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Two theorems of functional analysis effectively
equivalent to choice axioms

by
D. A. Edwards (Oxford)

Abstract. The first main result, when combined with a recent theorem of Gardiner,
shows that the Boolean prime ideal theorem is equivalent, as an axiom of set theory,
to the existence, for a certain class of vector lattices, of an extreme positive linear
functional. The second main result provides an equivalence in the same spirit for the
axiom of choice. :

1. Introduction. It is well known that certain theorems of funetional
analysis are effectively equivalent to certain choice axioms. For example,
Luxemburg [14] has shown that Alaoglu’s theorem is equivalent to the
Boolean prime ideal theorem PI (viz that every Boolean algebra has
a prime ideal). Bell and Fremlin [3] have shown that the axiom of choice,
AQ, is equivalent to the statement that the unit ball of the Banach dual
of a normed vector space always has an extreme point. The object of
the present paper is to present two new results (Theorems A and B of § 2)
in this spirit.

Theorem A provides, when taken together with the subsequent work
of Gardiner [8], a new functional analytic equivalent of PI. Luxemburg [13]
proved that PI implies the Hahn-Banach theorem, and Pincus [15] has
gshown that the converse is false. But Bell and Jellett [4] haive shown that
the Hahn-Banach and Xrein—Milman theorems together imply PIL.
Theorem A somewhat resembles the Bell-Jellett theorem, but by re-
stricting the statement suitably to vector lattices we have been able tio
achieve a strict equivalence to PI; the proof of our Theorem A is also
more direct than Bell and Jellett’s argument.

Halpern [9] has shown that PI is strictly weaker than AC. Theorem B
provides & functional analytic statement equivalent to AC. It is not
perhaps so simple as Bell and Fremlin’s result mentioned above, but
it has some indlependent interest: it is related both to Theorem A and
to a theorem of Klimovsky, Bell and Fremlin [11, 2] which formulates AC
in terms of maximal ideals in lattices of sets.
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The axioms of set theory assumed in the present work may be taken
to be those of Zermelo-Fraenkel theory (see [5, 17]) together with which
ever of the two axioms stated in § 2 is supposed to be in force.

A summary of an earlier version of this paper was published in [7].

I am most grateful to Dr. Paul Bacsich for his valuable suggestions
for this paper.

2. Axioms and main results. In the axioms and theorems which we
are about to state Z will denote a real vector lattice with a distinguished
order unit (denoted by 1), and P (%) will denote the (obviously convex)
set of all positive linear functionals % on Z such that %(1) = 1. (For the
terminology see, for example, [10]).

Axiom HBEML., The conver set P(Z) has at least one emtreme
point.

In classical (i.e. with Zorn’s lemma) functional analysis this is a theo-
rem, a straightforward consequence of the Hahn-Banach and Krein—
Milman theorems.

For each subset B of Z we define the quasi-order <on P(Z) as-
sociated with B as follows: if u, s Uy € P(Z) then u; < u, whenever uy(2)
< %(2) for all z¢ E. Our second axiom is o

AxioM BL. Let B be a sublattice of Z. Then there emists an ewtreme
point of the conver set P(Z) which is minimal in P(Z) for the quasi-order
on P(Z) associated with E.

For the special case in which B = Z the quasi-order here is trivial,
and we see therefore that BL implies HBEML, In classical functional
analysis BL is a theorem, a special case of a result stated by Lumer [12]
(but see also [1, 6]). '

The main results of this paper may now be stated.

THEOREM A. Aziom HBKMIL effectively implies PI.

This theorem is rather close in Spirit to one of Bell and Jellett [4],
but it has a much more direct proof. Gardiner in [8], a sequel to the
Dresent paper, has proved that PI effectively implies HBKML, so that,
in fact, PI is effectively equivalent to HBEML,

THEHEOREM B. Awiom BL is effectively equivalent to AC.

Preliminary versions of Theorems A and B were announced in [7].
Since then, Bell and Fremlin [3] have shown that AC is effectively equi-
valent to the statement that the unit ball of the dual of a normed vector
Space has an extreme point. Their result does not seem to imply Theo-
Tem B (nor vice versa). Some of the interest of Theorem B lies in the
fact that, as we shall see, it is related to a reformulation of AC in terms
of existence of maximal ideals in distributive lattices.
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3. Proof of Theorem A. Axiom HBEMI will
out this section.

PROPOSITION 1. Let Y be o proper vector

be in force through-

lattice ideal of Z and let
Q={ueP(Z): u| Y}.

Then Q is a convex set which has at least one extreme point.

To prove this, consider the quotient vector lattice %together with

r

Z s Z
the natural map =: Z— 7 The positive cone in 7 is%(Z,), where Z is
Z
that in Z. Since 1 ¢ ¥, z(1) is an order unit for 7 Accordingly it is clear
Z
that the natural map ¢ - oz, from P(f') into @, is an affine bijection.

Z
By HBKML the convex set P <§) has an extreme pointg,. Let 1, = g, o x,
and suppose that w, = §(u,-Fu,), where Uy, %y €@. Then there exist o
Z .
in P (?) sueh that us = @; o 7 (i =1, 2) and we deduce that g, = s+ @)

Henee ¢y = @; = @,, and so u, is an extreme point of @ as desired.

THEOREM 2. Let Q be a non-empty set, $ a Boolean subalgebra of the
power set T(Q), and I a proper ideal of B. Then 3 is contained in a mazimal
ideal AC of B.

For the proof consider the vector space I over R of all real functions
on Q that are finite linear combinations of characteristic functions y,
of elements a of %. For each function f: Q- R let §(f) denote the set
{w: f{w) # 0} and let

V={feL: 8(f)ed}.

It is easy to see that I is a vector lattice with respect to the standard
lattice operations on veal functions and that ¥ is an ideal of L that con-
tains {ya: @ € J}. Since J is a proper ideal of B, ¥ cannot contain the order
unit 1 = g, of L.

Now congider

K={ueP(L): ulV}.

By Proposition 1, K is a convex set which possesses an extremf) point Ug-
Now L is obviously a function algebra, and I claim that u, is & multi-
plicative linear functional on L. To see this we have merely to adapt
a standard argument. Suppose g e I with 0 < g <1, and let o(f) = wu,(fg)
for all feL. Obviously 0<o(f) < u(f) for all feL,. Moreover, for
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all feV we have lf] eV and hence
(Nl <o(f]) < w(lfl) =

Thus v is multiple of some element of K, and, since u, is extreme in K,
that element must be u,. It follows that v = A;%, for some real A, [0, 1].
To compute 4, note that

Ay = Agu(1) = 0(1) = wm(g) -

Thus %, (fg) = u(f)ug) for all f in L. It follows that u, is multiplicative
on L.

Now let a(a) = uy(yq) for all @ € B. Then a is an epimorphism of B
onto the two-element Boolean algebra 2. Since u, annihilates V it i
clear that JC Kere, so that we may fake 6= Kera as the desired
maximal ideal.

The above use of the subspace V is similar to a device in one of
Luxemburg’s proofs (see p. 131 of [14]; Luxemburg’s argument requires
correction however, because he wrongly asserts that his ¥ is closed).

To complete the proof of Theorem A we must be able to handle
abstract Boolean algebras. For this we need

THEOREM 3. Let B be a Boolean algebra. Then there exists a Boolean
algebra of sets B together with an epimorphism f: $H—B.

This is attributed by Luxemburg [14] to Tarski. Luxemburg gives
no reference and only the barest hint of a proof. As T have been unable
to trace an effective proof I supply one here. This depends on the following
extension theorem (for an effective proof of which see pp. 36-37 of [16]).

THEOREM 4. Let A, B be Boolean algebras, let S be a non-empty set
of generatoys for A and let a: S — B be a map. Then a extends to a (necessarily
unique) homomorphism a: A —B if and only if whenever

&0 A\ s AEnp =0,

with n =1, ond are8, &= +1 for r=1,2,...,n, it follows that

goa(a)Aeala)A ... Aega(a,) = 0.

(The convention here is that e = a if e = 1, and ea = o/, the complement
of a, if e = —1.)

To prove Theorem 3 consider, for each b ¢ B, the principal ideal [b]
of B generated by b, and let 4 be the Boolean subalgebra of the power
set T(B) generated by 8 = {[b]: b « B}. Let a: §—B be defined by «([b])
=1 for all b B. We show that a satisfies the condition of Theorem 4.

Suppose that by, bs, ..., by €1, Gy ...y ¢ belong to B with
1) ] ~ [Be] e

Nlba]lnla]l nlel ne el =0.

icm
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We want to deduce that

biAbA oo AbmACACA .. Al =0 .

n

m m
Since (M [b,] = [ \bs] it is enough, for this, to check that the condition

r=1 r=1
@) (2]
implies that

nle] nlel A Ale] =

(3) DAGAGA . AGL =0 .

Now (2) says that [b]C U [er], so that b e[e], and hence bAc.= 0, for

el
gsome 7; a fortiori (3) is true.

Next, we must consider two degenerate forms of the condition (1), viz

(B A ] A oo A [b] =
and
fe ~lel A~ nle] =0 .

A moment’s reflection will gshow that the first of these cannot occur.
Ag for the second, it can be rewritten as

Male nwnla] =0
o that by the earlier part of the proof 1A A ¢,= 0, and hence
r=1

GA o AC=0.

We have thus shown that the map o: 8— B satisfies the condition
of Theorem 4. Oongequently it can be extended to a homomorphism
a: A - B. Since o is clearly onto B, so is a, and the proof of Theorem 3
is complete.

It is now easy to complete the proof of Theorem A. Let B be a Bo-
olean algebra, let B and § be as in Theorem 3, and let J = Kerp. Then,
by Theorem 2, J is contained in a maximal ideal G of $. Evidently §(Ab)
is & maximal ideal of B, as desired.

4. Proof of Theorem B. A preliminary step, which does not depend
on the axioms of § 2, is the proof of

ProrosITION 5. Let Q be a non-empty set, # a sublattice of (%)
containing 2 and at least one other element, and let 3 be a (lattice) ideal of .
Let B be a Boolean subalgebra of §(2) generated by #. Then there ewists
a (Boolean algebra) ideal § of B such that & ~ A =1J.

I claim that

F={@nbized, beB}

has the right properties.
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Tirst we show that ¥ is an ideal of $. If y € § and ¢ ¢ $ then, obvi-
ously, ¥ ~ 6 e . Next, if ,y¢J and b, ceB, then (mAbyw(yne)ef.
To see this, let b, =2 ~ b, g=yncz=0svy ThenzeJand b =z by,
6 =2ne, so that by we=2n (b v e), which shows that b, we e,
as desired. Thus ¥ is an ideal of the Boolean algebra 3.

Obviously 3C ¥. Now let a ek~ F Then a= 2 b for some » €7,
b ¢ B. Then

a=2nbrnaConaCa,

50 that @ = @  a, which shows that a ¢J. Consequently #£~ FCJ and
hence £~ F=3J.

THEOREM 6. Suppose aziom BL is in force. Then, under the conditions
of Proposition 5, the lattice 4 has a mazimal ideal. '

Let $.be as in Proposition 5 and let L, P (L) be constructed from 3
exactly as in the proof of Theorem 2. Bvidently B ={ya: & ¢ #} is a sub-
lattice of I, and we shall take P(L) to have the quasi-order associated
with this set (see § 2). By axjom BL there is an extreme point %, of P (L)
that is minimal in P (L) for this quasi-order. Since u, is extreme in P (L)
it is multiplicative on L (as in the proof of Theorem 2). If, therefore, we
write a(a) = uya) for all a € £ then we see that a is either identically 1
on # or else is a lattice epimorphism of 4 onto 2= {0,1}. Let
% = {a eA: a(a)=0}. I claim that X is a maximal ideal of #.

For suppose not. Then X is either empty or a non-maximal ideal.
In either case we can then choose a proper ideal J of £ such that 3 C J.

(It X is empty it is enough, for instance, to take for J the principal icfea,l

" generated by some element of 4 other than the largest element ). By
Proposition 5 we can find an ideal § of the Boolean algebra % such that
J= % n# Now let

W={fel: 8(f)e8}

F={ueP(L): ul W}.
Since axiom BL implies HBKML the proof of Theorem 2 shows that
F has an extreme point, u, say, and that, if we define g by 8(b) = uy(xp)
for all b €« B, we obtain an epimorphism f: $ -2 whose kernel covers §.
If y is the restriction of § to s then y is a lattice epimorphism of /& onto
2 whose kernel covers J. Consequently Kery?éKera, and hence a(a)

and

= y(a) for all a e £, with strict inequality somewhere in 4. This means
that ug(xa) = u(xe) for all a e £, with strict inequality somewhere. Bub
that contradicts the minimality of u, in P (L) for the given quasi-order,
and we are forced to conclude that ¥ is, after all, a maximal ideal of .

To complete the proof of Theorem B it is now enough to recall
a theorem of Klimovsky, Bell and Fremlin [11, 2]. To state it we require
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Axiom KBE. Hach lattice of sets having a greatest element and at
least one other element has o maximal ideal.

Klimovsky, Bell and Fremlin showed that Axiom KBF ig effectively
equivalent to AC. Sinee we have shown in Theorem 6 that axiom BL
implies KBT, Theorem B now follows.
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