = JE®x IX % Y. Now, by [24, § 7]
we have TR = R®x IR and therefore Y, =¥, =Y, where ¥, = B®x
X ZRX XpX, and ¥,= R*x IR x XX. Since Y is a linear metric space
with Y o~ ¥ ¢« AR(M), the sets M, = SR x TR X 2 X, and M,= IR x
X ZR X XX are Z-absorbing in ¥, and Y., respectively (see [24], §7),
whence M; o M, by [24, § 3]. Thus IR x 2pX, o~ ZX, and it remains
to show that XpX, has ZR as a factor. This is done in much the same
way as in the proof of 1.7, by using in case (b) an argument involving
absorbing sets (the details ave left to the reader).

§ 2. Some embedding theorems. The following is related to a well-
known lemma on existence of AUb-fine pseudometrics on paracompact
spaces (see [15], p. 165 and [7], p. 527):

2.1. LeMMA. Let X be o metric space, let U be an open cover of X and
let B be a linear meltric space with dens(E) > card (). Then, there are an
F-normed space (H, H) and & map h: X—H such that H ~E and

(%) if KCH satisfies diemy| K <1 then A"YEK)C U for some U e W,

Proof. By the Daracompactness of metric spaces we may assume
that the eover UL is locally finite and o-diserete (see [7], p. 529). Let
(2p)yea, be & system of [0, 1]-valued maps such that (J A7Y(1) = X and

Uels
WXINU =0 for UeU. Express U= U W, where the a’s are

diserete families; without loss of generality we may assume Uy ™ Uy = @
for n £ m.
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2.2. SUBLEMMA. There are an F-normed space (Hy, | |) and
o set A CH,y such that Hy ~ B>, card(4) = dens(®) and fja— My =1 for
ol 2¢[0,1] and a,be A, a # b.

Suppose 2.2 has been shown. Set H,=IL,H, and 4,= {(e) € Hy:

@ped and @ = 0fori  n}, ne XN, and let U ay be an injection of Al
into A, such that aye 4, iff UeU,. Define

g@) = 3 dg@ay for zeXx.
Uels
It KCH, satisfies diam ;K< 1, then choose eg™HK) and (n, U)
e N XU with # e 15%(1) and U € Ws,. For all y « I\T we have g (@)—g@)|
= llav—2(y)ll, > 1, where
0 i oye U,
2(y) = Velon
ApWay I yeVe U, .

Thus g~YK)C U. If we now let H = I,x H, and } — 0x g, then (H, h)
will satisfy all the required conditions (see 1.1 and 1.8).

Proof of 2.2. Fix an F-norm | || on ¥ and, given « = (k,1) e Nx N,
let B, be a maximal subset of B such that -

lol =& and  inf{la—2b: 2¢[0,1]}>1" for a,beB, asb.

The set B= |J B, is linearly dense in B and hence its cardinality is

aeNXN .
equal to dens&?) (Proof. Put B, = clspanB and suppose there is an
& ¢ EN\E,. Choose & ¢ N with k™' < inf{|la—a||: # ¢ B} and let I >k satisfy
7 < inf{|lz— ial: @ ¢ By, 2] > & and 1[0, 1]}. The set By, v {a} still
lies outside the ball {x ¢ B: ||z = ™'} and we have inf{|p— Aaff: A e[0,17}
=17 and inf{|Ab—al: 1e[0,1]} = k"1 >1"" for all b € B,,. This con-
tradicts the maximality of B;).

Set L= (N x N) and H,= II;(B,, | |), where for a = (k,l)e N XN
we let E,= B and |||, = ¥l ||. Finally, define 4,= {z e H,;: @, B, and
wp=0 for B # a} and Ay= |J 4,. It is clear that 4 = {0}x 4, and H,
=1, X H, satisty the required conditions.

Let us recall that if (Fy, || |li), N, are F-normed spaces and we
refer to IIF; as a metric space, then we shall always consider it under
the F-norm defined by (0). So, when speaking e.g. about (ITF;)®, we
shall have a specific F-norm on this space in mind. _

The proof of the next result is a “geometric interpretation” of
the proof of Theorem 2.3 of [26].

2.3. PROPOSITION. Let (F, || ||) be an F-normed space and let f: X—F
be a closed embedding into F of an AR (IM)-space X. Then there are an


GUEST


80 H. Torudezyk

F-normed space (@, ||| |ll) with & =~ F>° and a map g: X—G such that
@ e (f(@), g(2)

i8 an embedding of X onto a regular retract of Fx G.

Proof. Without loss of generality we may assume (see [17]) that '

: !
X is a closed subset of a normed linear space L; let 7: L25X be a con-
tinuous retraction.

SUBLEMMA. Let g, , be a continuous pseudometric on X. Then there
are an F-normed space (G, ||| ||l:) and & map gi: X— G4 such that Gy ~ F™
and, denoting .

(x%)

0@y, %) = |l|ga(@y)— gu(@)|ile, @1, @peX,

we have

(#x)  for CLZLy neN and AC X, cliamgiA < 27" implies diamgi_lr(convA)
< a2

Proof. Given n e ¥, let Us, be a eover of X consisting of (relatively)
open sets which are so small that dia-mgi_lr(convA) <n727" for all
U e U, and let (H,, [|,) and h,: X—H, be as asserted in the statement of
Lemma 2.1, taking U= U, and ¥ =F. We set &; = ITH, and g, = (hy)s
it is clear that if n e ¥ and 4 C X satisfy diameiA < 27", then A C U for
some U e,, whence diam, r(convd)<n™27"

Proof of 2.3. Put gy(wy, 1) = ||f(a,)—F(®.); @y, %y € X. Using the
sublemma, construct inductively a sequence (G4, |I] |||s, 99))sex Such that,
for each ie XN, (Gi, ||| |||s) is an F-normed space homeomorphic to F™
and conditions (++) are satisfied. Let G = IT@G;, g = (9:) and

0 (@1, #3) = ol , “72)+2 ‘min(é’i(mu %), 24“) .
ieN
The map » ~(f(w), g(#)) is a closed isometric embedding of (X, o) into
F X @ and one easily verifies that, for every ACX, diam,4 < } implies
diam,r(conv.d) < 10 diam,4 (see the proof of 2.1 in [26]). Thus the
image of X is a regular retract of Fx @ by [26, Proposition 2.2].
Finally, we need

2.4. PROPOSITION. Let E be u linear metric space and let X be a metric
space with dens(X) < dens(B). Then X is homeomorphic to a subset of B>,
and if, moreover, X is complete-meirizable, then there are an F-normed
space (F, ||} and an embedding fr X—F such that F ~ E® and the sot
J(X) is complete in the F-norm | Ii.
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Proof. Fix a metric p for X and let U, denote the cover of X by open
o-balls of radius 1/n. For each # ¢ N let an F-normed space (H,,, | |,), with
Hyze %, and a map h,: X — H,, satisty condition (+) with U= W,,; it is clear
that b= (h,) is an embedding of X into H = ITH, ~ F™. Tet (H, |
be the completion of H. If X ig complete-metrizable, then, by a theorem
of 'W. Sierpiniski [21], h(X) is a G;-set in A and therefore there is a map

g: X—R* such that a—i(g(w), h(w)) is an embedding of X onto a closed
subset of E*x H. Then the set f(X) is contained in F = E®x H and is
complete in the F-norm of F. Since P o« R X B® ~ B (see 0.1), the
result follows. .

QuusTIoN. Let % be a Banach space. Is B homeomorphic to a sub-
set of Y

§ 3. Factors of linear metric spaces. The main result here is:

3.1. TumoREM. Let E be a linear metric space and le¢ X be an
AR(M)-space with dens(X) < dens(E). In either of the following cases
we have XX F = F:

(a) X is complete-metrizable and F = B,

{(b) X admits a closed embedding into E, and either F = SE® or B
cAR(M) and I'= ZH. :

We note that theorem (A) mentioned in the introduction follows
from 3.1 and the Dugundji theorem 0.2,

Proof of 3.1. First consider case (a). By 2.4 and 2.3 there are an
F-normed space (H, || ||) and an embedding k: X—H such that H o~ E®
and the set 2 (X) is complete in the F-norm || || and is a regular retract
of (H,| ||). By Proposition 1la and Remark 1 of [25] there is a concave

homeomorphism »: [0, m)fﬂi[o’ oc) such that, writing,

el = o(ltl), teH,
L= {(%) ¢ RY: |(M)llp = 3 2°|h| < oo},
we have X X ITy(H, ||| ||I) = I H,1|| ]|}). Since L is a Banach space
and ||| ||} is an admissible F-norm for H, we infer from 1.1 and 1.6 that

LX I (H, ||| ||]) ¢ H® o= B®. Thus X X E* ~ E*.

Now consider the other ease. Arguing ag above, we get X x I, X ZE®
21, X TB®, whence X X ZH™ o~ XE® by 1.6. If now E < AR(M), then
by [24, § 7] we have ZB® ~ E°x JR and XX E®X IR ~ E*x IR.
Using results of [24, § 7] again, we infer that both X x ZE X ZR
and JE X IR can be interpreted as Jz-absorbing sets in X x B®X ER
and E® X IR, respectively, where Xz is the family of all the Z-sets in
the space which admit a closed embedding into a finite power of E. Thus
XX B°X IR =~ F® x R implies X x ZEX ZR = XE x ZE by [21], § 3.
Combining thi§ with 0.1, we get X X JB =~ XE.

8 — Fundamenta Mathematicae T. LXXXVIIT


GUEST


82 H. Torudeszyk
In the sequel we denote by OX the closed metric cone over X, as
defined in [26]. The following is a consequence of 3.1.

3.2. TumorEM. Let B be a linear metric space, let X be an ANR(IN)
with dens(X) < dens(E) and suppose that either condition (a) or condi-
tion (b) of 3.1 is satisfied. Then X X F is homeomorphic to an open set UC T
such that (F,F\U) = (0X X F, {0} X ).

The proof is the same as that of [26, Theorem 4.2], with the aid of
the fact that, by 3.1, FXR = F = F X (—oo,1].

Now we apply 3.1 and 3.2 to get some corollaries on infinite-di-
mensional manifolds. We first note

3.3. PrOPOSITION. Let B be a linear metric space such that B o~ B
or B o~ XE e« AR(M). If K is a locally finite-dimensional simplicial com-
plex such that the star of each wvertex of K contains at most dens(E)
simplexes, then |K|X B is an E-manifold (K| is taken in the metric to-
pology).

Proof. Without loss of generality assume that the complex K is
finite-dimensional and K contains at most dens(#) simplexes. Then |K| is
a complete ANR (Mt) with dens (|K|) < dens(H) and therefore |K|x E®
is an B®-manifold; thus we can restrict ourselves to the case ¥ ~ XF
€ AR(9t). The assertion will be proved by induection with respect
to n = dimK (it clearly holds true for » = 0). Suppose we have shown
that for every (n—1)-dimensional simplicial complex L containing at most
dens (F) simplexes, the space | L| X E is an E-manifold, and let » be a vertex
of K. Then [st(v)| is the closed cone over an (n—1)-dimensional simplicial
complex |L| and, by our induective assumption, |L| admits a closed embedd-
ing into an F-manifold. Using a theorem of Henderson ([11], Theorem 2),
we infer that |L]| admits a closed embedding into B and |st(v)| admits
4 closed embedding into. CE. Since OF is a retract of B (see [26], Lemma
41), 3.1 implies that [st(v)| X B =~ E. Hence, by the arbitrariness of
ve K, |K|xX E is an E-manifold.

3.4. TrmorEM (Representation of manifolds). Let M be a connected
paracompact E-manifold where B ¢ AR(M) is o linear metric space such
that B o~ E® or E o~ XE. Then:

(a) M is homeomorphic to a product |K| X B, where K is a locally finite-
dimensional simplicial comples;

(b) M is homeomorphic to an open set UCE such that (B, B\U)
=~ (0¥ X E, {0} X E) for some space Y.

Proof. As shown in the proof of [29, Theorem 5], there is a locally
finite-dimensional metric simplicial complex K which contains at most
dens(E) simplexes and has the homotopy type of M. Then, |K|x F and M
are homotopy-equivalent paracompact B-manifolds and the theorem of
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Henderson [11, Theorem 6] (") shows them to be homeomorphic. Now,
(b) follows from (a) and 3.2.

Let us make some comments on Theorem 3.4. Assertion (a) was
proved by D. W. Henderson [10] for B =1, and by J. E. West [29] for
E = the non-separable Hilbert space (8); by using the absorbing sets it was
next extended to certain pre-Hilbert spaces in [8], [12] and [24]. A part
of (b), Henderson’s Open Embedding Theorem, was proved in its final
form [11] in a slightly more general setting; we include here another
version of this theorem since it gives additional information on the
embedding (for instance, the results of [10] can easily be derived from 3.4).
Our proof of 3.4 depends on Henderson’s theory; however, if E is com-
plete-metrizable or I = X7, then assertion (b) follows directly from 3.2
and the stability theorem of [20].

For the terminology used below see e.g. [26], § 6.

3.5. TumoreM. Let B be a locally convex linear metric space such that
E o E® or I o= X ¢ AR(I), let X be an ANR(I)-space and assume
that X is complete-metrizable if B o E>. Then, given a Z - embedding h: X—E,
I admits a trivial tubular neighbourhood (R, B, U) such that (B, E\U, h{X)
= (0XXE, {0} x B, X x {1} x {0}). If, in addition, X is a coniractible
space, then F is itself o trivial tubular neighbourhood of .

3.6. CorROLLARY. Let B and X be as in 3.5. If M is an E-manifold,
then every Z-embedding h: X —M admits a trivial tubular neighbourhood.

The proofs are the same as those of Theorem 6.3 and Corollary 6.4
of [26].

L4

§ 4. Linear metric spaces homeomorphic to a Hilbert space. One of the
problems in the infinite-dimensional topology is to identify the spaces
which are homeomorphic to a Hilbert space. It is known that the class &
of linear metric gpaces homeomorphic to a Hilbert space includes ‘all
separable Fréchet spaces (Kadec-Anderson, see [0] and [5]), all reﬂemv«?
Banaeh spaces (Bessaga [2]), the spaces of the form c(4) (Troyanski
[28]) and 1(4), cextain spaces of continuous functi'ons, and also the
non-locally convex space Ly(0, 1) of measurable functions (Bessaga —’Pel-
cayhiski [3]-[5]); a well known conjecture is that Je includes all Fréchet
spaces. Following a suggestion of C. Bessaga, we ghall use Theorem 3.1
to get the following description of J:

() Althongh stated in [11] for manifolds with a locally convex model only, that
theorem remains true if B ¢ AR (). ) )
(%) Compare West's seemingly move general setting with the result of § 4.

6%
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41. TEEOREM. An infinite-dimensional linear metric space X is
homeomorphic to a Hilbert space if and only if X is a complete AR (M)- space
with X o~ X,

Proof. If X is an infinite-dimensional Hilbert space, then (a) X is
a complete AR(I) (Dugundji theorem 0.2), and (b) X ~ X (Bessaga
and Petezydski [3], p. 266; use 1.1 with E=1, to get a quick proof).
Conversely, let X satisfy conditions (a) and (b) and let H be an infinite-
dimensional Hilbert space with dens(H)= dens(X). Then, both X and H*
are complete-metrizable AR (IMM)'’s, whence, by 3.1, X*°x H® = H® and
XX H® =~ X*. Thus H® o~ X%; since H® ~H and (by :Lssumptién)
X* ~ X, the proof is complete.

4.2. CorOLLARY. If F' is a non-degenerate Fréchet space with T = F'*®,
then I o= ,(4), where A is a set of cardinality dens (F).

4.3. COROLLARY. If B is any complete locally bounded linear metric
space, then B> is homeomorphic to o Hilbert space.

Proof. (We recall that & is said to be locally bounded if 0 has any
bounded neighbourhcod). By a theorem of Aoki and Rolewicz (see [19],
p. 61), there is an admissible F-norm || || on E which is P -homogeneous
for a certain p > 0 (i.e. |z = |47z for 1 e B and z « E). Then the maps

n
((Ras ooy 20, (@1, ey 2)) o D |1 P2
i=1

satisfy the conditions required in Theorem 3 of [13] and therefore, by
that theorem and the contractibility of B, B « AR(I). Now the assertion
follows from 4.1.

Th® condition X ~ X* used in 4.1-4.3 is in general fairly diffieult
to verify (even if X is a Hilbert space). With the aid of 1.7 , however,
4.1 can provide a tool in proving that certain spaces are homeomorphic
to a Hilbert space.

44. Exavprr. Leb (X, | |[) be an F-normed Fréchet space, let 4 be
an infinite set and consider the space

Y =o(4; X)= {(@,) e X4 {aed: |z, > e} is finite for each e > 0},

equipped with the F-norm Iz} = sup {jw,l: @ e A}. Then, I, Y is
isomorphic to ¥, whence by means of 1.7 (or 1.1 and the Bartle-Graves
theorem) we have ¥ ~ ¥, Moreover, Y is easily seen to be a Frécheh
space and therefore we infer from 4.2 that co(4; X) is topologically a Hil-
bert space. This includes the result of [28] as a special case.

For another application of the factor theorems to the topological
classification of linear metric Spaces see [18].
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