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Abstract. For a bounded real-valned function f with domain an open interval,
it is shown that tho set of points at which fis connected and the set of points at which
fis Darboux are (-sots.

1. Introduction. In [1], Bruckner and COeder describe what it means
for a real function to be Darboux at a point, and later in [2], Garrett,
Nelhns, and Kellun introduce the idea of a function connected at a point.
Tt is known that the set of points of continuity for a real-valued function
with domain an open interval is a @,-set. This paper gives a partial
answer to o conjecture of Hugh Miller that the set of points at which such -
a function is connected is also a G,-set. A similar result is obtained for
the set of points at which a function is Darboux.

2. Preliminaries. Tor any subset M of the plane Ex E, (M)x de-
notes the X-projection of M and (M)y denotes the Y-projection. For
any subset I of the X-axis, My denotes the set of points of M which
have X -projection in K. The vertical line through a point (2, 0) is de-
noted by 1(). All functions in this paper are real-valued with domain
an open interval. No distinction is made between a function and its graph.
A function f is said to be connected from the lefi (right) at a point z of its
domain if whenever (2, a) and (2, b) are two limit points of f from the
left (vight), then the continuum M contains a point of f whenever (M)x is
a non-degenerate set with vight (left) end point 2 and M, is a subset of
the vertical open interval with end points (2, a) and (#,.b). The function
£ is connected at w point & if {7, f(2)) is o limit point of f from the left and
right and f is connected from both the left and the right at = If each
guch I is a horizontal interval instead, then one obtains the definitions
of Darboux from the left (right) ai a point and Darbous at o point.

We first need a result which we apply later to vertical closed intervals
which meet the closure, f, of a function f. These vertical intervals may
be bounded or unbounded subsets of the plane.
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LemMa 1. Let A be an wncountuble subset of veal numbers, and lel
C = {L(a): ae A} be a collection of homeomorphic vertical closed intervals
such that each (L(a)lx = a. Then there is a member L(ay) of C that is the
limat from one side of a sequence of members of O—{L(a,)} and that is
contained in the limit from the other side of « sequence of members of
O— {L(ap)}- ) '

Proof. It each member of C is a vertical line, the result immediately
follows from the fact that thére is a point @, of 4 that iy a limit point
of 4 from both the left and the right. We give the proof for the ease
when each member of €' is a closed and bounded interval. TE each member
of ¢ were a closed ray, the proof would be similur. ’

It is known that there is an uncountable subeollection ¢ of ¢! with
the property that each member L(a) of 0" is the limit of a sequence of
members of O~ {L(«)} from one side, say from the right. This follows
from the fact that the plane is separable. For each positive integer n
and for each L(a) in C, let R(a,n) denote the rectangle fa—1/n, a]x

X (L(a))y. For each n, define ¢, to be the collection of fthose membery -

ZL(a) of ¢" with the property that if I(a’) is in ¢~ {L(e)} and L(a’') meets
R(a,n) then diameter L(a)— diameter L(a") ~ B(a, n) > Lfn.

o
Case 1. |J O, is countable.
n=1
The collection B of those L(a) which fnril. to be in () €y for the reason

. Nwal
that no Z(a') in 0—{L(a)} meets some R(a,m) iy countable. Then there

(o]
is & member L(ap) of (¢"— | J Cy)— B. Therefore for each %, there is some

n=

. 1
L{a) in O—{L(a,)} such that L(a,) meets Ry, n) but dismeter
L(.ao)——.(hamet.er ;E‘(an) N Bag, n) < n. It now follows that I (ay) I8 con-
tained in the limit from the left of some subsequence of the sequence {L(ay,)}.

. 0o
Case 2. (J Cy is uncountable.
ne==1
Then fgr some positive integer iy O 18 uncountable. Therefore sonie
member‘l?(ao) of Op is the limit of a sequence {L ()} of moembers of
ij— {L(ap)} from either the left or the right. If convergence is from the
right, then we can choose an integer & so large that ap-— a, < Ll L(ag)
meets .R (ax, m), and diameter L(ay)— diameter (ag) ~ Bo(ag, m) = Ljm.
But this says that L(az) is not in Om, & contradiction. Thercfore con-
vergence must be from the left after all.
. But then e can choose an integer % wo large that g g << L[,
(ik> nlee..i;s R (ay, m), ’arnc‘l diameter L (a,)— diameter Lar) ~ B (ag, m)
<< 1/m. This says ?hat L(uo) is not in Oy, a contradiction. Therefore case 2
cannot oceur. This finishes the proof of the lemma.
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3. The main results.

TunoreM L. If f is a bounded real-valued function with domain an
open interval (w, v), then the set of points at which f is connected is a Gy-sel.

Proof. Let py, denote the set of points at which f is connected,
O}, the set of points at which f is connected just from the left, and Cr
the set of points at which f is connected just from the right. Let 2 be
a point in Crz. Then fel(w) is connected because (v, f()) is a limit
point of f from both the left and the right. For each positive integer n,
there ig an open interval O(wx, n) containing # and having diameter less
than 1/n such that for cach z in O(x,n), (f~1(2))r is a subset of the
1/n-neighborhood of (f ~ 1(#))y. Define 0, = (U {0 (%, n): # ¢ Orz}. Clearly

‘OLR C m ()71.

n=1

To prove the theorem we need only show (1) ﬁ 0, CCrrv Orv Cr
and (2) Cp and Oz are each countable. For, theﬁzit would follow that
COrr i8 a G;-set because Crp= ﬁ On— (03 v CF) where C3C O and
C*,.C 0. ‘ " '

Proof of (1). Let 2 be a point in (M) On, and we may as well suppose
n=1

2 is not in Crg. Therefore f ~1(z) is non-degenerate. For each #, there is
an @y, in O such that 2 is in O (2, ). Since the diameter of O (@4, n) is
less than 1/n, the sequence {#,} converges to z. We may assume without
loss of generality that {.} converges to z from the left. Since z is in
O(wn,n), (1) is a subset of the 1/n-neighborhood of (F ~ Uaa))r
for each n. All but finitely many sets f ~ I(z) are non-degenerate. Other-
wise, if infinitely many were degenerate, then there would be an integer m
such that f~ I(zn) is degenerate and the diameter of f~1(z) is greater
than the diameter, 2/m, of the 1/m-neighborhood of f ~ (). This would
imply # is not in O(wm, m), a contradiction. We may as well suppose
each f~1(zn) is non-degenerate. )

‘We show next that the sequence {f ~ I(xa)} of intervals converges
to f~1(2). Let P and @ be two points in f~ I(e), let (2, w) be a point
between P and @, and let €y, 0,, and 0 be disgjoint open spheres centered
at P, Q, and (z,w) respectively. C; and (, must eventually meet each
J ~l(z,); otherwise, an argument similar to the one in the preceding
paragraph would result in a similar contradiction. Therefore Cy eventually
meets each F~ I(z,). Consequently, {f~ I(2a)} converges to f~ (), and
Fr1(z) is connected.

‘We now show that 2 is in Oy. Let (2, ¢) and (z, b) be two limit points
of f from the left, and let M be a continuum such that (M)x is a non-
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degenerate set with right end point 2 and M, is a subset of the vertical
open interval with end points (¢, a) and (2, b). Assume Jmisses M. Lot ¢
and O, be disjoint open spheres missing M and centered at (%, a) and
(#, b) respectively. There is an integer m such that U(xn) separates two
points of M and such that f~I(z,) meets both O; and C,. Since M
gepstmtes & point (xm,s) of f~ C; from a point (myt) of Fr(,
in (M)xx R, then M separates (a5 f(mm)) from either (zm,s) or (2w, t;
in (M)xX E. We may assume that M separates (mm, Jlam)) from, (wy,, s)
in (M)xx B and that (zm, s) is & limit point of f from the right. Lct70’,
and 0, be disjoint open spheres in (M)x X B with radius », centered q{
(@n s f(#m)) and . (m, s) respectively, and missing M. Denote by & the
subset of the plane such that (z, y) is in S if and only if o < @ < 1
and (z, y) lies between two points (z, 15) and (z, r,) belonging to C’a\and Cy
respectively. Since M ~ § separates (m,y f (@m)) from. (@m, s) in 8, it follows
from a lemma of Roberts [3], p. 176, that there is a subcontinuwm N of M
in § such that N separates (ocm , f(mm)) from (%m,s) in 8. (N)x is a non-
degenfarate set with left end point @,,, and N,, is a subset of the vertical
open Interval with end points (zm, f(2m)) and (2m, 5). Since zy is in Cpp
N meets f, a contradietion. Therefore M must meet fy and so 2isin ¢ ;”
. Proof of (2). Assume, on the contrary, that ¢ is uncountable.
Fn‘s"o we show that the set A of those points @ in ¢y for which Falla)
Is disconnected is countable. Assume A is wncountable. For cach o in A
%et L(a) be a vertical closed interval with end points P(a) and Q (a) bélong:
ing to different components of f~ l(a) with P («) lying above Q (a) (Writteh
P(a)> @(a)). The collection ¢ of all these L(a) is uncounta,ble.' By
Lemma 1, there is an a, in A such that L(e,) is contained in the limit
from left of a sequence {Z(a,)} of members of (— {L(ay)}. There a;re>s1'1b-
sequences {P(an:)} and {Q (an:)} of the sequences {P(an)} and {Q(d.n)} such
that' {P(ane)} converges to s point P = P (a) and {Q (an:)} converges o
a point @ g Q(a,o). P and @ are limit points of f from. the left and ’r,h(;e'l’ore
have to lic in the same connected subset Tanan 0 Vo) of F o~ 1(ay). But
sme_‘e P = P(ag) > Q(ay) > @, P(ay) and Q(a,) lie in the samo (zornrionéirb
of f~1(ay), a contradiction. Therefore A is countable. I
C1— 4 is then uncountable. For each a in Or— A4, leb L(a) = F e [{a)
Let C be an uncountable collection of these L(a) such that cach two
’ members pf O are homeomorphic, By Lemma 1, therd is a ,nmmb@ Li{a,)
of ¢ that is the limit from one side of a sequence of members of ‘(}'m—”f]; ('a' ;}
and thm; is contairied in the limit from the other side of a lﬂe([l]();léﬁ rﬂn‘f
members of O—{L(ay)}. i_[n fact, this latter one-sided limit acbmix,lyly edﬁw]s
L(a,) becawse L(ap)=F~1I(ay). This shows Jonan O L(dg) = "f"’“ ~ Z(“‘ay‘)
= frl\ .l(a“)' The set B of all such ay 18 uncounﬁmlo)le. Thorefong(zf'q%ii:cxrc 195
an a m B‘ such that some sequeénce {L(an)}. c‘onve‘rgos"""t'o‘L(,a’) from the
right, where each a, is in B—{a'}. Tt follows from the proof of (1)‘ that

N
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¢’ s in (g, o contradiction to a’ belonging to Cz. Therefore ¢ must be
countable. Similarly, Or is countable.

The proof of the following theorem is similar to the proof of Theo-
rem 1 and is thercfore omitted. _

TaworEM 2. If f 48 o bounded real-valued function with domain am.
open interval, then the set of points at which f is Darbouz is a Gy-set.

Since the set of rational numbers is not a @,-set, we obtain the
following result.

COROTLARY 1. There is no bounded funetion f: R—R that is connected
at just the rationals, and there is no bounded function g: R->R that is Dorboua
at just the rationals. :
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