

3*

 $=f_1(D_1(0) \cup D_1(1))$. But, by applying Lemma 2 repeatedly, we find there also exist nests

 $A_a \supset A_{am_1} \supset A_{am_1m_2} \supset \dots \supset A_{am_1m_2...m_j}, \qquad D_0 \supset D_0^1(0) \cup D_0^1(1) \supset D_0^2 \supset \dots \supset D_0^j \ ,$ and

$$D_1(0) \cup D_1(1) \supset D_1^1 \supset D_1^2(0) \cup D_1^2(1) \supset ... \supset D_1^j(0) \cup D_1^j(1)$$

such that $f_0(D_0(k))$, $f_1|D_1^k(0)$, and $f_1|D_1^k(1)$ are regular with respect to $(A_{am_1^{(0)}...m_k}^0, D_{am_1^{(0)}...m_k})$, $(A_{am_1^{(0)}...m_k}^1, D_{am_1^{(0)}...m_k})$ and $(A_{am_1^{(1)}...m_k}^1, D_{am_1^{(1)}...m_k})$ respectively, if k = 2, 4, ..., j, and $f_0|D_0^k(0)$, $f_0|D_0^k(1)$, and $f_1|D_1^k$ are regular with respect to $(A_{am_1^{(0)}...m_k}^0, D_{am_1^{(0)}...m_k})$, $(A_{am_1^{(0)}...m_k}^0, D_{am_1^{(1)}...m_k})$, and $(A_{am_1...m_k}^1, D_{am_1^{(0)}...m_k})$, respectively, if k = 1, 3, ..., j-1. Thus, $|f_i| \cap A_{am_1...m_j} \neq \emptyset$ for i = 0, 1 and we have a contradiction to (4).

References

- E. H. Anderson, An alternative proof that Bing's dog bone space is not topologically E³, Trans. Amer. Math. Soc. 150 (1970), pp. 589-609.
- [2] S. Armentrout, A decomposition of E³ into straight arcs and singletons, Dissertationes Math. 68 (1970).
- [3] C. D. Bass and R. J. Daverman, A self-universal crumpled cube which is not universal, Bull. Amer. Math. Soc. 76 (1970), pp. 740-742.
- [4] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. Math. 56 (1952), pp. 354-362.
- [5] A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. Math. 65 (1957), pp. 484-500.
- [6] A wild surface each of whose arcs is tame, Duke. Math. J. 29 (1961), pp. 1-15.
- [7] Point-like decompositions of E3, Fund. Math. 50 (1962), pp. 437-563.
- [8] Decompositions of E³, Topology of 3-manifolds and Related Topics, pp. 5-21, Prentice-Hall, NJ (1962).
- [9] Pushing a 2-sphere into its complement, Mich. Math. J. 11 (1964), pp. 33-45.
- [10] L. O. Cannon, Sums of solid horned spheres, Trans. Amer. Math. Soc. 122 (1966), pp. 203-228.
- [11] W. T. Eaton, A two sided approximation theorem for 2-spheres, Pacific J. Math. 44 (1973), pp. 461-485.
- [12] The sum of solid spheres, Mich. Math. J. 19 (1972), pp. 193-207.
- [13] H. W. Lambert and R. B. Sher, Point-like 0-dimensional decompositions of S³, Pacific J. Math. 24 (1968), pp. 511-518.
- [14] L. F. McAuley, Another decomposition of E³ into points and straight line intervals, Topology Seminar Wisconsin, 1965, Ann. of Math. Studies (1966), pp. 33-51.
- [15] D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), pp. 510-514.
- [16] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), pp. 416-428.
- [17] R. B. Sher, Toroidal decompositions of E^3 , Fund. Math. 61 (1968), pp. 225-241. The university of texas

Accepté par la Rédaction le 26. 11. 1973

Examples of statisch and finite-statisch AC-lattices

by

M. F. Janowitz (Amherst, Mass.)

Abstract. The purpose of this paper is to introduce a class of examples of statisch and finite-statisch atomistic lattices having the covering property. It will follow that any weakly modular atomistic lattice with the covering property is statisch, hence M-symmetric.

1. Basic terminology. Though the terminology will essentially follow that of [2], we introduce its more salient features here. An AC-lattice is an atomistic lattice with the covering property:

p an atom, $p \nleq a$ implies $p \lor a$ covers a.

An element of a lattice with 0/is called a *finite* element if it is either zero or the join of a finite number of atoms; an *infinite* element is simply an element that is not finite.

For complete atomistic lattices the notion of statisch was introduced by Wille in [3] and extended by the author in [1] to the more general concept of a finite-statisch lattice. In [2], p. 65, S. Maeda shows how these ideas may be generalized to an arbitrary atomistic lattice, and it is his idea that leads us to adopt the following definition:

DEFINITION 1. Let L be an atomistic lattice. Then L is called *statisch* if p an atom, $p \leqslant a \lor b$ implies the existence of finite elements a_1 and b_1 such that $p \leqslant a_1 \lor b_1$, $a_1 \leqslant a$ and $b_1 \leqslant b$; it is called *finite-statisch* if p, q atoms with $p \leqslant q \lor a$ implies $p \leqslant q \lor a_1$ for some finite element $a_1 \leqslant a$.

It should be noted that any modular atomistic lattice as well as any compactly generated atomistic lattice is statisch, and any finite-modular AC-lattice ([2], Lemma 15.11, p. 65) is finite-statisch.

2. The examples. We now present a pair of theorems that provide a large number of examples of statisch and finite-statisch atomistic lattices. In connection with this we shall write $[a, \rightarrow]$ for an element a of

a lattice L to denote $\{x \in L; x \ge a\}$. Before proceeding we shall need the following preliminary lemma whose proof is omitted since it is essentially a restatement of [2], Lemma 8.18, p. 39.

LEMMA 2. Let a < b in an AC-lattice L. Then:

- (1) $[a,\rightarrow]$ is an AC-lattice.
- (2) An element $c \in L$ is an atom of $[a, \rightarrow]$ if and only if there exists an atom p of L such that $c = a \lor p$, $p \nleq a$.
- (3) An element $c \in L$ is a finite element of $[a, \rightarrow]$ if and only if $c = a \lor d$ for some finite element d of L. In particular, if a is itself finite in L, then $c \in L$ is a finite element of $[a, \rightarrow]$ if and only if $c \geqslant a$ and c is finite in L.

We are now ready to state our theorems.

THEOREM 3. Let L be an AC-lattice such that every infinite element dominates a finite element a having the property that $[a,\rightarrow]$ is finite-statisch. Then L is finite-statisch.

Proof. Let $p,q,b\in L$ with p,q atoms and $p\leqslant q\vee b$. We must produce a finite element $b_1\leqslant b$ such that $p\leqslant q\vee b_1$. If b is itself finite we may take $b_1=b$ and be done, so assume b infinite. By hypothesis there is a finite element a< b such that $[a,\to]$ is finite-statisch. If $p\leqslant a$ we may take $b_1=a$, and if $q\leqslant a$ then $p\leqslant q\vee b=b$ and we may take $b_1=p$. Thus we may assume that $p\nleq a$ and $q\nleq a$. By Lemma 2, $p\vee a$, $q\vee a$ are atoms of $[a,\to]$. Working in $[a,\to]$, $p\vee a\leqslant (q\vee a)\vee b$ so there must exist a finite element $b_1\leqslant b$ in $[a,\to]$ such that $p\vee a\leqslant (q\vee a)\vee b_1$. By Lemma 2, b_1 is finite in b so b so b so b so there must exist a finite element b so b in b so b

THEOREM 4. Let L be an AC-lattice such that every infinite element dominates a finite element a having the property that $[a, \rightarrow]$ is statisch. Then L is statisch.

Proof. By Theorem 3, L is finite-statisch. Let p, a, $b \in L$ with p an atom and $p \leq a \vee b$. If $p \leq a_1 \vee b$ with $a_1 \leq a$ and a_1 finite, then by [2], Lemma 15.11, p. 65 there is a finite element $b_1 \leq b$ such that $p \leq a_1 \vee b_1$, and we are done. Let us assume that $p \not\leq a_1 \vee b$ for any finite element $a_1 \leq a$, and try to arrive at a contradiction. First of all, this forces a to be infinite, so there must exist a finite element $a_1 < a$ having the property that $[a_1, \rightarrow]$ is statisch. By assumption, $p \not\leq a_1 \vee b$, so $p \not\leq a_1$, and $p \vee a_1$ is an atom of $[a_1, \rightarrow]$. Now $p \vee a_1 \leq a \vee (a_1 \vee b)$ with $[a_1, \rightarrow]$ statisch implies the existence of finite elements a_2, b_2 of $[a_1, \rightarrow]$ such that $p \vee a_1 \leq a_2 \vee b_2$, $a_2 \leq a$ and $b_2 \leq a_1 \vee b$. By Lemma 2, a_2 and $a_3 \leq a_4 \leq a_5 \leq a_5$

$$p \leqslant p \lor a_1 \leqslant a_2 \lor b_2 \leqslant a_2 \lor (a_1 \lor b) = (a_1 \lor a_2) \lor b$$

with $a_1 \lor a_2 \leqslant a$ and finite, a contradiction. We conclude that the theorem must indeed be true.

Observing now that every weakly modular AC-lattice has the property that for every atom p, $[p,\rightarrow]$ is modular (hence statisch), we have the next result.

COROLLARY 5. Every weakly modular AC-lattice is statisch.

It follows from [2], Corollary 15. 13, p. 66 that every weakly modular AC-lattice is in fact M-symmetric.

3. Concluding remarks. We close by mentioning the characterization provided by Wille [4] of incidence geometries of grade n. He shows that a geometry is of this type if and only if its lattice of flats is a matroid lattice having the property that for every element a of height n, [0, a] is distributive and [a, 1] is modular. Because of this, it seems eminently reasonable to study AC-lattices in which $[a, \rightarrow]$ is modular for every element a of height n. By Theorem 4, every such lattice is statisch.

The notion of a strongly planar AC-lattice may also be generalized by recalling ([2], Lemma 14.4, p. 59) that an AC-lattice L is strongly planar if and only if for each atom p of L, the lattice $[p,\rightarrow]$ is finite-modular. If one examines an AC-lattice in which for every element a of height n, $[a,\rightarrow]$ is finite-modular, then by Theorem 3 the resulting lattice is at least finite-statisch.

References

- 1] M. F. Janowitz, On the modular relation in atomistic lattices, Fund. Math. 66 (1970), pp. 337-346.
- [2] F. Maeda and S. Maeda, Theory of Symmetric Lattices, Berlin 1970.
- [3] R. Wille, Halbkomplementäre Verbände, Math. Z. 94 (1966), pp. 1-31.
- [4] Verbandstheoretische Charakterisierung n-stufiger Geometrien, Arch. Math. (Basel) 18 (1967), pp. 465-468.

UNIVERSITY OF MASSACHUSETTS Amherst, Massachusetts

Accepté par la Rédaction le 10. 12. 1973