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On the shape of MAR and MANR-spaces
by
Stanislaw Godlewski (Warszawa)

Abstract. It is proved in the paper that MAR-spaces [8] are the same as spaces
with trivial shape in the sense of Fox [7]. If X « MANR [8] and ShX > Sh¥ (in the
sense of Fox [7]) then ¥ ¢ MANR. Moreover, a homotopy extension theorem for mu-
tations [7] is proved.

In [3] K. Borsuk introduced the notions of a FAR-space and
a FANR-space and proved ([4], [5]) that they are invariants of shape
(in the classical Borsuk sense [5]). In [8], replacing fundamental sequences
(12]) by mutations ([7]) I introduced the analogous notions of the MAR-
space and the MANR -space. The aim of this paper is to prove that these
notions are invariants of shape in the sense of Fox ([7]) and in the sense
of Borsuk ([6]).

§ 1. Shape in the sense of Fox. In this section we recall some notions
introduced by R.H. Fox in [7].

Consider the category ANR() of metrizable absolute neighborhood
retracts with continuous mappings and the relation of homotopy between
mappings denoted by ~. By the Kuratowski-Wojdystawski theorem
([11), p- 78) any metrizable space X may be considered as & closed subset
of an ANR (9)-space P. By the first theorem of Hanner ([1], p. 96) every
open subset of an ANR(t)-space is an ANR(IR)-space. Hence, the
family of all open neighborhoods of X in P with the inclusions is an in-
verse system in the category ANR (). This system is called the complete
neighborhood system of X in P ([7], p. b4) and denoted by U(X, P).

Consider two arbitrary complete neighborhood systems Ul (X, P)
and V(Y, Q). A mutation ([7], p. 49) f: UX, P)-»V(Y,Q) is defined as
a collection of maps f: U-—V, where UeObU(X,P), VeObV(Y,Q),
such that

(11) If fef, weMorU(X,P), veMor¥(Y,Q) and the composition
vfw is defined, then ofw ef.

(1.2) Bvery object of V(¥,Q) is the range of a map belonging to f.

1 — Fundamenta Mathematicae LXXXVIIL

mhooem faa


GUEST


icm

38 8. Godlewski

(1.8) TIffi,foefand fi,fo: U—V, then there exists a u e MorU(X, P),
u: U'-U, such that fiu~ fyu.

It f: U=V, then we also write U = domainf and V = rangef.

The collection u= MorU(X, P) is a mutation from U(X,P) to
itself ([7], p. 50).

Consider two mutations f: U(X,P)-V(Y,Q) and g: V(Y,Q)
—WI(Z, E). The composition gf: U(X, P)-W(Z,R) of the mutations f
and g is the mutation being the collection of all compositions gf such thas
fef, geg, and gf is defined ([7], p. 50).

Two mutations f,g: U(X,P)->V(¥,Q) are homotopic (notation:
fag, [7], p. 50) if

(1.4) For every fef and geg such that f,g: U-V there exists
a 4 eMorU(X, P) such that U = rangeu and fu~ gu.

Two metrizable space X and Y are said to be of the same shape
({7], p. B5) in the sense of Fox (notation: ShX = Sh Y) if there exist two
mutations f: U(X,P)-V(¥,Q) and g: V(Y,Q)>U(X,P) such that

(1.5) Sgzvy=MorV(Y,Q) and gf~u=MorU(X,P).

By Theorem (3.2) of [7] the choice of ANR(9M)-spaces P, Q and the
manner of imbedding of X and ¥ in P and @, respectively, iy immaterial.

If mutations f and g satisfy the first of the conditions (1.5), then
we say that the shape (in the sense of Fox) of X dominates the shape of ¥
(notation: ShX > ShY).

§ 2. A homotopy extension theorem for mutations. Let X be a closed
subset of a metrizable space X’ considered as a closed subset of an
ANR(M)-space P and let ¥ be a closed subset of an ANR(IMN)-space Q.
We say that a mutation f: U (X', P)—»V(Y,Q) is an extension ([8]) of
a mutation f: U(X, P)->V(Y,Q) if

(2.1) for every fef there exists an f’ e f' such that rangef’ = rangef
and f'(z) = f(z) for every z ¢ X.
Then fis called a restriciion ([8]) of f".
In [8] (Theorem (2.3)) we have proved that
(2.2)  If mutations f,g: U(X,P)— V(Y,Q) are both vrestrictions of
a mutation f': U(X', P)>V(Y¥,Q), then f~g.
Let us prove the following :
(2.3) ToworEM. If f~g: U(X, P)>V(Y,Q) and f': U(X', P)

-V(Y,Q) is an extension of f, then there ewists am emtension g UX', P)
~V(Y,Q) of g such that f'~g’.
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Proof. It is easy to see that the collection i of all inclusions ¢: U7,
where UeObU(X,P), U «Ob U(X,P), UCU’, is a mutation
i: U(X, P)~»U'(X', P). Consider the composition [ UX,P)-V(X,Q).
It is evident that f'i is a restriction of f’. Hence by (2.2) it follows that
fi~f. Therefore f'i~ g.

Take an arbitrary geg, g: U-V. By (1.2) there exists an f'ef’
with range f'=7V, f': U'>V. Since flixg: UX,P)-»V(Y,Q), then
by (1.1) and (1.4) it follows that there exists a U; e ObU(X, P) such
that Uy C U' ~ U and f'|U,~g|U,: U,—V. By the first theorem of Hanner
([1], p. 96) and the Borsuk homotopy extension theorem ((11, p- 94) it
follows that there exists an extension g': U’V of 91T, such that g'~ f’.
It is easy to see that the set of all extensions g’ of maps g e g obtained
this way is a mutation g": U'(X’, P)~V(¥, @) homotopic to f’ and being
an extension of g. Thus, the proof is concluded.

Remark. Theorem (2.3) is related to Patkowska's theorem on the
extension of a homotopy for fundamental sequences ([10], p. 87).

§ 3. Shape of MAR-spaces. Let X be a closed subset of a metrizable
space X' considered as a closed subset of an ANR(I)-space P. A mu-
tation r: U'(X', P)-»U(X,P) is called a mutational retraction ([8]) if
7(2) = @ for every v e r and for every # « X. A closed subset X of a metriz-
able space X' is called a mutational retract ([8]) of X' if there exists a mu-
tational retraction r: U'(X’, P)» U(X, P). A metrizable space X is called
a mutational absolute retract (shortly: MAR, [8]) if, for every metrizable
spacé X' containing X as a closed subset, the set X is a mutational re-
tract of X'. If ShX = Sh(a), where (a) is a space consisting of only one
point a, then we say that the shape ShX is trivial.

In [8] (Theorem (4.9)) we have proved that

(3.1) MAR-spaces are the same as mutational retracts of AR(IN)-spaces.
Let us prove that
(3.2) If ShX >8hY and ShX is trivial, then ShY is trivial.

Proof. By hypothesis there exist mutations f: U(X,P)->V(Y,Q)
and g: V(Y,Q)-U(X, P) such that

(3.3) fe~v=MorV(Y,Q).
It remains to show that
(3.4) gf ~u=MorU(X,P).

Since ShX is trivial and the relation of domination between shapes
i transitive, we can assume that X contains only one point a, X = (a).
Since the choice of an ANR(I)-space P containing X as a closed subset
is immaterial ([7], Theorem (3.2), p. 55), we can also assume that P = (a).
1
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Therefore U(X, P)= U(a), (a)) is a rudimentary system consisting of
only one object (a) and only one morphism id,, which is the identity
on (a). Hence the mutation gf: U(a), (a))~ U{(a), (a)) consists of only
one constituent, namely id,. Therefore gf = (id,) = w= MorU(X, P).
Hence we obtain (3.4) and the proof is concluded.

Remark. The statement (3.2) is related to the statement (7.2) of [4],
due to K. Borsuk and concerning the shape of compacta.

Let us prove the following

(3.5) THBOREM. A meirizable space Y is a MAR-space if and only if
the shape Sh'Y is trivial.

Proof. Suppose that ¥ ¢« MAR. Then by (3.1) there exists an
AR(M)-space X such that ShX > Sh¥. By Corollary (3.3) of [7] ShX is
trivial. Hence by (3.2) ShY is trivial.

Now, suppose that ShY is trivial. Then there exist mutations

f: Ul(a), (a)) > V(Y, P) and g: V(¥, P)-U((a), (a)) such that
(3.6) fg~vy=MorV(Y,P).
By the Kuratowski-Wojdystawski theorem ([1], p. 78) we can assume
that PeAR(M). It is easy to see that the mutation g: V/(P,P)
—Ul(a), (a)) consisting of the constant map g': P—(a) is an extension
of the mutation g: ¥(¥, P)— U((a), (a)). Hence the mutation fg': V(P, P)
= V(Y, P) is an extension of the mutation fz: V(¥, P)— ¥V (¥, P). From
(3.6) by the homotopy extension theorem for mutations (2.3) it follows
that the mutation v: V(¥ ,P)—V(¥,P) has an extension v': V'(P,P)
- V(Y, P). Consider the collection r of all maps » e v’ such that riy)=y
for eyery y ¢ ¥. We have proved in [8] (see the proof of Theorem (4.14))
that » V'(P, P)>V(Y,P) is a mutational retraction. Therefore ¥ is
a mutational retract of P and P ¢ AR(M). Hence by (3.1) we obtain
Y e MAR. Thus, the proof is finished.

Remark. Theorem (3.5) is related to Theorem (7.1) of [4], due to
K. Borsuk and concerning the shape of compacta.

From (3.2) and Theorem (3.5) we obtain the following

(3.7) CorOLLARY. If X ¢ MAR and ShX >8hY, then Y ¢MAR.

Remark. Corollary (3.7) is related to Corollary (7.3) of [4], due to
K. Borsuk and concerning the shape of compacta.

From (3.7) we obtain the following

(3.8) CoroLLARY. If X ¢MAR and ShX =ShY, then Y ¢« MAR,
i.6. MAR 4s an invariant of shape in the sense of Fox.

Consider an arbitrary metrizable space X and denote by Sh(X) the
shape of X in the sense of Borsuk [6]. This notion is well known and it
will . be recalled here.
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In [9] (Theorem (3.6)) 8. Nowak and the author have proved that
If Sh(X) > Sh(Y) then ShX >Sh Y.

From (3.7) and (3.9) we obtain the following

(3.10) COROLLARY. If X ¢« MAR and Sh(X) > Sh(Y), then ¥ ¢ MAR.

(8.11) CoROLLARY. If X ¢ MAR and Sh(X) = Sh(X), then Y c MAR,
i.e. MAR is an invariant of shape in the sense of Borsuk

(3.9)

§ 4. Shape of MANR -spaces. A closed subset ¥ of g metrizable space
X' is called a mutational neighborhood retract ([8]) of X' if there exists
a closed neighborhood W of X in X’ such that X is a mutational retract
of W. A metrizable space X is said to be a mutational absolute neighbor-
hood yetract (shortly: MANR, [8]) if for every metrizable space X’ con-
taining X as a closed subset, the set X is a mutational neighborhood
retract of X',

In [8] (Theorem (4.11))-we have proved that

(41) MANR-spaces are the same as mutational retracts of ANR(IM)-

spaces.
In [8] (Lemma (2.4)) we have proved the following

(4.2) LEMMA. If X is a closed subset of a metricable space X'y 7 is
an ANR (IN)-space and f, T: X'~ Z are both extensions of a map f: X2,
then there ewisis a neighborhood U of X in X' such that f |U~f|0.

Let us prove the following

(4.3) LeMMA. Suppose f,g: U(X, P)=V(Y, Q) are mutations. If for
every V e Ob V(X , Q) there ewist f e fand g e g such that rangef = rangeg ="V
and fIX = g|X then f~g.

Proof. Take arbitrary two maps f, e f and g,¢g with a common
domain and a common range, f,, §o: U,—V,. By hypothesis there exist
maps f, e fand g; ¢ g such that range f, = range g, = V, and f,|X = gl X.
By (1.1) we can assume that f, and g, have a common domain U, con-
tained in Uy, fy, gu: Uy~ V,, U, C U,. It follows by the first theorem of
Hanner and by Lemma (4.2) that there exists a U, ¢ ObU(X, P) such
that U,C U, and f|U,~|U,. Let us put f, = f,|U, and o= 91| Us.
Then fy e f, ayc g, fo, a1 Us=Vy, fo go. Leb fo = fi| Uy, g5 = go| Us. Then
fack, gaeg, fur gy UynVy. Since fo,focf and fo,fy: UV, by (13)
there exists a U, e ObU(X, P) such that Uy C U, and fo Us~fy|Us.
Analogously, there exists a U, e ObU(X,P) such that U,C U, and
92Uy g5|U,. Putbing U= U, ~ U,, we obtain U;cObU(X,P) and
JolUs = fol Us~ fo| Uy 0| Us~ 44| Us = g/ Us. Thus f~g and the proof is
finished. ‘

(4.4) CoroLLARY. Suppose f,g: UX,P)-V(¥,Q) are mutations.
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If for every V e Ob V(X ,Q) there exisis a map f with range f =V
such that fef and feg, then f~g.
Let us prove.the following
{(4.5) TmeorEM. If X ¢ MANR and ShX >8hY, then ¥ ¢ MANR.
Proof. By (4.1) X is a mutational retract of an ANR(IN)-space P.
Therefore there exists a mutational retraction r: W(P, P)—U(X, P).
By hypothesis there exist mutations f: U(X, P)-V(Y, @) and g: V(¥, Q)
- U(X, P) such that

fezv=MorV(Y,Q).

It is easy to see that the family i consisting of all inclusions i: U~ P,
where U ¢ ObU(X, P) is a mutation i: U(X, P)- W(P, P). It is proved
in [8] (statement (3.12)) that

ri~ u= MorU(X,P).
Hence we obtain

(4.6) frige fgy: V(Y,Q)-V(Y, Q).

Since g: V(Y,Q)-U(X,P) is a mutation and P «ObU(X,P),
by (1.2) there exists a map ¢ eg with rangeg, = P, g;: V1P, V3
eOb¥V(Y,Q). Take V,eO0b¥V(Y,Q) such that V,CV,. Consider the
family k consisting of all maps belonging to the mutation frig of the form
frg,v, where fef, rer, vev with domain »D ¥,.

Let us observe that h: V'(Vy, @) —V(¥, Q) is a mutation. The verifi-
cation of (1.1) and (1.2) is trivial. Let us verify (1.3). Take two arbitrary
maps by, ks e B With a common domain and a common range. By the
definition of h they are of the following form: hy = fir1¢.9, he = fo?u 919,
where fr e f, r e ¥ for k=1, 2, v ¢ v with domain » D 7,. Henece fi7y, fors
efr, fr: W(P,P)-»V(Y,Q). Therefore, since W(P, P) is a rudimentary
system, by (1.3) we have f;r ~ f,7,. Hence b, ~ h, and the condition (1.3) is
satisfied. Thus, h: V'(V,, Q)= V(¥, Q) is 2 mutation.

It is easy to see that the family j of all inclusions j: 77— V', where
VeObV(Y,Q), V' eObV'(V,,Q) and VCV’, is a mutation, j: V(¥Y,Q)
=V'(Vo, Q)

Consider the composition

H: V(Y,Q)-V(Y,Q).
It is evident that

(4.7)  The mutation k: V'(V,,Q)— V(Y,Q) is an extension of the mu-
tation kj: V(Y,Q)~V(YX, Q).
Let us show that

(4.8) B~ frig: V(¥,Q)- V(Y, Q).
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Take an arbitrary V ¢ Ob¥V(Y, Q). Let hj e hj be such that range
hj =V. By the definition of & we have hj = Jrgrv = fridpgyw, where
fefs rer, vev. Since Ij= fridpg,v and fefy rer, idpei, g,v eg, we
have Ij e frig. Hence by COorollary (4.4) we obtain (4.8)

It follows by (4.6) and (4.8) that

(4.9) hj=v: V(Y,0)-V(Y,Q).

By (4.7), (4.9) and the homotopy extension theorem for mutations
(2.3) it follows that

(4.10)  The mutation v: ¥(¥, @) - V(Y, Q) has an extension »': V'(Vo, @)
-V(X,Q).

By the first theorem of Hanner ([1], p. 96) V, ¢ ANR (M); therefore
we can consider systems V(V,, V,) and V(Y, V,). Let r' be the family of
all maps 7': Vo=V, where Ve V(Y, V), such that +' is a restriction of
a map belonging to »" and r'(y) = y for every y e Y. It is easy to verify
that #': V(Vy, Vo) V(X,V,) is & mutational retraction (compare the
proof of Theorem (4.14) of [8]). Therefore Y is a mutational retract of V,.
Hence, by (4.1) Y is a MANR-space. Thus, the proof is concluded.

Remark. Theorem (4.5) is related to Theorem (2.3) of [5], due to
K. Borsuk and coneerning the shape. of compacta.
From Theorem (4.5) we obtain the following

(4.11) CorOLLARY. If X e MANR and ShX = ShY, then ¥ e MANR,
i.e. MANR is an invariant of shape in the sense of Fox.

From (3.9) and Theorem (4.5) we obtain the following
(4.12) CoROLLARY. If X ¢ MANR and Sh(X) = Sh(Y), then ¥ e MANR.

(4.13) COROLLARY. If X « MANR and Sh(X) = Sh(Y), then Y ¢ MANR,
i.e. MANR is an invariant of shape in the sense of Borsuk.
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Two theorems of functional analysis effectively
equivalent to choice axioms

by
D. A. Edwards (Oxford)

Abstract. The first main result, when combined with a recent theorem of Gardiner,
shows that the Boolean prime ideal theorem is equivalent, as an axiom of set theory,
to the existence, for a certain class of vector lattices, of an extreme positive linear
functional. The second main result provides an equivalence in the same spirit for the
axiom of choice. :

1. Introduction. It is well known that certain theorems of funetional
analysis are effectively equivalent to certain choice axioms. For example,
Luxemburg [14] has shown that Alaoglu’s theorem is equivalent to the
Boolean prime ideal theorem PI (viz that every Boolean algebra has
a prime ideal). Bell and Fremlin [3] have shown that the axiom of choice,
AQ, is equivalent to the statement that the unit ball of the Banach dual
of a normed vector space always has an extreme point. The object of
the present paper is to present two new results (Theorems A and B of § 2)
in this spirit.

Theorem A provides, when taken together with the subsequent work
of Gardiner [8], a new functional analytic equivalent of PI. Luxemburg [13]
proved that PI implies the Hahn-Banach theorem, and Pincus [15] has
gshown that the converse is false. But Bell and Jellett [4] haive shown that
the Hahn-Banach and Xrein—Milman theorems together imply PIL.
Theorem A somewhat resembles the Bell-Jellett theorem, but by re-
stricting the statement suitably to vector lattices we have been able tio
achieve a strict equivalence to PI; the proof of our Theorem A is also
more direct than Bell and Jellett’s argument.

Halpern [9] has shown that PI is strictly weaker than AC. Theorem B
provides & functional analytic statement equivalent to AC. It is not
perhaps so simple as Bell and Fremlin’s result mentioned above, but
it has some indlependent interest: it is related both to Theorem A and
to a theorem of Klimovsky, Bell and Fremlin [11, 2] which formulates AC
in terms of maximal ideals in lattices of sets.
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