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Abstract. In this paper two theorems characterizing MAR and MANR -spaces [5]
are proved. These theorems are analogous to Borsuk’s theorems characterizing AR (3)
and ANR(M)-spaces [1] and FAR and FANR -spaces [2].

The aim - of this paper is to prove the following two theorems
characterizing MAR and MANR -spaces:

TaroreM 1. A melrizoble space Y is a MAR-space if and only if for
eoery quadruple X, X', P, Q such that P, e ANR(I), @ contains Y as
a elosed subset, X' is a closed subset of P, and X is o closed subset of X',
every mutation f: U(X, Py~>V(X,Q) has an extension f: U'(X',P)
-V(Y, Q).

THROREM 2. A metrizable space Y is o MANR-space if and only if
for every quadruple X, X', P, Q such that P, @ ¢ ANR (M), @ contains Y as
a closed subset, X' is a closed subset of P, and X is a closed subset of X',
every mutation fi UX,P)=V(Y,Q) has an ewstension f'z U'(W,P)
=V (Y,Q), where W is a closed neighborhood of X in X'

These theorers are analogous to theorems characterizing AR ()
and ANTR (I)-spaces ([1], p. 87) and to theorems characterizing FAR
©and TANR-wpaces ([2], p. 69).

The definitions of the notions appearing in this paper may be found
in [5] and [6] and they will not be recalled here. The notations are the
game a8 in [6]. Lot ws recall only that ShX denotes the shape of X in the
sense of Fox ([3]).

" We assume that the reader is familiar with papers [5] and [6].

§ 1. Proof of Theorem 1. Suppose ¥ « MAR. Take an arbitrary quad-
ruple X, X', P, Q satisfying the conditions formulated in the Theorem.
Consider an arbitrary mutation

f UX,P)»V(Y,Q).
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Since Y ¢ MAR, then by Theorem (3.5) of [6] we have Sh¥ = Sh(a),
where (a) is a space consisting of only one point a. Thercfore, there exist
mutations

g V(T,Q)=W(@), (@) and & W(a), (@) >V(¥,Q)
such that

gh ~ w=MorW|(a), (a)) and hg ~v=DMorV(Y,Q).

Since H((a), (a)) is a rudimentary system, the mutation gft U(X, P)
—>W((a), (a)) has an extension (gf): U'(X/, P)»->W((’(1,) , (@)). Fence, the
mutation A(gf): U'(X’, P)—V(Y,Q) is an extension of the mutation
hef: U(X, P)~V(Y, Q). Since hg =~ v, we have hgf ~ f. Ience, by the
homotopy extension theorem for mutations ([6], Theorem (2.3)), the
mutation f: U(X, P)—V(Y, @) has an extension f': U'(X', P)—V(X, Q).

Now, suppose that, for every quadruple X , X', P, Q, satisfying the
conditions - formulated in the Theorem, every mutation f: U(X, P)
—-V(Y,Q) has an extension f': U'(X', P)~V(X, Q).

By the Kuratowski-Wojdystawski theorem ([1]), p. 78) there exists
an AR (I)-space @ containing Y as a closed subset. Let us put X = ¥
and X’ = P=¢. Obviously, the quadruple X,X’, P,Q satisties the
required -conditions. Consider the mmutation v = MorV (Y, Q): ¥(Y,Q)
-V (X, Q). By hypothesis there exists an extension v': V(Q, Q)= V(Y, Q)
of v. Let r be a family of all maps r e »’ such that r(y) = y for cvery yel.

It is easy to see that r: ¥(Q,Q)—V(Y, Q) is a mutational retraction.
* Therefore the space ¥ is a mutational retract of the space Q « AR (IN).

Hence, by Theorem (4.9) of [5] we obtain ¥ ¢ MAR. Thus, the proof is
concluded. i

§ 2. Proof of Theorem 2. Suppose Y ¢ MANR. Take an arbitrary quad-
ruple X, X', P, Q satisfying the conditions formulated in the Theorem.
Consider an arbitrary mutation

[ U, P)~V(X,9Q).

Since ¥ ¢ MANR, there exists a closed neighborhood W, of ¥ in @ such
that the set Y is a mutational retract of W,. Let V, be the interior of Wy
in . It is easy to verify (see the proof of (4.11) in [B]) that there exists
. a mutational retraction

r: V(V,, Vo)=V(X,7,).

Let i: Y—>Y be the identity on ¥ and let j: Y-V, be the inclusion.
These maps have extensions

i V(Y,V)>V(X,Q) and j: V(Y,Q)—V(V,, V,).
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It is easy to see (compare the proof of (3.12) in [B]) that
irj ~v=Mor¥V(Y,Q). '

By (2.1) of [4] the mutation jf: U(X, P)—V(V,,V,) is homotopic to
a mutation g: U(X, P)—»V(V,,V,), which is an extension of a map
g: X-+V,. By the first theorem of Hamner ([1], p. 96) we have
Vo e ANR(IM), and bence by Theorem (4.2) of [1], (p. 87) the map
¢: X~+V, hag an extension ¢': W—V,, where W is a closed neighborhood
of X in X'. Consider a mutation g’z U'(W, P)—V(V,,V,), which is an
extension of the map ¢’. By (2.1) of [5] the mutation g’ is an extension
of the mutation g. Consider the mutations
irjf, irg: U(X, P)=V(Y,Q) and irg": U(W,P)»V(¥,Q).

Since g’ is an extension of g, irg’ is an extension of irg. Since g =~ jf and
irj = v, we have irg = irjf ~ f. Hence, by the homotopy extension theo-

* rem for mutations ([6], Theorem (2.3)), the mutation f: U(X,P)

~V(Y, Q) has apn. extension f': U'(W, P)~»V(Y, Q).

Now, suppose that, for every quadruple X, X', P, @, satisfying the
conditions formulated in the Theorem, every mutation f: U(X, P}y
- V(¥, Q) has an extension f': U'(W, P)~V (Y, ), where W is a closed
neighborhood of X in X' .

By the Kuratowski-Wojdystawski theorem ([1], p. 78) there exists
an ANR (90)-space @ containing the space ¥ as a closed subset. Let us
put X = ¥ and X'= P=¢@. Obviously, the quadruple X,X’,P,Q
satisfies the required conditions. Consider the mutation v = Mor ¥ (Y, Q):
V(Y,Q)—>V(Y,Q). By hypothesis the mutation » has an extex.lsmn
v: V' (W, @)~V (Y,Q), where W is a closed neighborhood of ¥ in Q-
Let ¥, be the interior of W in Q. By the first theorem of Hanger, we have
Vo e ANR(M). Consider the systems ¥V (Vy, Vo) and V( Y,V,). Denote
by » the family of all maps r: V-V, where VeObV(Y,V,y), suc_h that
» is a restriction of map v ev and r(y) =y for every y e Y. It is easy
to verify (eompare the proof of Theorem (4.14) in [B]) that r: V(V,, V)
~V(Y¥,V,) is a mutational retraction. Since ¥V, eANR(SI{z), by Theo-
rem, (4.11) of [B] we obtain ¥ ¢ MANR. Thus the proof is completed.
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Curves which are continuous images
of tree-like continua are movable

by
J. Krasinkiewicz (Warszawa)

Abstract. This paper contains several results about continuous images of continua
whielh are contractible with respect to graphs. The main result shows that 1-dimensional
continuous images of {ree-like continua are movable (in the sense of Borsuk’s shape
theory). Wo present certain characterizations of continua with trivial shape. These
vegults extend gome facts concerned confluent images of continua that was recently
obtained.

1. Introduction. Using the notion of movability belonging to shape
theory we obtain in this paper some new results concerning curves. The
main result of this paper is stated in the title. '

; In 1968 XK. Borsuk [5] began the development of a new theory which
compare compacta, i.e., compact metric spaces, from the point of view
of their global topological properties. This theory has come to be known
as shape theory. Let us recall some basic notions of this theory. Let X
and Y be two compacta lying in the Hilbert cube . A sequence of maps
f;g @->Q is said to be a fundamenial sequence from X to Y (in symbols

= {fg, X, ¥}) if for every neighborhood V of ¥ there exists a mneighbor-
hood U of X such that fi|U is homotopic to fr iU, fulU = fre,|U in ¥
for almost all k. If X = ¥ and fx is the identity map lg: @@ for every
positive integer k, then the fundamental sequence J is said to be the
Fundamental identity sequence for X, and is denoted by 1x. The composi-
tion gf of fundamental sequences I zmd g = {gx, Y, Z} is the fundamental
sequence gf = {gufr, X, Z}. Two fundamental qequences f and g from X
to ¥ are said to be hofmotopv,c [~ g, if for every nelghborhood ¥ of X there
exists a neighborhood U of X “such that x| U = ¢i| U in V for almost all k.
Tf there exist two fundamental sequences f from X to ¥ and ¢ from ¥
to X such that ¢f~1x, then we say that ¥ fundamentally dominates X,
X = ¥. If, in addition, we have fg ~1y then X and Y are said to be

jwnda'rrwntalla/ equivalent — notation.: X ~ ¥. It is known that the re-
lation = is a true equivalence relation, ‘md the set of all compacta lying

ni ¢ is therefore partitioned into equivalence classes. The equivalence
class containing a compactum X is called the shape of X and is denoted
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