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Kurepa’s hypothesis and the continuum
by »
Keith J. Devlin (Oslo)

Abstract. Silver [5] proved that Con(ZFC -+ “there is an inaccessible cardinal”)
implies Con (ZFC+ CH4- “there are no Kurepa trees”). In order to obtain this resuls,
he generically collapses an inaccessible cardinal to w,. Hence CH necessarily -holds in
his final model. In this paper we sketch Silver’s proof, and then show how it can be
modified to obtain a model in which there are no Kurepa trees and the continuum is
anything we wigh.

Introduction. We work in ZFC and use the usual notation and con-
ventions. For details concerning the forcing theory we require, see Jech [3]
or Shoenfield [4]. A tree is a poset T = <T,<r) such that &
= {yeT| y<pwx} is well-ordered by <z for any »eT. The order-type
of # is the height of # in T, hi(x). The oth level of T is the set T,
= {weT| M(®)=oqa} T is an w,-tree if:

(i) (Va< o)(T, # 9) & (T, = 9);

(i) (Va<f<w)(Vae Tu)(ﬂynyz € Tp) (@ <z Y1, ¥ & Y2 # ¥a);
(it) (Vo< w)(Va,y ¢ T,)(lim(a)~>[o = y-& = §]);
(1v) (Vo< o) (|To] < @) & Ty = 1.

For further details of w,-trees, see Jech [2].

If T is an w,-tree, a branch of T is a maximal totally ordered sub-
get of T A branch b of T' is cofinal if (Va< o )(T, b +#0). T is Kurepa
if it has ab least Wy cofinal branches. If ¥ = L, then there is a Kurepa
tree. This result is due to Solovay. For a proof, see Devlin [1] or Jech [2].
More generally, if V = L[.4], where A C o, then there is a Kurepa tree,
from which it follows that if there are no Kurepa trees, then w, is inacces-
sible in L. (All of this is still due to Solovay, and is proved in [1] and [2].).
Henco, in order to establish Con(ZFC4-K), where K denotes the state-
ment “there are no Kurepa trees”, one must at least assnme Con(ZFCH-I),
where I denotes the statement “there is an inaccessible cardinal”.

Now, if M is any cardinal absolute extension of I, and if T' is a Ku-
repa tree in I, then T will clearly be a Kurepa tree in M. Hence, if » ig
any cardinal of cofinality greater than e, we can, by standard arguments,
find a generic extension of I, with the same cardinals as L, such: that,
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in the extension, there is a Kurepa ftree and 2¢ == ». Johngbriten has

" pointed out that the consistency of K--2° = (for such x) i§ not so

easily obtained. Now, Silver [5] has shown that Con(ZEC- I)-» Con (ZF( -
+2° = w-+K). (And by Solovay’s result above, the hypothesis here is
as weak as possible). However, the method Silver cmploys necessarily
makes 2° = w, hold, so as it stands the only hope to obtain K- 2% = »
would seem to be to take Silver’s model and blow-up the continuum
generically to . In fact this procedure does work (i.o. K is proserved), but
the proof that it does is fairly delicate, as opposed to the corresponding
argument for T1K. Since we shall need all of the tricks employed by Silver
in his proof of Con(ZFC+K), we may as well commence by describing
his argument.

Silver’s model. We shall use M to denote an arbitrary countable
transitive model (c.t.m.) of ZFC throughout. By poset, we mean, a8
usual in forcing, a poset P, with a maximum element 1, such that avery
P ¢ P has at least two incompatible extensions in P, where p, ¢ e P are
compatible, written p ~q, if there is » ¢ P such that 7 < P,4q. We say P
satisfies the » chain condition (x-e.c.), for » an uncountable cardinal,
if there is no pairwise incompatible subset of P of eca rdinality ». P is
o-closed if whenever (p,| a <A< w,> is a decreasing sequence from P
there is p ¢ P such that » < p, for all a < A. The following lemmas ave
standard. (See Shoenfield [4] for example.)

- Limma 1 (Cohen; Solovay). Let P be a poset in M, % an uncountable
regular cardinal in M. Let & be M- generic for P.

(1) If M E “P satisfies the »-c.c.” then 1> % is a cardinal in MG
iff 1 is a cardinal in M.

(i) If Mk “Pis o-closed”, then for all 2 < w,, (MM = (IAYMIA g0,
in particular, ol = oM and $¥(e) = §HE ()

. Levma 2 (Lévy). Let % be an inaccessible cardinal in M. , P a poset
in M such that Mk “|P| << ", If G is M -generic for P, then » is still in-
accessible -in, M[@).

LeMMA 3 (Solom.y). Let Py, P, be posets in M. If Gy is M -generie
for .Pl and @, 8 M[Gy]-generic for P,, then Gy is M[G,]-generio for Py,
G, is M-generic for Py, Gy X Gy is M - generic for Pyx Py, and M[G][6)
= M[G][G] = M[6, Gl = M[G X Gy], where P,x P, is the ocariesian
product of P, and P, with the partial ordering {py, P> < Ly §a> < Py
<1{g1 &Py <, qz.}C’omersely, if G ds M-generic for Py x Py, then (}1
= {p| <D, 1> < &} is M-generic for Py, Gy = {g| <1, > € G} is M1 conerin
fOT .Pz; and G = G1>< Gg- v 2. { ’q> } M[ J:I genene

Let. » be an uncountable cardinal. The poset P(x) is defined as
follows. An element p of P(x) is a countable function such that dom(p)
gmlx #» and ran(p)Cyx, and if <{a, s e dom(p), then p(a,d)¢d. The.
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ordering on P(x) is defined by p<qepDg. If P= P(x) and 1< #x,
we set Py={p }(0:x2)] peP}l, P'={p—p | (0x2)| peP}, and
regard P,, P* as posets in the obvious manner. Clearly, P = P;x P
by a canonical isomorphism.

Levma 4 (Levy). Let » be an inaccessible cardinal in M, and set
P =[P (x)}%. Then, Mk “P is o-closed and satisfies the x-c.c.”. If @ is
M- generic for P, then o = o and x = 9. Furthermore, if A< x

" is an uncountable regular cardinal in M, then M[G ~ P,] F “P* is o-closed

and satisfies »-c.c.”.
Proof. See Jech [3] or Silver [5]. For the last part, notice that as
P, ig o-closed in M, M[G ~ P,] has no new countable sequences from P,
whence P* is still o-closed in M[G ~ P,]. Also, as we clearly have P*
o [P ()PP Temma 2 will ensure that P* has the »-e.e. in M[G ~ P,],
For later use, we shall give the proof of the next lemma in full.

Lomma B (Silver). Let P be a poset in M such that- M k “P is o-closed”.
Let T be an w,-tree in M. Let G be M -generic for P. If b is a cofinal branch
of T in M6, then in fact b M.

Proof. We may assume I = {w,, <r). Suppose that, in fact b ¢ M.
Working in M, we define sequences {ps| s 22>, {ws| s €2&) so that
Ps€ Py 1 Cs—>pa < Po; s € T 1 C 8@ <o @55 |$| = [¢|—ht(2s) = hi(w:); and
Dgrcos F Banery. The definition is byaindllction on |s|. Pick Pg € P so that
Pg |- “b is a cofinal branch of i‘ & b ¢ M”. Let x4 be the minvun&} element
of T. Suppose p,, xs are defined ofr al} s € 2", and that ps |I-“xse b”, where
ps < pp in particular. Since pg |- “b ¢ M”, we can clearly find Py,
Pancy < Ps (each s € 2") and points @,y s Bencry > msvsueh t]gat I%t(wm@)
= Ry q) AN Dgr gy 7 Tonryy 0T Which Dygsy [ “Cgney €0’y i=0, 1.
Furthermore, we may clearly do this in such & way that for any s, ¢ € 2"+,
Bt (@) = ht(w). Since P is o-closed, for each fe22 we may pick p,eP
such that p, < p;y for all # < w. Also, as [22] = o, We may pick o< @,
such that ht(z,) < « for all se22. Since p; < Pg (veaclg fe2®), we can
tind pj<p, such that for some w,eT,, p;l- “w., € b”.. But, clearly,
Dyll- “By o<z @, for all n < w, s0 by our construction, f £ g—a; # ;.
(There are just two remarks called for here. Firstly, since T e M, if
P}~ “&;1p<r @ then in fact @, <z @;,,. Secondly, if f# g then for some
n<w, finzgn) Thu {z; fec2° is an uncountable subset of T,
which is absurd.

TuporEM 6 (Silver). Let » be an inaccessible cardinal in M. Let P
= [P(%)]". Let @ be M-generic for P. Then M[G]k “2° = o+ K.

Proof. By Lemmas 4 and 1, M[G]F “2° = 0" and o9 = x.
Algo, oM = oM, o the notion of an “w,;-tree” is absolute here. Let
T be an w,-tree in M[G]. We may assume T = {wy, <r). By the truth
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lemma, we can find an uncountable regular cardinal A< x of M such
that 7'e M[G ~ P;]. By Lemma 2, I has fewer than » cofinal branches
in M[G ~ P,].. But by Lemma 4, I”1 is o-cloged in M[G ~ P,], and by
Lemma 3, G ~ P* iy M[G ~ P,]-generic for P so by Lemma 5, T' has
no cofinal branches in M[G ~ P,][G ~ P*] other than thoge in I [G ~ Pl

Again by Lemma 3, M[G ~ P;J[G ~ P*]= M[], so we see that T' has

fewer than » cofinal branches in M[G]. m

The new model. We ghall requwe the following well known result,
proved in Jech [3].

Lemwma 7 (Marczewski). Let-A be a limit ordinal, cf(A) = w,. Let J be
a collection of w, finite subsets of A. There is o finite subset X of A and an
uncountable subfamily J’' of J such that ¥, Z eJ' Y nZ = X.

Let » be an ordinal. The poset C(x) is defined as follows. An element

" of O(x) is a finite function p such that dom(p)C » and ran(p)C 2. The
partial ordering on C(x) is defined by p < ¢ «» p D ¢. Thus, if » iy an un-
countable regular cardinal in M, [C(»)]¥ is the usual poset for adding »
Cohen generic subsets of o to M. Note that in this case, [0'(x)]™ = ((x),
both of these being defined by the same, absolute formula of set theory.

It is well known that if » is an uncountable regular cardinal in M and
G is M- generie for 0 = [ (»)1*, then M and M[G] have the same cardinals,
by virtue of the fact that M & “0 satisfies the countable chain condition”,
and M[G]kE 2° > ». For our purposes, however, it will be useful to regard
the procedure of forcing with € over M here as an iteration of length »x.
Accordingly, we make the following definitions.

Let U be the poset consisting of all maps p such that dom(p) =n
for some 7 e w and ran(p)C2, ordered by p <qeo pDg Thus UeM
and U is the usual poset for adding one Cohen generic subset of w to M.

Let %eOn. Set 0%(x) = {plp: »—U & for some finite set X Cx,
p(a) #0 < ae X (we call X the support of ¢, supp(e))}, and partially
order 0*(x) by ¢ < 9 « (Va e %)(p(a) D (). It is easily seen that forcing
with €*(x) is equivalent to forcing with O(x). In fact, the complete boolean
algebra associated with both of these posets is the Borel algebra on 2%
factored by the ideal of all meager Borel subsets of 2% where 2* is given
the product topology for the diserete topology on 2. Note also that the
definition of O%(x) is, like O(x), absolute for transitive models of ZEFC
containing ». The point of all of this is that forcing with €*(x) can be
regarded as a process of forcing with U x times, successively, using
Lemma 3.

Levwma 8. Let » be an uncountable cardinal in M, cf™(x) > w. Let
= [0()]™. If G is M-generic for C, then M[G]F 2° > xy M amd M[G]
h(we the same cardinals and 00f’L’ﬂal’bty Jumction, and if Mk 2° < », then
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MIGTE 2° = «. Fwtiaermore, if T = ol <z> is an w,-trec in M, and

b is a cofinal branch of T in M[G], then be M.

Proof. The last part of the lemma is the only non-standard part.

Let C* = [C%(%)]". We may assume, by virtue of our above remarks,
that @ is M - generic for C* rather than €. Let T = <!, <r> be an o, -tree
in M. We may assume that » <<z v—>y<< 7. Note that as oM@ = o,
T is still an o,-tree in M[G].
T Iy <, then clearly (*(y) = {p } y| p < C*}. Set G, = {p } 7] ¢ G}
By Lemma 8, @, is M -generic for 0*(y) and M[G] is a genemc extengion
of M, = M [G‘ 1. Olearly, M, = M[G], so it suffices to prove, by induction
on y < %, that if b is a cofinal branch of T' in M, then b e M.

For y =0 there i3 nothing to prove. Suppose the result holds for
y<u If H= {p(y)| ¢ €« G}, then by Lemma 3, H is M, -generic for U and
M, = M, [H] Let b be a cofinal branch of T in M . It suffices, by
virtue of ‘uhe induetion hypo’rhems, to show that b e M This will be
so if, whenever pe U and p |- “b is a cofinal branch of T” thereis ¢ < p
such that ¢ |- “b « V. We work in M,. Let such a p be given. For each
g < p, let a(g) be the supremum of afl ordmals £< w;suchthat g |- %5 eb?
for some v on level & of T'. Set a = sup{a(q)| ¢ < p}. By the truth lerama
for forcing with U over M,, 6= @, Hence, a8 |U|= o, a(g) = w, for
some ¢<p. Set b’ ={rel| ¢|-“»eb”}. Then b eM,, and clearly
gl “h = b”’, g0 we are done. Finally, suppose y <, llm( ), and the
result holds for all 6 < y. There are three cases to congider.

Case 1. of(y) = w. Let b be a cofinal branch of T in M,. In M,
let (yn| n < @) be cofinal in y. Work in M,. By the truth lemma for
forcmg with C*(y) over M, for each »e¢b we can find p, e &, such that
P, |- % €b?. Let X, = supp(p,). Since each X, is finite, and cf(wl) > w,
we can find an uncountable set b’ C b such that veb' =X, C p, for some
fixed n << w. But clearly, b= {v ¢ T| (Hp e @,,)[p |- “p e b ”]} € M,,.Hence,
by induction hypothesis, b ¢ M.

Case 2. cf¥(y) = w}’. Let b be a cofinal branch of T in J,. Suppose,
by way of contradiction, that b ¢ M. By induction hypothesis, therefore,
d< y->b ¢ Md, also. Work in IM,. For each »eb, pick p,’e @, such that
Py I|~m(,,)v ¢h”, and let X, = supp( p,). If sup {max(X,)| V€b}< y, then
arguing as in Case 1 we see that b « M, for § = sup {ma,x(X,)l v ¢ b}, and
we are done. Hence we may assume sup{max(X,)| » e b} = y. It follows,
by Lemms 6, that we can find an uncounmble set b’ C b and a finite
set X Cy such that »,7ed’ and »< v implies X, ~X,= X and such
that » € b’ implies X, #X Since |U| = w, we can find an uncountable
set " C b’ such Lhzut v, Teb’ implies p, } X =9, } X = p, say. From
now on |- refers to the forcing relation for C*(y) over M.

CrAaT™M. There is qe C*(y), supp(q) n X =@, and »< w, such that
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Cwdbbuipugl-ve b, where p v g e C*(y) i3 defined from p and g in the
obvious manner.

Suppose the claim is faﬂse In M, set d = {» « T| (Hq € O*(»)) [supp(g) »
AX=0&puql-9eb”]}. Since the claim fails, d Cb. But for each
veb', if g=p, } (X,—X), then supp(g) "X =@ and pwg=p, and
9, - “Ee b”, so bCd. Hence b=de M, a contradiction. This proves
the claim. )

Pick g O*(y) ag in the claim and let v < w, be such that v ¢ b and
pugl-“re b, Pick 7 eb”, v >», such that X, ~ supp(g) = @. (This is
clearly possible). Clearly, p, v q=1p v qwip, I (X,—X)]e 0"(y). But
look p,wg<p,, 80 pogl-“veb”?, and p, g=pUg 50 pug
I-“ve b Henee, a8 ¥ < T, P, v ¢|- “¥<<r7”, which means a:<T 7, of course.
Thus, a8 7eb’’, » € b, a contradiction.

Cage 3. cf(y) > ¥, This case is trivial by the fruth lemuma for
forcing with O*(y) over M.

The lemma is proved. &
The following is an analogue of Lemma b.

LEMMA 9. Let G, P be posets in M such that M & “C satisfies c.c.c.
and P is o-closed”. Let G be M-generic for OX P. (Thus o = o9,
Let Go={pel| <p,1>e@}, Gp={qeP| A, G} (Thus Go¢ s
M -generic for C, GP is M{Gcl-generic for P, and M[G][Gp] = M[G.)
Let T be an w,-tree in MGl Ifbisa cofmal branch of T in MG}, then
be MGc)

Proof. Notice that as P is not necessarily o-closed in the sense
of M[G¢], we cannot argue exactly as in Lemma 5. However, with a little
extra work, we can carry through an argument parallel to that of
Lemma 5. We shall assume that I'= {w,, <r), a8 before, and that T
= {0}. Let b be a cofinal branch of I in M[G]. We shall suppose that
b ¢ M[Gy) and derive a contradiction. By ¢ we shall mean C-foreing
over -M, and by |- P-forcing over M[Gs]. For simplicity, we shall as-
sume that 1p [-p “b is & cofinal branch of T not in M[@y]”. (In the general
case we pick some p ¢ Gp which forces this statement and work below p
in P.) Similarly, we shall assume that 1 [-g [“T = {wy, <py I8 an o, -tree
& Ty = {0} & 1p|-p [“b is & cofinal branch of T not in M [Go]”]”] (T'o
avoxd awkward clashes of notation, we shall write b, #, v, instead of b
@, o, ete. ‘and rely on the context to provide the precise meaning.

We shall construct, in M, a sequence <g,| s € 22> of members of P,
with s Ct—q, <p ¢, and a sequence <axn| n < w) of countable ordinals,
such that, for s e2™:

(i) 1o (To € T,,) (g =P 2 € b);

Kurepa’s hypothesis and the continuuwm 29

(i) 1|-¢ “if 2 € T,, & g, |-p ¢ b, then there arve @y, 4, ¢ T, , % # @4,
@ <g @y, &y, such that ¢, ll-rp2ied (i=0,1)".

By analogy with Lemma 5, this will give the required result. For,
let us place ourselves in M[G,], whence the statements in (i) and (ii)
above will be frue. For each fe2” ~ M, we obtain a ¢, ¢ P, ¢; <P ¢yyn

“for all n.< w. (Sinece P is o-closed in the sense of J.) Since ¢ satisfies

the c.c.e. in. M, 2% ~ M is uncountable. Hence, as in Lemma 5, we obtain
an uncountable family {z,| fe2° ~ M} of distinet elements of T,, where

a == SUp ay.

n<w

The construction of the sequences <g,| €22 and <{as| n < @) i8
by induction. From now on we work in M.

CrAm™ 1. Let o< oy, ge Py 1o (Hz e T,)(q|-p @ € b). Then there are
&, g <pq such that 1|5 “if 2T, & ql-p® b, then there is B> o and
ad, at e Ty, af # 'y 3<pab,at, such that ¢ |-p o’ eb”.

In ordmr to prove Claim. 1, we define, by induction, a sequence
pyy @y, a5,y 2l @5, 45, B0) v < 8 for some 8 << o, 5O thab:

() V< 5———>p,,e 0& g e P &a,oew, &p,< o

(11) ¥l Tl (5""‘}7, "“1’:&% \PQP\PQ7

(iii) p, o [“2, € T, & g l-p @, < b"];

(iv) , o [“} « Ty, & o) # @, & @, <y 0} & g |-» 0} € D7)

The ordinal 6 will be determined by the construetion breaking dowmn.
This will oceur when {p,| »< 8} is a maximal pairwise incompatible
gubset of C. Hence, by c.c.e. for C, § < wy.

Suppose we are at stage » and that {p,] v<»} is not maximal
pairwise incmupmtiblc. As P is o-closed, we can find rie<P such that
(Ve < »)(#t 1pgl). Pick p,eC incompatible with all the p,,v<v By
extending p, it necessary, we may assume that for some #,,

Do (@, e T, & gll-r @, € b).

We mayy likewise assume further that there is f,> a and 7, vt < p )

and o, #%, such that @ 4 and

P, o “lei € Tp, & @, < @ & v ||-p 2l e b].
Since At for each 4, we may assume that « o ol (say). Set @} # wif,
g == ¢, rl‘]mt completes the construction. Pick ¢® mow so that
(V<< 8)(¢" ,. qY). The ¢ are now ag required. For let p « € be given.
TFor gome » <7 d, there iy p’ « Cp, Dy BV conditions (ili) and (iv) above, .
together with the fact that q* <p q¢, p' forces the statement in the claim.
Hence as p was arbitrary, Lhc set of p e ¢ which force this statement is
dense in (f, which proves the claim.
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"To congtruct the sequences <q,| 8 € 22> and {an| n<< o) is now oagy.
Let f(a, g, ¢") = sup §, in the above proof of Claim 1. If now g¢,,
<8

se2", and o, are defined, extend g¢,. (s <2") to ¢, ¢t as in Claim 1, and
set ayqy = SUP{B(an, oy 45, )] § € 2"}. Then. extend ¢i to g,q ¢4y a8 Tequired
by means of: ‘

Coamm 2. If a<w, g€ P, there is ¢"<p ¢ such that 1|~y (Hy < 1)
(¢l-py€bd).

The proof of Claim 2 i8 similar to, bubt much easier than, the proof
of Claim 1, so we shall omit it. The lemma iy thus proved. @

TerorEM 10. Let % be an inaccessible cardinal in M, and let A be an
arbitrary cardinal in. M such that 2 > x and cf(3) > w. Let P = [P ()],
0= [C(O1*. Let @ be M-generic for Px 0. Then ol = oM 5= M6
A and oll other cardinals of M-above % are cardinals in M[G] (so if A = wﬂfﬁ,
then A= oil®), A1) >0, MGk “2° = 2, and M[G]E“K”

. Proof. Let Gp, Gy be as above. Let I = {wy, <r) be an w,-tree
in M[@]. By the truth lemma, pick ¥ < % an uncountable regular cardinal
of M such that T'e¢ M[Gp PJ[Gcl. Let N = M[Gp ~ P,]. Notice that
by Lemma 4, P” is o-closed in the sense of M, Also, by absoluteness,
0=1[0)]", so C satisfies c.c.c. in N. Now, by Lemma 3, Q¢ is
N -generic for €, so by the truth lemma for (-forcing over ¥ we can
find, in N, a set XC1, |X|= w,, such that T e N[Gc ~ Cx], where
Cx={p |} X| peC}. Now, XecN, so in N there is a canonical
isomorphism € = Cxx €%, where 0¥ = {p—p } X| pe(}). Thus, by
Lemma 3 (applied to N), G¢~ Ox is N-generic for Ox, Go CF ig
N[@¢ n Cx]-generic for O%, and N[Gc¢n Cx][Gcn 05X]= N[G¢]. By
Lemma 2, 2 is inaccessible in N[G¢ ~ Cx]= M [6p n P][Gc ~ Ox).
Hence T' has fewer than » cofinal branches in N[Gc ~ (x]. In N[G¢
~ Ox], there is a canonical isomorphism 0% o [(/(2)19"%), Hence, by
Lemma 8 applied to N[Gc ~ Ox], T has no extra cofinal branches in
N[G¢] = N[Gc ~ 0z][Gc~ 0X]. But by Lemma 3 again, M[G]
= M[Gpl[Gc] = M[Gp n P,][Gp ~ P*][G¢] = N[Gc][Gp~ P and GpPY
is N [@c]-generic for P”. So, applying Lemma 9 to & and the posets C, 7,
we see that T' has no extra cofinal branches in M[G]. Hence T iz not
Kurepa in M[G]. B : -

Added in proof. Using similar techniques to the above, we have gince obtained
a model of the theory ZFCH2¢ = w,+ K4 Martin’s iAxiom. The proof will appear
elsewhere. '

°
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